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ON THE RECOVERY OF ANALYTIC FUNCTIONS 

JOSEPH A. CIMA AND MICHAEL STESSIN 

ABSTRACT. In this paper we consider questions of recapturing an analytic function 
in a Banach space from its values on a uniqueness set. The principal method is to use 
reproducing kernels to construct a sequence in the Banach space which converges in 
norm to the given functions. The method works for several classical Banach spaces of 
analytic functions including some Hardy and Bergman spaces. 

0. Introduction. In this paper we are considering the problem of reconstructing a 
vector/ in one of the classical Banach spaces of analytic functions from knowledge of 
partial data about the vector. A general problem of this type can be stated in the following 
way. Let Xbc a Banach space and S be a subset of X*. The set S is said to be determining 
for X if whenever/ € X and T(f) = 0 for all T G S, then/ is a zero vector. Assume 
that S is a determining set for X and the numbers {T(f) : T E S} are known (the data), 
where/is a vector inX Can one determine a sequence of vectors {fn}'mX, where/, are 
constructed using only the data given, and so that the sequence {fn} is a Cauchy sequence 
in Xconverging to /? As written the problem is intractable. One reason for this is that 
for all the spacesXthat we consider, the spaced* is identified isometrically with another 
Banach space of analytic functions Y and the action of a linear functional T is prescribed, 
usually by the formula T(f) = Jfg where g is in Y and prescribing the number T(f) need 
not yield the vector g. 

Problems like this have a long history, see [10]. The most natural conditions to assume 
for such Banach spaces X is to assume that the functional T are evaluations at points 
in the domain of definition of the functions in X. In this case we can identify the action 
of the functional with integration against a known kernel, and the determining set is 
a uniqueness sequence for the space. In some cases, Banach spaces are parametrized 
by a parameter/? and form scales of reflexive Banach spaces if/? ^ 1. Examples are 
the Hardy spaces IF and the Bergman spaces Ap on the unit disc. Although there are 
continuous inclusions between these spaces the uniqueness sets can differ from one value 
of/? to another. For example the zero sequences of the Bergman spaces differ for different 
values of/7 (see [6]). But it is known that for the Hardy spaces, if S = {Tn} and Tn{f) = 
f(an) = bn where (an) is a subsequence of A, and if the Blaschke condition fails (i.e., 
E(l — \an |) = oo), then S is a determining set for IF (A). If the space is such that boundary 
values of functions in X exist a.e. on dA then one can consider the following problem. 
Given a vector/in X and assuming the values of/are known on a set E of dA of positive 
measure, can one find a sequence of vectors in X converging t o / (using only the data 
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that/ is known on E). This problem can be reformulated in the setting introduced above. 
Riesz [9] proved that in the IP(A) case such an E is a "uniqueness" set and this will 
induce a determining sequence. 

The most natural way to construct such a sequence {fn} is to use some kind of inter­
polation. A detailed bibliography on the subject may be found in [10]. Mainly the results 
in this area dealt with degree of convergence and convergence of interpolating sequences 
uniformly on compacta. 

The first results towards recovering the function from its values on E was done by 
Carleman [2]. Using the harmonic measure on E Carleman constructed a sequence that 
converges t o / uniformly on compacta. Patil [8] modified this construction and found a 
sequence which converges t o / inlF (p> 1). In [1], Anderson and Cima extended this 
result to the case where E is a spherical "cap" part of the boundary of the unit ball in 
C". In general setting the construction of the recapturing sequence is based on the theory 
of minimal interpolation. Unfortunately, little is known about minimal interpolants. The 
only exception is the case of iF(A) (see [3] and [7]). Thus it is important to investigate 
the possibility of finding explicit and simple reconstruction procedures. In this paper we 
focus on constructing rational recapturing sequences by using the technique of reproduc­
ing kernels. 

