
POLYNOMIALS WITH CERTAIN PRESCRIBED 
CONDITIONS ON THE GALOIS GROUP 

ELIZABETH ROWLINSON AND HANS S C H W E R D T F E G E R 

Introduction. In this paper, some contributions are made to the theory of 
algebraic equations over the rational field with conditions imposed on the 
Galois group.1 In § 1, for a given abstract group G all faithful permutation 
representations G are obtained, and it is shown that if one of them is the 
group of some equation with splitting field K, then any of them is the group of 
some equation, also with splitting field K. The method of proof enables us to 
construct an equation having as group a given faithful permutation represent­
ation G of a prescribed group G if we are given an equation having as group 
some faithful representation G of G. In § 2, equations having nilpotent group 
are considered, non-normal extension fields are discussed, and a canonical 
form is obtained for the roots of non-normal irreducible equations; this form 
is used to characterize fields and equations with nilpotent groups. In §§ 3 and 
4 we are concerned with the problem of constructing irreducible equations 
with prescribed group. In § 3 we give a method when the group is Abelian; it 
involves finding cyclic direct factor fields as subfields of appropriately chosen 
cyclotomic fields. In § 4 we reduce the problem for any group to that of solving 
a set of Diophantine equations; for groups of very low order, particular 
solutions can be obtained on a computer. The method depends on the Normal 
Basis Theorem of Artin (1, p. 66) and is a generalization of a method developed 
by L. M. Young for cyclic groups (6). 

1.1. As in (2), we consider the Galois group ®[f(x)] of the polynomial f(x) 
over the field R0 of the rational numbers to be a permutation group, and the 
Galois group ® (K) of the normal algebraic extension K of RQ to be an auto­
morphism group. If K is the splitting field of f(x), then ®[f(x)] is a faithful 
permutation representation of ®(K). 

1.2. We shall first establish a theorem by means of which it is possible to 
find all faithful permutation representations of a given finite group G by 
examination of its subgroups. I t is a generalization of a theorem given in (3, 
p. 57). 

Received May 12, 1967. This paper contains, in condensed form, the results obtained in the 
Ph.D. thesis of the first author, McGill University, August, 1965. The work was supported by 
a grant from the National Research Council of Canada. 

^ o r consistency, the ground field has been taken as the rational field throughout the paper ; 
however, the results obtained in §§ 1 and 2 are valid for any ground field of characteristic 0. 
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Two permutation groups are called equivalent if one of them can be obtained 
from the other by a reordering of the set of permuted symbols. In Galois 
theory, where the symbols are the roots of / (#) , equivalent permutation 
groups can be considered identical. 

THEOREM 1.2. Let G be a group, and let G be a faithful representation of G as 
a permutation group. Then G corresponds to a set Hi, . . . , Hk of subgroups of G 
for which 

(1.2.1) ( n H A r \ ( n H A n . . . n ( n f f * ' ) = i. 
\ QÇ.Q / \ Q€G / \ g£G / 

Conversely, to any such set of subgroups there corresponds a faithful representation 
GofG. 

Proof, (a) Let G be a faithful permutation representation of G, and let 
(hi = 1, tu, . . . , hni), (tn, t22, . . . , t2m), • . • y (hi, • • • > hnk) be a set of systems 
of transitivity of G. Let Ht be the subgroup of G which leaves fixed the symbol 
ta, and gij an element of G carrying ta into t^; there is such an element for 
j = 1, . . . , nt, and 

G = HtU gi2Ht U . . . U giniHu nt=[G: Bt]. 

Since H^ is the subgroup which leaves ttj fixed, the normal subgroup 

Nt= n Bt9*' = n 5 / 
4=1 , . . . ,n» (/€<? 

leaves fixed ta, . . . , / in i; hence, Pi^=i^z leaves fixed all symbols ttj and is 
therefore the identity. If Hi, . . . , Hk are the subgroups of G corresponding, 
respectively, to Hi, . . . , Hk under the isomorphism G ~ G, (1.2.1) follows. 

