POLYNOMIALS WITH CERTAIN PRESCRIBED
CONDITIONS ON THE GALOIS GROUP

ELIZABETH ROWLINSON AND HANS SCHWERDTFEGER

Introduction. In this paper, some contributions are made to the theory of
algebraic equations over the rational field with conditions imposed on the
Galois group.! In § 1, for a given abstract group G all faithful permutation
representations G are obtained, and it is shown that if one of them is the
group of some equation with splitting field K, then any of them is the group of
some equation, also with splitting field K. The method of proof enables us to
construct an equation having as group a given faithful permutation represent-
ation G of a prescribed group G if we are given an equation having as group
some faithful representation G of G. In § 2, equations having nilpotent group
are considered, non-normal extension fields are discussed, and a canonical
form is obtained for the roots of non-normal irreducible equations; this form
is used to characterize fields and equations with nilpotent groups. In §§ 3 and
4 we are concerned with the problem of constructing irreducible equations
with prescribed group. In § 3 we give a method when the group is Abelian; it
involves finding cyclic direct factor fields as subfields of appropriately chosen
cyclotomic fields. In § 4 we reduce the problem for any group to that of solving
a set of Diophantine equations; for groups of very low order, particular
solutions can be obtained on a computer. The method depends on the Normal
Basis Theorem of Artin (1, p. 66) and is a generalization of a method developed
by L. M. Young for cyclic groups (6).

1.1. Asin (2), we consider the Galois group ®[f(x)] of the polynomial f(x)
over the field R, of the rational numbers to be a permutation group, and the
Galois group & (K) of the normal algebraic extension K of R, to be an auto-
morphism group. If K is the splitting field of f(x), then &[f(x)] is a faithful
permutation representation of ®(K).

1.2. We shall first establish a theorem by means of which it is possible to
find all faithful permutation representations of a given finite group G by
examination of its subgroups. It is a generalization of a theorem given in (3,

p. 57).

Received May 12, 1967. This paper contains, in condensed form, the results obtained in the
Ph.D. thesis of the first author, McGill University, August, 1965. The work was supported by
a grant from the National Research Council of Canada.

1For consistency, the ground field has been taken as the rational field throughout the paper;
however, the results obtained in §§ 1 and 2 are valid for any ground field of characteristic 0.
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Two permutation groups are called equivalent if one of them can be obtained
from the other by a reordering of the set of permuted symbols. In Galois
theory, where the symbols are the roots of f(x), equivalent permutation
groups can be considered identical.

THEOREM 1.2. Let G be a group, and let G be a faithful representation of G as
a permutation group. Then G corresponds to a set Hy, . .., Hy of subgroups of G
for which
(1.2.1) <ﬂH1”>ﬂ<ﬂH2”)ﬂ...f\(ﬂHk”>=1.

9€G 9€EG g9€EG
Conversely, to any such set of subgroups there corresponds a faithful representation
G of G.

Proof. (a) Let G be a faithful permutation representation of G, and let
(tu = 1, t12y « o o , tlm)y (tgl, tzz, ey t2n2), e ey (tkly e ey tknk) be a set of systems
of transitivity of G. Let H; be the subgroup of G which leaves fixed the symbol
t:1, and g;; an element of G carrying f;; into ¢,;; there is such an element for
j=1,...,n;and

G-=HiUgi2HiU---UginiHiy n’i:[G:Hi]'
Since H i is the subgroup which leaves ¢;; fixed, the normal subgroup

N1= N Hi””=mH£”
=1, :

j=1,...,mi 9€G
leaves fixed ti1, ..., tm:; hence, N1 N; leaves fixed all symbols ¢;; and is
therefore the identity. If Hy, ..., H; are the subgroups of G corresponding,
respectively, to Hy, ..., H; under the isomorphism G ~ G, (1.2.1) follows.
(b) Let Hy, ..., H, be subgroups of G satisfying (1.2.1); let
G=H,\JgpH,J...\UguH,

wheren; = [G: H;]] t=1,..., k). Forg € G, let
H(g) _ ( H,, g12H1, ey glmHly H,, ..., gznsz ceey Hyyoo rgknka>

gHy, ggioHy, . o, g8 H 1, gHo,y o o o 880 ey ooy gHy o g8

II(g) is a permutation, and gives a homomorphism of G whose kernel consists
of all elements g for which gg;;H; = g,;H; (all 7, j), or g € H#i (all z, ). But
from (1.2.1), N;,;H.% = 1, and thus the homomorphism is an isomorphism.

Note. Each of the sets H;, ..., gmH; is a system of transitivity of G; if
N; = NyeeH?, then {II(g): g € N} is the subgroup which leaves the system
fixed, and {II(g): g € H} is the subgroup which leaves fixed H,.