In Section 1 we prove two results. The first shows that ifXis a Hilbert space of analytic 
functions on A with reproducing kernel K and if the determining set is given by evaluation 
functionals at points of A, then we can construct an explicit sequence of functions {fn} 
in X using only the known data converging in norm to a given/. The second result 
generalizes the theorem in [1]. Namely, if we are given Q a smoothly bounded strictly 
pseudoconvex domain in Cw and if E C 9A, with the (2n — 1) Hausdorff measure of E 
positive, then we can produce a determining set for any/ in H2(D) known on E. 

In Section 2 we use this result to construct a sequence converging t o / in X if X is a 
Banach space of analytic functions with reproducing kernel and 

11/11* = (/A Wf <*M«) K 2 < p < oo, 

where d/i(x) is a finite positive measure on A such that |[£(*)IU = |[/*(nc)||;r —> \\f\\x as 
/ —• 1. The significant feature of this construction is that it is independent of p. Further, if 
/ is i n ^ , then the recapturing sequence converges in^, . If 1 < p < 2 and the sequence 
{an} lies in a compact part of A we can modify the construction given in Section 2 to 
obtain a recovering sequence that converges t o / (in the correspondingp metric). We do 
this in Section 3. 

In the last section we consider these problems for the Hardy spaces W, with 1 < 
p < 2. We can construct recovering sequences of vectors in these spaces if we require 
an additional growth condition on the Blaschke sums. 

Although we discuss spaces of analytic functions in the unit disk in the complex plane 
the results of Sections 1 through 3 hold for analytic functions in any bounded star-like 
domain in C" with smooth boundary. (Our problem makes sense for n > 1 because 
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a uniqueness set inside the domain contains a countable dense subset which is also a 
uniqueness set.) All proofs are literally the same. The results of the last section are based 
on special results and estimates for functions from Hardy spaces and so are not transfer­
able to another domain. 

1. Recovery in Hilbert spaces with reproducing kernels. LetXbe a Hilbert space 
of analytic functions in A with reproducing kernel K(z, w) holomorphic in z and antiholo-
morphic in w (e.g. H2, A2 or the Dirichlet space) such that 

f(w) = {f(z%K(z,w)) 

for a l l / E X. ((•, •) as usual denote the Hermitian inner product inX.) Let {an}^Lx be a 
sequence in A which is anX-uniqueness set. Denote 

(1) Ln = span{#(z, at\ l = 1,. . . ,«}. 

As usual, if some point aa is repeated and has multiplicity m, then the spanning elements 
in (1) corresponding to aa are 

K(z,aa), -QZK(Z, W ) ! * ^ , . . . , Q^P[K(?>™)U=aa• 

Further, denote by B„ the following (n x n) matrix 

(2) B„ = (K(ahaj))n..=l. 

Given a function/ £ X set 

^ = ( f l « i ) , . . . , / ( a „ ) ) eC , 

(3) n„ = (i]l...,rO = (BT
nrlin, 

Mz)=tv:K(2,am)eLn. 

Let Pn be the orthogonal projection Pn:X-^> Ln. 

PROPOSITION 1. (1) The function f„ interpolates/ ata\,...,an; 
(2) Prf^fn. 

PROOF. Both results are straightforward. Indeed, write f3n = (f„(a\), . . . , / (#„) ) . We 
have 

(3„ = BT
nr)n = £„ 

which implies (1). Furthermore, 

(f-fn,K{z,aa))=f(aa) -fn(aa) = 0, a = 1,...,« 

which implies (2). • 
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THEOREM 1. fn converges tof in X as n —> oo. 