(b) Let J?i, . . . , Hk be subgroups of G satisfying (1.2.1); let 

G = Ht\J gi2Ht U . . . U giniHu 

where nt = [G : £TJ (i = 1, . . . , k). For g G G, let 

TT( \ = I Hi, gi2Hi,. . . , gimHi, H2,. . . , g2n2H2,. . . , Hk,. . . , gknkHk \ 
^ J " \gfl"i, gguHi,. . . , ggimHi, gH2,. . . , gg2n2H2, . . . , gHk,. . . , ggknkHk)' 

11(g) is a permutation, and gives a homomorphism of G whose kernel consists 
of all elements g for which ggijHi = gijHt (all i, j ) , or g Ç ff/*v (all i, j ) . But 
from (1.2.1), C\i,jHi9iJ = 1, and thus the homomorphism is an isomorphism. 

Note. Each of the sets Hu . . . , giniHi is a system of transitivity of G\ if 
Ni = C\g^GHi\ then {11(g): g G AM is the subgroup which leaves the system 
fixed, and {11(g): g Ç il*} is the subgroup which leaves fixed Ht. 

Two well-known results follow as corollaries. 

COROLLARY 1. Taking k = 1, we see that any transitive faithful representation 
G of G corresponds to some subgroup H for which C\gÇ.GHg = 1, and to any such 
subgroup there corresponds a transitive representation G. The degree of G is 
[G : H). 
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COROLLARY 2. If G is Abelian, the only subgroup satisfying DgeaH0 = 1 is 
the identity; thus the only transitive faithful representation is the regular represent­
ation. 

1.3. The following theorem shows that if a faithful permutation represent­
ation of a group G is the Galois group of an equation over R0 with splitting 
field K, then every faithful permutation representation G of G is the Galois 
group of some equation, also with splitting field K. 

THEOREM 1.3. Let K be a field such that ®(K) = G. Let G be any faithful 
permutation representation of G\ then there exists an equation ]{x) = 0 with 
splitting field K and Galois group G. 

Proof. In the notation of Theorem 1.2, let Hh . . . , Hk be the subgroups of 
G corresponding to the representation G. To each of these subgroups Ht there 
corresponds an intermediate field Kt between K and RQ such that 

®(K/Kt) = Hi and [Kt : R0] = [G : Ht] = nt. 

Let Ki = Ro(fii) and let the minimum polynomial of pt be/*(#), with roots 
&i = Pa, • • • , 0iw', we order the roots so that the conjugate subgroups 
Hi0iJ (J — 1, . . . , tit) correspond, respectively, to the conjugate subfields 
Ro(fiu) (J = 1, . • • , »<). 

Any automorphism in Ni = C^JH^J leaves fixed all the subfields i?o(0o) 
(J = 1, . . . , nt), and hence leaves fixed their composite Roifia, . . . , (Sini); 
moreover, any automorphism in G which leaves fixed Ro(pn, • • • » Pm) leaves 
fixed each of Ro(Pij) (J = 1, . . . , w*) and therefore is an element of Nt. Thus 
Ni corresponds to RQ(PH, . . . , Ptw), which is the splitting field oift(x). 

Similarly, fYtssiNt corresponds to the composite of the splitting fields of 
fi(x), . . . ,fk(x), that is, of f(x) = fi(x) . . .fk(x). f(x) thus has splitting field 
K, and therefore ®[f(x)] is a faithful representation of G. Since / i (x) , . . . , 
fkipc) are irreducible, the representation has k systems of transitivity of 
lengths wi, 2̂> . • • , nk; the subgroup which leaves fixed pt is Htc^ Ht, and 
thus ®[f(x)] = (?. 

COROLLARY 1. Wehave that fix) = fi(x) . . . fk(x), where degft(x) = [ G : i I J . 
77ms, deg/(x) = £ i [G : i J J , awd therefore the minimum degree of f(x) is the 
minimum value of J2i[G : Ht] over all possible choices of Hu . . . , Hk. 

COROLLARY 2. Taking k = 1 in Corollary 1, we obtain that the minimum 
degree for an irreducible equation with splitting field K is min [G : H] over all 
subgroups H for which D Hg = 1. 

COROLLARY 3. Let Bt be the splitting field Ro(fin, . . . , pini). Then 

®\fi(x)] ^ ©(SO c* G/Ni = G/(n f €*ff* ' ) . 
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COROLLARY 4. Suppose that G is a direct product G\ X . . . X Gm. We can 
take 

m 

x=i; 

in this case, ]{x) = fi(x) . . . fm(x), where, by Corollary 3, ®\fi(x)]~ 
G/(nffeoH^) =G/Hi~Gi. 