Two well-known results follow as corollaries.

CoRrROLLARY 1. Taking k = 1, we see that any transitive faithful representation
G of G corresponds to some subgroup H for which MyeeH’ = 1, and to any such
subgroup there corresponds a tramsitive representation G. The degree of G is
|G : H].
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CoOROLLARY 2. If G 1s Abelian, the only subgroup satisfying NyeeH® = 1 is
the identity; thus the only transitive faithful representation is the regular represent-
ation.

1.3. The following theorem shows that if a faithful permutation represent-
ation of a group G is the Galois group of an equation over R, with splitting
field K, then every faithful permutation representation G of G is the Galois
group of some equation, also with splitting field K.

THEOREM 1.3. Let K be a field such that &(K) = G. Let G be any faithful
permutation representation of G; then there exists an equation flx) = 0 with
splitting field K and Galois group G.

Proof. In the notation of Theorem 1._2, let Hy, ..., H; be the subgroups of
G corresponding to the representation G. To each of these subgroups H; there
corresponds an intermediate field K; between K and R, such that

O(K/K;) =H; and [K;: Ry =1[G: H] = n.

Let K; = Ry(8;) and let the minimum polynomial of 8; be f;(x), with roots
B:=Bi,...,B8m:; we order the roots so that the conjugate subgroups
Hy (j=1,...,n;) correspond, respectively, to the conjugate subfields
RO(BM) (] = 1, ooy ’ﬂ,)

Any automorphism in N; = (,;H % leaves fixed all the subfields R,(8;)
(G=1, ..., n;), and hence leaves fixed their composite Ro(Bi1, - .., Bin;);
moreover, any automorphism in G which leaves fixed Ry(B:1, . . . , Bin;) leaves
fixed each of Ry(Bs5) (j = 1, ..., n;) and therefore is an element of N,. Thus
N, corresponds to Ro(Bi1, - - -, Bum:), which is the splitting field of f;(x).

Similarly, N%-1N, corresponds to the composite of the splitting fields of
fi(x), ..., fu(x), that is, of f(x) = fi(x) ... fe(x). f(x) thus has splitting field
K, and therefore ®[f(x)] is a faithful representation of G. Since fi(x), ...,
fr(x) are irreducible, the representation has % systems of transitivity of
lengths 71, %4, . .., #n;; the subgroup which leaves fixed 8; is H; ~ H;, and
thus ®[f(x)] = G.

COROLLARY 1. Wehavethat f(x) = fi(x) . .. fi(x), wheredeg fi(x) = [G: H.].
Thus, deg f(x) = X_.[G : H,], and therefore the minimum degree of f(x) is the
minimum value of 3 ;[G : H;] over all possible choices of Hy, . .., Hy.

CoRrOLLARY 2. Taking k = 1 in Corollary 1, we obtain that the minimum
degree for an irreducible equation with splitiing field K is min[G : H] over all
subgroups H for which N\ H? = 1.

COROLLARY 3. Let B; be the splitting field Ro(Bi1y « « « y Bins). Then
Olfix)] ~ G (B:) ~G/N, = G/(NgecH ).
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COROLLARY 4. Suppose that G is a direct product Gy X ... X Gn. We can
take

H; = H Gy;
A=1;
Asi
in this case, f(x) = fi(x)...fn(x), where, by Corollary 3, ®[fi(x)] =~
G/(NyecH?) = G/H; ~ G,

1.4. The method of proof of Theorem 1.3 can be used to construct the
polynomial f(x) when K is given as the splitting field of some polynomial f(x)
with known roots and Galois group G. The construction proceeds as follows:

Let the roots of f(x) be ai, ..., an; a primitive element 6 in the splitting
field Ro(ay, . . . , @) of f(x) can be obtained in the form cias + . .. + ¢nan by
following the method normally used to prove the theorem on the Primitive
Element (2, pp. 174-175). We require now an element 8; in Ry(8) such that
Ro(B:) is the fixed field under the automorphisms of the subgroup H;; the
method given in (2, p. 211) enables us to find such an element, and its minimum
polynomial f,(x) can be constructed. The required polynomial f(x) is then
given by f(x) = fi(x) ... fu(x).

Examples. (1) Let f(x) = 23 — 7 (r € Ry, r* ¢ Ro). Then G is &;, the sym-
metric group of degree 3; G is therefore defined by {a, b}, a® = b2 = (ab)? = 1,
and G corresponds to the subgroup H = {b}. Following the method given, an
equation was constructed with group @, the regular representation of G. The
element 78 — wrd, primitive in K, was chosen as 6, where w is a primitive cube
root of unity. Since the subgroup H corresponding to G is the identity,
B = 0; the result f(x) = x% 4 2772 was obtained.