PROOF. We have by Proposition 1 

(4) \Wx=\V»\?x+W-f,fx, 

which implies that the sequence {fn}™=\ is bounded in Xand therefore contains a sub­
sequence {fnk}kL\, nk —> oo that converges weakly to some function g £ X. Since 
g(0<*) = f(aa), a = 1,2,... and {an} is the uniqueness set for X we conclude that 
g =f. Since a sequence of convex combinations of/* converges tof in norm of X (see 
[4], p. 422), we obtain that/ belongs to the closure of the convex hull of {fnk}kLi and, 
therefore, 

(5) | |/IU<sup{||/nJU}<sup{|l/n |U}. 
k n 

By (4) we have ||/*||x > sup„{||^||x} which together with (5) implies 

(6) ll/IU = sup{||/„|U}. 
n 

Further, by Proposition 1 

(7) \\f-fn\\x = dist(f,Ln) > dist(f,L„+1) = \\f-Ux\\x. 

Using (4) and (7) we conclude that 

\\f\\x= lim |l/i|U, 
n—>oo 

which implies that 
\\f-fn\\x->0 asm—>oo. • 

COROLLARY. / —*fn uniformly on compacta. 

This result is straightforward because of pointwise evaluation 

W)\ < Mx{K(z,z))112. 

REMARK. This construction can be extended to the case when X = /feCO- Assume 
T is a bounded strictly pseudoconvex domain in C" and E is a subset of dT of positive 
(In — 1) Hausdorff measure. For each n = 0,2,4,. . . and with k(n) = 2n choose a disjoint 
measurable partition {(Df^} which satisfies the following: 

i) dT = Ufn) V^n) 

ii) diameter(©f(w)) - * 0 as« —• oo 
iii) the Cf^ are nested in that 2)f(w) is the disjoint union of the 2)f(w+1) which intersect 

i 

Let ê  = £ n 2 ) ^ . Denote \E the characteristic function of E. Then %£ G Li(dT) and 
</>£ £ #2(0 , where </?£ is the projection of \E to HiiT). (This projection is defined by 
the integration against the Szego kernel.) It is easy to check that 

https://doi.org/10.4153/CJM-1996-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-015-4


292 J. A. CIMA AND M. STESSIN 

for a l l / € # 2 ( 0 (we denoted the measure on dT by dr). 
Without loss of generality we may assume that 

mes(£*)>0, 1 = 1,...,£„ 

mes(£?) = 0, i = kn + 1, . . . , k{n). 

In a similar fashion we denote 

Ln(E) = span{^«, . . . , ^ }, 

Bn(E) = ((VE]h<PEn)fJ==l, 

^n=(JEJ(r)dr,.^JEnf(r)dr)9 
1 kn 

Vn = (Bn(E)rylU 

kn 

£=1 

T h e n / is the orthogonal projection/ onto Ln(E) and, therefore, |[/||/f2(r) are uni­
formly bounded. Hence there is a subsequence {f„k} that converges weakly in # 2 ( 0 to 
some function g and 

/ gij)dr = / f(r)dr for all n and / = 1,. . . ,£„. 
i i 

The last equality implies that/|^ = g\g a.e. Since E is a uniqueness s e t / = g and we 
apply the reasoning of Theorem 1 to prove that/, converges t o / in #2 (0 . Note that 
for T = A this construction differs from Carleman's although, in fact, it also uses the 
harmonic measure. 

2. 2 < p < 00. Let d[i be a nonnegative probability measure on A. We do not 
exclude the case when /x(3A) > 0 ("Hardy" case). Let Xp, 1 < p < 00 be a space of 
analytic function in A such that 

11/11* = sup ( [ \fr(x)f dfi(x))l/P < 00. 
0<r<l V-/A / 

If /x(dA) > 0 we require that / has boundary values on supp(/i) n 3A. Assume Xp has a 
reproducing kernel K(z, w), that is 

/(w) = J/(z)K&w)dfi(z) 

for a l l / € AJ, and AT(z, w) E ̂  for all w G A, 1 < /? < 00. If p = 2, then X2 is a Hilbert 
space. Since the measure \i is finite we have 

XPl dXP2 if/?i >p2 
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and, therefore, any uniqueness set for XPo is a uniqueness set for Xp if/? > p$.l 

Let a = {ak\f=x be a uniqueness set forX2. Denote 

(8) c(a9n9r) = sup{^(z)| : \z\ < r9 \\f\\x2 < l,f(ax) = • • • =f(an) = 0}. 