1.4. The method of proof of Theorem 1.3 can be used to construct the 
polynomial f(x) when K is given as the splitting field of some polynomial f(x) 
with known roots and Galois group G. The construction proceeds as follows: 

Let the roots of f(x) be «i, . . . , am\ a primitive element 0 in the splitting 
field i?o(«i, • . • i otm) otf(x) can be obtained in the form Ciai + . . . + cmam by 
following the method normally used to prove the theorem on the Primitive 
Element (2, pp. 174-175). We require now an element /3t in Ro(6) such that 
RoiPi) is the fixed field under the automorphisms of the subgroup Ht\ the 
method given in (2, p. 211) enables us to find such an element, and its minimum 
polynomial ft(x) can be constructed. The required polynomial f(x) is then 
given by f(x) = fi(x) . . . / * ( * ) • 

Examples. (1) Letf(x) = x3 — r (r G Ro, r% (2 jRo).Then G is ©3, the sym­
metric group of degree 3; G is therefore defined by {a, b}, az = b2 = (ab)2 = 1, 
and G corresponds to the subgroup H = {b}. Following the method given, an 
equation was constructed with group G, the regular representation of G. The 
element r1 — wr*, primitive in K, was chosen as 6, where w is a primitive cube 
root of unity. Since the subgroup H corresponding to G is the identity, 
(3 = 6; the result f(x) = x6 + 27r2 was obtained. 

(2) Using the fact that f(x) — xQ + 27r2 has group G, another equation 
V (x) with group G was obtained. Since f(x) is normal, we can take 6 = r* — wr*, 
where aid) = wr^ — w2r3, b{6) = r3 — w2r*. Following (2, p. 211), we obtain 
0t in the form k2 — 3kr^ + 3r*, where k can take any value such that the three 
conjugates of (3t are different, k = 0 satisfies this condition, and the resulting 
equation is / ' (x) = xz — 27r2. 

2.1. Let K = Ro(ai) be a non-normal algebraic extension of R0, and let 
f(x) = (x — <xi) . . . (x — an) be the minimum polynomial of a\. Let ^ be the 
splitting field oîf(x) over R0. 

Let 5 be the automorphism group of K over R0l and let G be the Galois 
group of K. 

We shall prove a theorem relating the group 5 to the group G; the result was 
obtained in another form by Loewy (4), but his proof is quite different from 
the one given here. 

THEOREM 2.1. Let H be the subgroup of G which has K as fixed field. Then 
S ~ yiG(H)/H, where 3tG(H) is the normalizer of H in G. 
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Proof. Let a G yiG(H); a maps ai into one of its conjugates, and thus 
induces an isomorphism aa\ R§{a\) —•> Ro(aai). Since H is the subgroup of G 
which leaves fixed i?0(«i), aHar1 is the subgroup of G which leaves fixed 
Ro(aai). But aHar1 = i î , and therefore i?o(«i) = i?o(#«i). o*o is thus an 
automorphism, and a —* aa gives a homomorphism of 3tG(H) into 5. 

Let o- G 5; c maps «i to one of its conjugates. All conjugates of «i occur as 
ga\ for some g G G; let aa be an element of G which carries a\ to o-«i. Since 
J?o(«i) = i?o(a*ai), H = avHaff~

l, and aff G ^lG(H). The homomorphism is 
therefore onto. Its kernel consists of all elements a G ^lG(H) for which aa is 
the identity; that is, H. Thus 5 ~ WG(H)/H. 

2.2. Using Theorem 2.1, we obtain a canonical form for the roots of f(x). 
Since K is the splitting field of / (x) , @[/(x)] ~ G. i f is the subgroup of G 
which leaves fixed i?o(«i), and thus ®[f(x)] is the transitive representation 

where G = H KJ g2H \J . . . \J gnH. 
Let 5 = {OY. i = 1, . . . , s}. Since o^ai is an element of Ro(ai), it can be 

written 0i(ai), where <l>i(x) is a polynomial of degree less than n. 0i(«i) is a 
root of f(x); moreover, any root which can be written as a polynomial in a\ 
occurs in the set {0i(ai): i = 1, . . . , s}, since such a root gives rise to an 
automorphism of Ro(a{). 

THEOREM 2.2. The roots a±, 02(«i), • • • , <t>sipti) form a system of imprimitivity 
for G; each conjugate system can be written arj </>2(aT), . . . , 0 s(a r) . 