(2) Using the fact that f(x) = x8 4+ 27r% has group G, another equation
7/ (x) with group G was obtained. Since f(x) is normal, we can take § = r¥ — wr?,
where a(8) = wrt — w?, b(0) = ¥ — w¥t. Following (2, p. 211), we obtain
8, in the form k2 — 3kr* + 3¢, where £ can take any value such that the three
conjugates of 3; are different. 2 = 0 satisfies this condition, and the resulting
equation is f/(x) = x% — 27r2

2.1. Let K = Ry(a;) be a non-normal algebraic extension of R,, and let
f(x) = (x —ai1) ... (x — a,) be the minimum polynomial of ;. Let K be the
splitting field of f(x) over R,.

Let S be the automorphism group of K over Ry, and let G be the Galois
group of K.

We shall prove a theorem relating the group S to the group G; the result was
obtained in another form by Loewy (4), but his proof is quite different from
the one given here.

THEOREM 2.1. Let H be the subgroup of G which has K as fixed field. Then
S >~ Ne(H)/H, where N¢(H) is the normalizer of H in G.
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Proof. Let a € Ne(H); a maps a; into one of its conjugates, and thus
induces an isomorphism ¢,: Ro(a1) — Ro(aa:). Since H is the subgroup of G
which leaves fixed Ro{a1), aHa™' is the subgroup of G which leaves fixed
Ro(ae;). But aHa™! = H, and therefore Ry(ai) = Ro(eai). o, is thus an
automorphism, and ¢ — ¢, gives a homomorphism of Rt ¢(H) into S.

Let ¢ € S; ¢ maps a; to one of its conjugates. All conjugates of a; occur as
gay for some g € G; let a, be an element of G which carries a; to sa;. Since
Ro(a1) = Ro(ases), H = a,Ha,', and a, € Ne(H). The homomorphism is
therefore onto. Its kernel consists of all elements a € N (H) for which ¢, is
the identity; that is, H. Thus S >~ N(H)/H.

2.2. Using Theorem 2.1, we obtain a canonical form for the roots of f(x).
Since K is the splitting field of f(x), ®[f(x)] ~ G. H is the subgroup of G
which leaves fixed Ro(a1), and thus ®[f(x)] is the transitive representation

~ H ng e gH >
G — {( , y b (% : E G ,
gH, gg:H, ..., gg.H £
where G = H\U g, HU ... U g,H.
Let S={os:2=1,..., s}. Since o, is an element of Ry(a1), it can be
written ¢,(a1), where ¢;(x) is a polynomial of degree less than n. ¢,(a;) is a
root of f(x); moreover, any root which can be written as a polynomial in a;

occurs in the set {¢;(@1): 2 =1, ..., s}, since such a root gives rise to an
automorphism of Ry(a1).

THEOREM 2.2. The roots ay, d2(ar), . . ., ps(ar) form a system of imprimitivity
for G; each conjugate system can be written a,, ¢p2(a;), . .., ¢slar).

Proof. Let a, be a root of f(x) not included in the set ¢;(a1). Since f(¢ (1))
= 0, f(x) divides f(¢(x)), and therefore f(¢;(a;)) = 0. Thus ¢;(a,) is a root
fors = 1,...,s. None of these roots is included in the set {¢;(a1)}; otherwise,
we have that Ro(a1) = Ro(pi(@1)) = Ro(¢;(ar)) = Role,) for some 7 and j,
and this is not so. Continuing until the roots are exhausted, we obtain disjoint
sets of the required form.

Let g € G; suppose that g carries ¢;(a,) into ¢ (a,-). Then g carries the field
Ro(¢i(e;)) = Ry(a,) onto the field Ro(¢p (@) = Ro(a,r). Thus it must carry
each of theroots ¢;(e,;) (# = 1,..., s) tooneof theroots p;(ar) G=1,...,5)
and hence each of the sets {¢;(c,;)} is a system of imprimitivity.

We have now shown that the roots of f(x) have the form

ar ¢alo) N N )
(2.2.1) . . .

Ol.m ¢2(.am) “e . Cbs(am) (Sm =n,5 < n);

each row is a system of imprimitivity for G. The automorphism group S can
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be written {o;: oi(a1) = ¢i(e)}; it is isomorphic to the group of functions
{p:(x) mod f(x): 2 =1,...,s}.

2.3. In the theorem of this section we use the preceding results to character-
ize nilpotent fields and equations.

THEOREM 2.3. A normal field N is a nilpotent extension of Ry (i.e., & (N) is
nilpotent) if and only if every intermediate field between N and Ry other than R,
has a non-trivial automorphism group.