PROPOSITION 2. c(a9 n9r)-^0asn—>oo. 

PROOF. First we note that the problem (8) has a solution. Denote this solution^. 
There is a subsequence {%k} weakly converging in Xi. Iff* is the weak limit, then/* 
vanishes at a\,..., an9... which implies f* = 0. Since the sequence {c(a, n, r)}j£=i is 
monotone decreasing as n —> oo the required result follows. • 

Fix two sequences rk / 1 and e^ \ 0 as A: —• oo and choose a sequence of natural 
numbers {A/*}^ that satisfies the following conditions: 

(1) Nk / oo as k —» oo 
(2) c(a9Nk9rk)<ek. 
Now we define the sequence {^(z)} by 

(9) /*)=Ei%,4 

where rjE
N are defined by (3). 

THEOREM 2. Ifa = {ak}^ is a uniqueness set for Xi andf G ̂ , , 2 <p < oo, 
then the sequence (9) converges tof in Xp. 

PROOF. Denote A0 = {z G C : \z\ < Q}. The measure \i defines the measure [iQ on 
AQ by /i^(C) = /x(-Q for all measurable subsets C. Note that the function fr{z) = f(rz)9 

0 < r < 1, belongs to ̂ (A^,. , /Xi/r) and 

ll/r|Up(A1/r,/x1/r) = ||/1|jrp. 

Moreover, ATr(z, w) = AT(rz,nv) is the reproducing kernel for Xp(Ai/r9^i/r). Let us denote 
an = f~- We obviously have 

and, therefore, the function (9) interpolates^ at a\,... ,ah
N . By Proposition 1, it is the 

orthogonal projection of/r, onto span{£rt(-, a\),... ,Krit(;<fNt)}. Hence ll/tlU^Aj.,/^) < 

rk rk 

Now we obtain 
SUp|/r*(z)~/*(z)| 
W<1 

< sup{|g(z)| : \z\ < 1, ||g|k(Ax,,±) < 2\VhPM) = • • • = g ( < ) = 0} 

= sup{|g(z)| : \z\ <rk,ge X2, \\g\\X2 < 2\\f\\P,g(fi\) = — 8<fiNt) = 0} 

= 2\\f\\p-c(z,Nk,rk)<2\\f\\pek. 

The converse statement is in general false. For example, the Bergman spaces zero sets for functions of Ap 

are different for different/? (see [6]). 
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Since the total mass of the measure /x is finite the last inequality implies 

\\f-fk\\<\\f-fnb, + \\frt-fkbf-*0 asfc-,00. 

REMARK. It follows from the proof of Theorem 2 that the same result holds for 
functions/ from the disk-algebra^ (A). In this case/; converges t o / uniformly on A. 

3. Compact uniqueness sets. If the sequence {an}^ lies in the compact part of 
A we can modify (9) to obtain the sequence that converges t o / in Xp for an arbitrary 
1 <p < 00. 

Denote 

rf(r,/0 = sup{|/fc) |: |z |<r, ll/IU, < 1}, 

where 0 < r < 1. 
Again, let r* / 1, ek \ 0 as k —• oo and let g* = ^p-. We may assume that 

sup„ \an\ < r\. Choose a sequence \Mk\™=\ of natural numbers such that 
(1) Mk / * oo as k —» oo; 
( 2 ) c ( a , A 4 , ^ ) < ^ 

where c(a,Mk, j^r) is defined by (8). Proposition 2 provides the possibility of such a 

choice. 
Set 

Bk=U(a-LA)) 
V \Qk QkJJij=i 

and define 

oo) s^) = t4K(f,aA 
l=\ ^Qk QkJ 

where rjk = (T]\9 . . . , r/f*) is defined by rjk = {BT
k)~

l £Mk. 