Proof. Let ar be a root oif(x) not included in the set 0*(«i). Since /(0*(ai)) 
= 0, / (#) divides/(0*(#)), and therefore/(0*(a r)) = 0. Thus 0*(ar) is a root 
for i = 1, . . . , s. None of these roots is included in the set {0* («i)} ; otherwise, 
we have that J?o(«i) = i^o(0f(ai)) = RQ{<j>j{ar)) = Ro(ar) for some i and j , 
and this is not so. Continuing until the roots are exhausted, we obtain disjoint 
sets of the required form. 

Let g G G; suppose that g carries 4>k{ar) into 0^ («*•')• Then g carries the field 
Ro(<t>k(&r)) = Ro(ar) onto the field i?o(0fc'(«r')) = i^o(«rO- Thus it must carry 
each of the roots 0* (ar) (i = 1, . . . , s) to one of the roots 0., (ar>) (j = 1, . . . , s) 
and hence each of the sets {0i(ar)} is a system of imprimitivity. 

We have now shown that the roots of f(x) have the form 

«l 02 («i) • • • 0*(«i) 

(2.2.1) 

«j» 02 (am) • • • 0s (am) (sm = », s < w); 

each row is a system of imprimitivity for G. The automorphism group 5 can 
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be written {cr*: o-^ai) = 0*(«i)}; it is isomorphic to the group of functions 
{<l>i(x) modf(x): i = 1, . . . , s}. 

2.3. In the theorem of this section we use the preceding results to character­
ize nilpotent fields and equations. 

THEOREM 2.3. A normal field N is a nilpotent extension of Ro (i.e., ®{N) is 
nilpotent) if and only if every intermediate field between N and R0 other than Ro 
has a non-trivial automorphism group. 

Proof. All properties of nilpotent groups used are proved in (3, Chapter 10). 
(a) Suppose that N is a nilpotent extension of R0. Let K be any intermediate 

field between N and Ro, and let K be the smallest normal extension of R0 

containing K. The Galois group G of K over R0 is a factor group of © (N), and 
hence is nilpotent. Let H be the subgroup of G which leaves K fixed ; since we 
take K ?£ R0, H is a. proper subgroup of G. Thus, since G is nilpotent, H is a 
proper subgroup of ytG(H). Hence, if S is the automorphism group of K over 
Ro, then by Theorem 2.1, 5 ~ WG(H)/H * 1. 

(b) Suppose that every intermediate field between N and Ro has a non-
trivial automorphism group over RQm Let H be a maximal subgroup of ® (N), 
and let K be the fixed field in N under the automorphisms of H. Let K = R0 (a), 
and let / (x) , of degree n, be the minimum polynomial of a. Since K has a non-
trivial automorphism group over R0, K must contain at least one of the 
conjugates of a (i.e., a is not the only root oif(x) in R0(a)). 

Suppose tha t / (#) is not normal; let 5 be the number of its roots which lie in 
Ro(a). Then the roots of f(x) have the form (2.2.1), and each row is a system 
of imprimitivity for the Galois group of f(x). Consider the expression 

Uc) = I I (c- *,(«)) (c£Ro). 
i=l 

Under the permutations of the Galois group of f(x), yp(c) takes at most m 
different values; it therefore has degree at most m over R0. No two conjugates 
of \p(c) can be identically equal, and therefore we can choose a value for c such 
that they are all different. \f/(c) then has degree m over R0. 

Consider the field Ro(\l/(c)); we have that Ro(a) D R0(\l/(c)) D î o (proper 
inclusions). Let the subgroup of &(N) for which Roi}p(c)) is the fixed field be 
Hi; then H C Hi C G (proper inclusions). But this is not so, since H is 
maximal. f(x) is therefore normal, and Ro(a) is normal over R0; H is thus a 
normal subgroup of ®(N). Hence ®(N) is nilpotent, since its maximal sub­
groups are normal. 

Note. N is equivalently characterized by the condition that every minimal 
intermediate field must have a non-trivial automorphism group. For suppose 
that N satisfies this condition; as in part (b), let H be a maximal subgroup of 
®(N), and let Ro(a) be the fixed field for H. Then Ro(a) is a minimal inter­
mediate field, and the proof proceeds as before. 

https://doi.org/10.4153/CJM-1969-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-027-8


268 E. ROWLINSON AND H. SCHWERDTFEGER 

COROLLARY 1. The theorem can equivalently be stated as a characterization of 
nilpotent equations in the following way. 