THEOREM 3. If{an}%L\ *s a uniqueness set for Xp (\ <p<oo) which lies in the 
compact part of A (i.e. an infinite sequence with a limit point in A) andf £ Xp, then the 
sequence (10) converges tof in Xp. 

PROOF. If/ e Xp, then 

sup\f(z)<\\f\\xpd(Qk,p) 
\A<Qk 

and, therefore, 

\\frk\\x2(A6jL,nejL) = \\f\\x2(Aek,Hek) < \\f\\xpd(Qk9p). 
rk rk 

As in the proof of Theorem 2, set a\ = f-. Consider the function/A(z) as an element 
of ^(Afffc, jx£t), then (10) represents the interpolation offrk by the linear combination 

rk rk 
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of kernels K(^z, %al
k)91 = 1,.. . ,Mk at the points a\9..., of*. Since AT(^z, ̂ w) is the 

mX2(AojL9 / ia), we have by Proposition 1 

H a t l U ^ , ^ ) < ll/1|jr2(Afifc,i*2fc) ^ ll/IU, d(e*>py 

reproducing kernel inX2(A&, fi^), we have by Proposition 1 
rk rk 

Thus 

sup \frk(z)-gk(z)\ < 2\\f\\Xpd(Qk,p)c(a9Mk, ^ ) 
|z|<i v QkJ 

= 2||/l|^to,p)c(fl,Mfcl^-) 

< 2 1 1 / 1 ^ - ^ 0 asfc-»oo. 

Finally we have 

\\f-gk\\xp < \V-fn\\xp + Ilk - a l l * < r - A l l + sup \frk(z)~gk(z)\ - 0 

as k —-> oo. 

4. Recovery in Z/ .̂ Let J^ = ^ (A) , 1 < /? < 2. In this case we can slightly modify 
(10) to construct a recovering sequence even in the case when |a„| —+ 1 as n —+ oo, 
provided that |a„| converges to 1 rather slowly. 

Without loss of generality we may assume that the sequence { K l } ^ ! increases and 

(11) 

M = \ai\ = • - • = K I < K+il = • • • = K l < K+ i | = • • • = K| < K J 

Suppose additionally that {an} satisfies 

(12) inf(l - \an\)n^-£) = c(a) > 0 
n 

for some e > 0. 

Let us denote Bau...,a„(z) the Blaschke product vanishing at a\,..., an. 

LEMMA. If\(\ > \, then 

(13) 1^,^(01 < exp{-TT|f g / 1 " H ) ) 
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PROOF. We have 

iog(i*ai *,(oi) = ^x>g | 
i-at 

1-f i /C 

-iH-('-«fi 
= -^EE 
^ i A a - l£l2)(i - H2) 
- 2,tl (1 + lClkl)2 

- IzJlEfv, bh 1 + k l 

- ~S ( 1 - W ) ( i + iaN) 2 ' 
Now we note that for 0 < x < 1 

( l+x V - 1~2!' l -2 |C| - |€ |x 

Kl*)3 < 0 

and, therefore, ^ g ^ ^ » • 

To construct a recovering sequence we shall use the following result. 
Iff e Hp, \\f\\Hp < l , /(«i) = • • • =f(ak) = 0, then 

(14) 1/(01 < \Bai Ot(0l 
(l-Kpy/p-

Now, choose a sequenced \ 0 and let {nm}™=l be a sequence of natural numbers such 
that 

(1) nm /* oo as m —> oo 
(2) exp j -^ / i*+21og* M } < (5w 

Define («w x «w)-matrix 2?w and r/m G C"m by 

(15) 
*""(65)"li-(i + ̂ W v -

i?* = (iji l , . . . , ij?) = ( f l ; r 1 ^ 

where, as before, £Wm is the vector of known values (f(a\\... ,f(a„m). 
Now we set 

(16) hm(z) = £ »/» 
1 

f= l i-d + fFkk" 
THEOREM 4. 7f f/ze sequence {an}^=i satisfies (11), (12) andf E Hp, p > 1, f/ze« 

//ze sequence (16) converges tof in Hp. 
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PROOF. Denote rm = \a„m |, gm = x ̂  . It is easy to check that gm > 1. Further, 
^ nm ) 

the kernel of CQm(z, w) = -~r is the reproducing kernel for Hp(AQm) and, therefore, the 

matrix (15) is 

V Krm rmJJij=\ 

and (16) represents the interpolation of the function^ (z) by the linear combination of 
C0m(z, j*-). By Proposition 1 

||̂ m||//2(Aem) < ll/rJ|//2(Aem) 
< max ]frm(Q\ 

ICl=flm 

= max I/XOI 

< WWPZ— 

<{^)l/P\\fUn^ 
Thus, \\frn - &m|k(Atm) < j^\\f\Wm)xlp and, since (frm -hm) vanishes a t * , . . . , * , 
(13) and (14) imply 
SUP\frm(z)-hm(z)\ 
|z|=l 

^ ll/r« - M#2(AeJ 

x max{|?(z)| : <p € tf2(AeJ, IMk(V.) < l,J^) = ••• = v ( ^ ) = o | 
Fl=l I \rmJ K 'm ' ) 

= \\frm ~ hm\\H2(Am) 

x max I \(p(z)\ : <p € H2(A), 

l k lk (A)< l^ (a / ( l + ^ ) ) = 0 , / e l , . . . , n „ 

< T-T77^IWU»-)l/l' ! 

p | i+ ( i+^)Kut i l I nmy" 

4 rll/IU»-)1 /p- * 

x exPS ^ ;—; $ r M + - ^ XXI - Wi\) ~ c(fl) 
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By (12) we have (1 — \an\) > -jf^ for all n which implies that if m is sufficiently large 
then 

£ 0 - H) > c(a) £ —JJ- > —nm ' , 
e=i t=\ nil 2 

(i + -JO-KI)-->Sp. 

Finally we obtain 

sup[/;„(z)-/Uz)| < J g L ( „ m ) W - ! e x p ( - ^ ^ ) 
bl=l trfnW IP I » J H=i {c(aj) 

m\P 
(c(a)) 

1/2+1 IP 'H-¥*+(H-§M 
m\. 

The rest of the proof is standard: 

11/- UP < llf-AlU + , 8|K/2+1/P ' *» ~> ° * " » - « > • 
(c(a))' /2 I /p 

REMARK. It follows from the proof of Theorem 4 that the condition (12) might be 
weakened to 

inf(l - M ,Vf >0 

where <p is any increasing function on [1, oo), (p(x) —* oo as x —* oo. 
The following construction allows recovery even in the case when the condition (12) 

does not hold, but the sequence {an}™=l lies in an internally tangent disk, say 

(17) a„ E A(a) = {z G C : \z - a\ < 1 - <*}, 0 < a < 1, n = 1, . . . . 

Let us denote 

OS) -J-Sff. 
If W ^ satisfies (17) then it is easily seen that \a'n\ < 1 and £ f (1 - \a'n\) = oo. 

Given the function/(z) G HP(A) we define g(z) by 

(19) g ( z ) = / ( z ) . ( l - z ) 2 . 

The estimate 
\\f\\p 

(1 - |Z|)'/P 
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implies that the restriction g(z) to A(a) is a bounded function. This restriction defines the 
operator Aa: i/oo(A) —• //QO(A) 

(20) Aag(z) = g((l-a)z + a). 

The following result by Gabriel [5] is important for our construction: 

(21) \\Aag\\p<(l+a)\\g\\p. 