An equation f(x) = 0 with roots «i, . . . , an has nilpotent Galois group if and 
only ify corresponding to any polynomial value p(ah . . . , an) not in R0l there 
exists a polynomial q(x) such that p(ai, . . . , an) and q{p(ai, . . . , otn)} are 
different and conjugate over R0. 

COROLLARY 2. An irreducible equation fix) = 0 of prime degree has nilpotent 
Galois group if and only if it is normal, and therefore cyclic. 

Proof, (a) Suppose that f(x) has nilpotent Galois group G, and is not 
normal. If a is a root, there must be (by Corollary 1) at least one more root of 
the form <j>(a). Hence by Theorem 2.2, G is imprimitive. But this is impossible, 
since G is of prime degree. f(x) is therefore normal, and thus cyclic. 

(b) If f(x) is cyclic, then it is also nilpotent. 

3.1. In this section we give a method enabling us to construct equations 
with given Abelian group. 

Let A be any finite Abelian group. Then A can be written in the following 
form : 

A = CPl«ll X . . . X CPl«lri X Cp2«2! X . . . X CP2(*2r2 X . . . X Cp^kl X . • • 
X Cpk

akrk, 

where CVi*a is the cyclic group of order pfy (pt prime, i = 1, . . . , k). 
Let m = piaij. The arithmetic progression 1, 1 + m, 1 + 2m, . . . includes 

an infinite number of primes; we select one such prime ir. Similarly, a value of 
TT is chosen for each pair (i, j) in such a way that all the primes ir are different. 

Let €w denote a primitive 7rth root of unity. The Galois group ®[Ro(ev)] of 
the 7rth cyclotomic field is cyclic of order w — 1. Let s = (ir — l)/m (integral). 
Then &[Ro(eT)] contains a subgroup S which is cyclic of order s; let B be the 
subfield of R^(ev) which is fixed under the automorphisms of S. Then ®{B) 
C±L ®[Ro(eT)]/S, a cyclic group of order m. 

By Gauss' method (2, p. 320) we obtain a primitive element in the field B 
as0 = ex + eT

pm + . . . + €T
p(*~1)m, where p is a primitive (ir — l) th congruence 

root of 1 (mod T). Since all the values of it are different, the composite of all the 
fields Ro(e^) is a direct product. Hence the composite B of all the fields B is 
also a direct product; its Galois group is the direct product of the Galois 
groups of its components, and thus is isomorphic to A. 

Let Bij, ira, dij, be the field B and the values of T and 0, respectively, which 
correspond to the pair (i,j). We consider the expression YliïLfiij m B. Each 
element 0tj has pfv conjugates, and thus there are o(A) conjugate expressions 
of the form 2*X)A/> where 0t/ is some conjugate of Qtj. These expressions 
are all different since the fields Bij intersect only in R0. Thus ^ £ ^ 0 - has 
degree o(A) over R0l and is therefore primitive in B. B is normal, and hence 
the equation Yl(x — YltYlfiij) — 0 has group A. 
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Note 1. I t is not necessary to use the decomposition of A into cyclic direct 
factors of prime power order; any decomposition into cyclic direct factors will 
suffice. The values of m can then be taken as the orders of these cyclic direct 
factors. 

Note 2. The construction yields a field of group A as a subfield of the 
cyclotomic field of index 11^71-^. I t was proved by Kronecker that every 
Abelian field is a subfield of some cyclotomic field ; however, our construction 
yields only those Abelian fields which are subfields of cyclotomic fields of 
square-free index. 

3.2. Examples, (1) We construct an equation for the group A ~ C2 X C2 

(the so-called four-group). 
We take itu = 3, 7ri2 = 5. We have that Bn = Ro(ez), and therefore 

0ii = €3. To find 0i2, we require a primitive 4th congruence root of 1 mod 5; 
p = 2 is such a value. Thus, 0i2 = €5 + €54, and the field Ro(ez + €5 + e^) has 
group A. By finding the conjugates of e3 + €5 + €54 and multiplying, we 
obtain the corresponding equation as f(x) = x4 + 4x3 + 5x2 + 2x + 4 = 0. 

(2) Let i ~ C2 X C3. i is isomorphic to the cyclic group of order 6; we 
therefore immediately have one equation of group A, the 7th cyclotomic 
equation. We construct another one. 

We take TTU = 3, 7r2i = 7. Again, 0n = e3. For 02i, we require a primitive 
6th congruence root of 1 mod 7; we set p = 3. Then 02i = €7 + C76, and the 
field Ro(es + €7 + 67e) has group A. The corresponding equation is 

x6 + 5x5 + 8x4 + 3x3 + 3x2 + 30x + 13 = 0. 

4.1. In this section we give a method for constructing equations with given 
group; it is an extension of a method given in (6) for cyclic groups only. 

Let K be a normal algebraic extension of Ro, with Galois group G = {ai = 1, 
<72, . . . , an}. Then there exists a normal basis for K over R0; that is, an element 
6 in K such that cri(0), . . . , an(6) form a basis for K over R0 (see 1, p. 66). K 
can now be considered as a hypercomplex algebra over R0 with basis elements 
cri(0), . . . , <rn(d); let yijk (iyj,k = 1, . . . , n) be the structure constants of this 
algebra, defined by 

n 

(7,(0) • (7,(0) = £ 7<A*(0) (T«* e J?o). 
*=i 

Let / (x) be the normal irreducible polynomial having roots <n(0), . . . , cre(0); 
@[f(x)] is then the regular representation Ga of G. 

LEMMA 4.1. 0 can be so chosen that the values y */ te/e the following properties: 

(1) X) JjlTrim1 = X 7*;%7ifc* (alH,j,k,l), 
m m 

a i n J (2) yt* = y,t* (alli,j,k), 
K (3) £?«* = */* (aKj,*) (Kronecker S), 

\ ' 
I (4) Ta*,»; = 7*/ («^ »i J» & <"^ aW o- G Gv). 
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Proof, L e t a i denote 0^(0) (i = 1, . . . , n). (1) and (2) follow immediately 
from the associativity and commutativity of K. (3) Let Y.iai — r\ r is rational 
and non-zero. The set {ajr: i = 1, . . . , n) is then also a normal basis for K, 
and we can replace 6 by 6/r. We assume that this has been done; i.e., 0 is so 
chosen that £*o-*(0) = 1. Thus Y,iai<Xj = 0Ljt giving ^i^kJifak = otj. 
Equating coefficients of ak yields (3). (4) The relation a&Lj = ^kJifak is a 
relation between the roots of the equation/(x) = 0. I t is therefore left invariant 
by any permutation <r in Ga. Hence aaiaai = ]C*Y </**„*, giving 2*7»*«rj««r* = 
Jlkli/^ak' Equating coefficients of affk yields (4). 

4.2. When 6 is chosen as in Lemma 4.1, the coefficients of f(x) can be 
expressed in terms of the values yi3

k. Let Y represent the 3-dimensional array 
of nz rational numbers Y * / ; let oT be the array obtained by writing ylk

it(Xj in 
place of 7<A For a G G„ T = aT (by (4.1.1), (4)). 

Let <t>(ai, . . . , an) be any symmetric polynomial in «i, . . . , an. By repeated 
application of the multiplication law, 0(«i, . . . , an) = Y,iai(^)au where 
each di(T) can be calculated as a polynomial in the elements of I\ 

For any given r, there is a permutation ar in Ga which carries 1 to r, as Ga 

is transitive. We have that £ i a i ( r ) a < = 0(ai, . . . , « „ ) = 0(a<,ri, . . . , a,,») = 
£ f f l i ( (7 r rK r i = S^<(r )a^ r i . Equating coefficients of aT, aT(T) = ai(T) ; this 
is true for all r, and thus 0(«i, . . . , an) = ai(T)J2i<Xi = # i ( r ) (see the proof 
of Lemma 4.1, (3)). Thus each coefficient in f(x) can be written as a poly­
nomial in the elements of V; let f(x) = xn — ̂ i ^ r ) ^ - 1 + . . . + ( — l)nsn(T). 

4.3. We now show that if for a given group G we can find values of yt
k 

satisfying conditions (4.1.1) such that the resulting polynomial f(x) is irreduc­
ible, then ®[f(x)] = G„. 

THEOREM 4.3. Let G be a group of order n, and let its regular representation 
as a permutation group be Ga. Let ytj

k (i, j , k = 1, . . . , n) be rational numbers 
satisfying conditions (4.1.1). From the values y if, a certain polynomial fix) can 
be obtained) if the values yt

k are such that this polynomial is irreducible, its 
Galois group is G„. 

Proof. Let xi, . . . , xn be arbitrary symbols which are multiplied according 
to the law xtXj = J^k7ijkXk', let A be the hypercomplex algebra over the 
rationals having these symbols as basis elements. From (4.1.1), (1) and (2), 
A is associative and commutative. 