Let {a^}^! be a sequence of positive numbers which decreases to zero as n —• oo 
and let Nk be defined by the conditions 

(1) Nk / oo as k —•> oo 
(2) 

(22) exp{-^E0-|«il)}<^ 

Again set 

and let 77̂  be defined by (3) and 

Nk nL 
(23) h(z) = V* — 

* h\-df
t{\-ak){{\-ak)z-ak)' 

THEOREM 5. Iffe HP(A) and {an}™=l and {a'n}^x satisfy (17), (18) respectively, 
then {hk(z)}^i converges to g{z) =/(z)(l — z)2 as k —» oo. 

PROOF. First we note that for/ G HP(A) the sequence {Aaf}^ converges weakly 
to g{z) as n —» oo and, by (21), it converges to g(z) in HP(A). Denote 

<Pk(?) = gi-a*(0 - <**)* + «*) = g ( 0 ~ akfz + <**(1 ~ a*)) = ^ g i - a * . 

We have 

(24) "g " **llp ~ " g " ^ g ' l / 7 + "^*g " ^ + " ^ " **"" 
= II* " AaMp + Il4*fe - gl-«)\\p + IIW " **l|p-

The first term of the right-hand side of (24) tends to zero as we mentioned above; the 
second term tends to zero by (21). Now let us prove that (<pk — hk) \ 0 as k —• oo 
uniformly on A. Let A* = {z G C : \z — y ^ | < njay } be the image of the unit disk 
under the linear transformation 

(25) Cjfc:*t-» 1 ,2z+- "* 
( 1 - a * ) 2 ( 1 - a * ) ' 

Then <p*(z) = g((l — a*)2z + ak{\ — a*)) is holomorphic and bounded in A*. The trans­
formation (25) maps the disk A'k = {z G C : \z = ak{\ — ak)\ < (1 — ock)

2} onto the unit 
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disk. We consider cpk(z) as an element of H2(Ak). It is clear that 11^*11//^) = IteltacAt)-
Further, 

1 - (1 - akf ((1 - ak)z - ak) ((1 - a)w - ak) 

is the reproducing kernel for the Hardy spaces in A*;. It is easy to check that (23) is 
the linear combination of Kk(z,a"), £ = 1,. . . ,iifr, that interpolates ipk at the points 
a"t = Ck(a'e), £ = 1, . . . ,#* . By Proposition 1 

ll**||/fc&) < ll</>J//2(A*) = U\\H2(Ak) 

and therefore by (13), (14) we obtain 

sup \<p(z) - hk(z)\ < 2\\g\\H^k)' n * e x p { - ^ E ( l - Wt\)\ 
\z\<\ ( 1 - r ) 1 / ^ I 2 e=l J 

where r = sup{|z| : z G A'k} = 1 — ak. Finally, by (22) 

sup W{z) - hk{z)\ < 2\\g\\H2iAk)±- e x p ( - ^ £ ( 1 - \af
E\)\ 

< 2||g||//2(A/t)' <*k —> 0 as k —> oo. • 

As a final piece of evidence to support the veracity of our general result in H\ consider 
the following 

PROPOSITION 3. Assume {an } ̂  i is a uniqueness set for H\ accumulating at a point 
£o> |£o| = 1- Iff is in H\ and there is a neighborhood of "£o in which f does not take the 
value b in the neighborhood then we can construct a sequence {fn}™=\ in H\ using only 
the values {f(dn)}^L\ which converges tof in H\. 

PROOF. Without loss of generality assume {an} is determining, a„ —• 1 and/(w) ^ b 
in the unit disc. The function 

F(w)=f(w)-b 

has a holomorphic square root in the disc. Hence, if we know f(an) we can determine the 
values of//2-fiinction 

G(w) = y/F(w) 

on {an}. It is now possible by our earlier result to determine {gn} in H2 with 

\\gn - G\\H2 —» 0 as n —• 00 

Since 
||g5-F||<2(sup||g)l||ft)||gII-G||/%. 

n 

Thus we can find a sequence in H\ converging in norm to / . 
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