As previously, let V be the 3-dimensional array of nz rational numbers ytj
k 

(i, j , k = 1, . . . , n), and let #(xi, . . . , xn) be any symmetric polynomial in 
Xi, . . . , xn. As in § 4.2, since from (4.1.1), (4), V = aT (all a £ G>), we have 
that 4>(xi, . . . , Xn) = ai(T)J^iXi. Let 

n 

f(x) = E[ (* - *<); 
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t hen /O) = xn - ^ ( rHLiXi )**- 1 + . . . + ( - l ) w ^ ( r ) i ; ^ z , where the 5,(r) 
(i = 1, . . . , n) are polynomials in the elements of T. Since $ i ( r ) (£*#*) — 
(LiXt), S!(T) = 1. L e t / ( * ) = xw - ^ ( r ) * - 1 + . . . + ( - l ) % ( r ) . 

From (4.LI), (3), (Ei*<)^i = E<E*7<A* = £*«**** = 3 ; thus, (£ ,* , ) is 
an identity 1 in A. Let J?0 be the subset of A given by {ri: r G i£0}. Since 1 
is an identity, R0 c^ i?0, and thus 5 0 is a field, /(#) is a polynomial over this 
field. 

Suppose t ha t / (x ) is irreducible over R0-, then fix) is irreducible over R0. 
Since /(xi) = 0, 1, Xi, . . . , Xiw_1 form a basis for the extension field Ro(xi). As 
these elements are linearly independent over R0> they are linearly independent 
over R0 also. They all belong to A, and A is of order n; hence, they form a 
basis for A, and therefore A = R0(xi). As x2, . . . , xw also belong to A, it is a 
splitting field for/(x). A is of order n over R0, and thus \®(A/RQ)\ = w. But 
by (4.1.1), (4), any permutation a 6 Ga of Xi, . . . , xn yields an automorphism 
of 4 over i?0; hence, ®(f(x)/B0) = ®(A/R0) = G,. 

Under the isomorphism R0c^R0j the polynomial/(x) is carried to / (x) . 
Thus the splitting field of fix) is isomorphic to the splitting field of fix), the 
roots of f{x) being carried to the roots of fix). Hence ®if(x)/R0) = 
&ifix)/Ro) = G.. 

Note. The equation f(x) = xn - SxiY)xn-1 + . . . + (-l)nsn{T) depends 
only on the order of G and not on its structure; the stiY) are known poly­
nomials in the nz unknowns Y*A Also, conditions (4.1.1), (1), (2), and (3) do 
not involve the structure of G. The equation fix) = 0 is therefore a general 
form for equations of this type having group of order n, provided V is such that 
fix) is irreducible and that conditions (1), (2), and (3) are satisfied. The 
structure of the group is then imposed on the general equation by condition 
(4). 

4.4. The conditions of (4.1.1) can be simplified considerably. Let Tt = 
[YZ/L Ck = [Y*/L and let Pa be the (n X n) matrix obtained by applying 
the permutation a to the columns of the identity matrix. Also, let ai be the 
permutation in Ga which carries 1 to i\ we have that Ga = {a^ i = 1, . . . , n}. 

Conditions ( l)-(4) can now be shown to be equivalent to the following set: 

I (a) G is symmetric, 
n 

(b) X) 7</ = Ŝ i (j = 1 , . . . , n), 
( 4 A 1 ) j (c) C* = PnCJ>n' (k = 2,...,n), 

(a) 2w yjk lim = 2-, y a ymk 
\ m m 

{ iori = k + 1 , . . . , n — l,j = 1 , . . . , n — 1, k = 1 , . . . , n — 2, I = 1 . 
Conditions (a), (b), and (c) clearly imply (2), (3), and (4). The equations 
included in (1) but not in (d) can be obtained from (d) by forming appropriate 
double sums and using (2), (3), and (4). 
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For a given group of order n we can thus write the conditions as Diophantine 
equations in the \n(n + 1) variables required to write a general symmetric 
(n X n) matrix G- Condition (b) yields n linear equations, condition (c) 
enables us to write down the matrices Ck (k — 2, . . . , n), and condition (d) 
yields \{yi — l)2(n — 2) quadratic equations. Particular solutions for G can 
be obtained, if solutions exist, by programming the Diophantine equations for 
a computer. Clearly, the number of equations increases very rapidly with n; 
the method is therefore only practicable for small groups. 

4.5. When a matrix G has been obtained satisfying conditions (4.4.1), we 
wish to compute/(x). This can be done either directly, following the method 
of proof of Theorem 4.3, or by using the following result. 

LEMMA 4.5. Let G be a matrix satisfying conditions (4.4.1). Let ]C AV+1 — 
Sr+i • 1; then Sr+i is the sum of the elements in the first row of (Ti) r . 

Proof. Let 

%i = {m^yx, where x = 

X\ 

x2 

and m/ r ) = 

mt2 

m (O 

Then x / + 1 = (m/ r )) 'I\:Ê, and thus (m/ r+1>)' = (m i<
1)) /(I\) r . But from (c), 

I \ = P^P./, therefore ( m / ^ ) / = (mi^),P(Ti(T1yPa/. Now « , / « = ôtJ, 
thus (mWPoi = (mWPn-i' = [1, 0, . . . , 0]; hence (m^+ 1>)' is the 
result of applying the permutation at to the first row of (Ti) r . As i runs from 
1 to n, each element of the first row appears in the first place exactly once. 

We have that Sr+il = Y^ix%r+l — £*(w&<(r+1))'#î equating coefficients of 
Xi, Sr+i = L i m i i ( r + 1 ) « Thus 5 r + i is the sum of the elements appearing in the 
first place as i runs from 1 to n, or the sum of the elements in the first row of 
(TiY. 

When the values of Sr have been obtained for r = 1, . . . , n using this 
lemma, the values of s r can be obtained from Newton's equations, fix) can then 
be tested for reducibility by Kronecker's method. (See, for instance, 5, p. 77.) 
If f(x) is irreducible, it will, by Theorem 4.3, have Galois group Ga. 

4.6. Example. We construct an equation having as group G the four-group. 
The regular representation is ai = 1, a2 = (1 2) (3 4), o-3 = (1 3) (2 4), 
<r4 = (14)(2 3). Let 

G = 

a b e d 
o e f g 
c f h i 
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the four linear equations (b) can then be written down. The matrices C2, C3, 
d, Ti, T2, r3 ,and T4 can be constructed in terms of the ten unknowns a , . . . J, 
and the nine quadratic equations (d) written down. These thirteen Dio-
phantine equations were programmed for a computer, and a large number of 
solutions was obtained.2 One such solution was a — —J, b = — §, c = 1, 
d = 1, e = - J , / = 5/4, g = - \ , h = - 5 / 4 , i = - 1 , j = J. Ti can be 
written down, and the first rows of IV and IV computed. (It is necessary only 
to find the first row of each power of r x if in computing the next higher power 
we postmultiply by IY) 

Using Lemma 5.4, the values Si = 1, S2 = —3/2, 5 3 = 5/2, <S4 = 11/8 are 
obtained, and from Newton's equations we then have that Si = 1, s2 = 5/4, 
53 = 7/4, s4 = 19/16. Thus f(x) = x4 - x3 + 5x2/4 - 7x/4 + 19/16; this 
polynomial is irreducible. Hence by Theorem 4.3, f(x) = 0 has as Galois 
group the regular representation of the four-group. 

REFERENCES 

1. E. Artin, Galois theory, 2nd ed. (Notre Dame Mathematical Lectures, no. 2, University of 
Notre Dame, Notre Dame, Indiana, 1959). 

2. N. Cebotarev (Tschebotarôw) and H. Schwerdtfeger, Grundzùge der Galois'schen Théorie 
(P. Noordhoff, Groningen, 1950). 

3. Marshall Hall, Jr., The theory of groups (Macmillan, New York, 1959). 
4. A. Loewy, Neue Elementare Begrundung und Erweiterung der Galois1 schen Théorie, S.-B. 

Heidelberger Akad. Wiss. Math.-Natur. Kl. 1925 (7), 1-50 and 1927 (1), 1-27. 
5. B. L. van der Waerden, Modern algebra, Vol. I (Ungar, New York, 1953). 
6. L. M. Young, On certain cyclic extensions of the field of rational numbers (Applied Mathematics 

and Statistical Laboratories, Stanford University, Technical Report, No. 1, 1961). 

McGill University, 
Montreal, P.Q. 

2This was carried out by Professor W. D. Thorpe, Director of the McGill Computing Centre. 

https://doi.org/10.4153/CJM-1969-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-027-8