Proof. All properties of nilpotent groups used are proved in (3, Chapter 10).

(a) Suppose that N is a nilpotent extension of R,. Let K be any intermediate
field between N and R,, and let K be the smallest normal extension of R,
containing K. The Galois group G of K over R, is a factor group of ®(V), and
hence is nilpotent. Let H be the subgroup of G which leaves K fixed; since we
take K # Ry, H is a proper subgroup of G. Thus, since G is nilpotent, H is a
proper subgroup of N (H). Hence, if S is the automorphism group of K over
Ry, then by Theorem 2.1, S~ N,(H)/H # 1.

(b) Suppose that every intermediate field between N and R, has a non-
trivial automorphism group over R,. Let H be a maximal subgroup of & (N),
and let K be the fixed field in NV under the automorphisms of H. Let K = Ry(a),
and let f(x), of degree 7, be the minimum polynomial of «. Since K has a non-
trivial automorphism group over Ry, K must contain at least one of the
conjugates of a (i.e., @ is not the only root of f(x) in Ry(a)).

Suppose that f(x) is not normal; let s be the number of its roots which lie in
Ry(a). Then the roots of f(x) have the form (2.2.1), and each row is a system
of imprimitivity for the Galois group of f(x). Consider the expression

v =TI €= @) (€ R).

Under the permutations of the Galois group of f(x), ¥(c) takes at most m
different values; it therefore has degree at most m over Ry. No two conjugates
of ¥(¢) can be identically equal, and therefore we can choose a value for ¢ such
that they are all different. ¢/(c) then has degree m over R,.

Consider the field Ry(¥(c)); we have that Ro(a) D Ro(¢(c)) DO Ry (proper
inclusions). Let the subgroup of & (V) for which Ry(¢(c)) is the fixed field be
H,; then H C H, C G (proper inclusions). But this is not so, since H is
maximal. f(x) is therefore normal, and Ro(a) is normal over Ry; H is thus a
normal subgroup of &(N). Hence & (V) is nilpotent, since its maximal sub-
groups are normal.

Note. N is equivalently characterized by the condition that every minimal
intermediate field must have a non-trivial automorphism group. For suppose
that N satisfies this condition; as in part (b), let H be a maximal subgroup of
® (), and let Ro(a) be the fixed field for H. Then Ro(a) is a minimal inter-
mediate field, and the proof proceeds as before.
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CoOROLLARY 1. The theorem can equivalently be stated as a characterization of
nilpotent equations in the following way.

An equation f(x) = 0 with roots ay, . . . , oy has nilpotent Galots group if and
only if, corresponding to any polynomial value p(ay, . .., ay) not in Ry, there
exists a polynomial q(x) such that p(a1, ..., o) and g{p(ai, ..., a,)} are
different and conjugate over R,.

COROLLARY 2. An irreducible equation f(x) = O of prime degree has nilpotent
Galots group if and only if it is normal, and therefore cyclic.

Proof. (a) Suppose that f(x) has nilpotent Galois group G, and is not
normal. If a is a root, there must be (by Corollary 1) at least one more root of
the form ¢ (). Hence by Theorem 2.2, G is imprimitive. But this is impossible,
since G is of prime degree. f(x) is therefore normal, and thus cyclic.

(b) If f(x) is cyclic, then it is also nilpotent.

3.1. In this section we give a method enabling us to construct equations
with given Abelian group.
Let 4 be any finite Abelian group. Then A can be written in the following

form:
A = Cpl"‘ll X o . X Cpl"‘lrl X szaﬂ X o . X Cp2“2r2 X P X Cpk"‘kl X o .
X Cpkakrky
where Cp,es; is the cyclic group of order p 2y (p; prime, 7 = 1, ..., k).
Let m = p ;. The arithmetic progression 1, 1 4+ m, 1 4+ 2m, ... includes

an infinite number of primes; we select one such prime #. Similarly, a value of
w is chosen for each pair (7, j) in such a way that all the primes = are different.

Let ¢, denote a primitive wth root of unity. The Galois group ®&[R(e,)] of
the wth cyclotomic field is cyclic of order 7 — 1. Lets = (r — 1)/m (integral).
Then &[Ro(er)] contains a subgroup .S which is cyclic of order s; let B be the
subfield of Rq(e,) which is fixed under the automorphisms of S. Then & (B)
~ ®[Ro(ex)]/S, a cyclic group of order m.

By Gauss’ method (2, p. 320) we obtain a primitive element in the field B
asf = e + &"™ + ...+ &**V™ where pisa primitive (r — 1)th congruence
root of 1 (mod ). Since all the values of = are different, the composite of all the
fields Ro(ex) is a direct product. Hence the composite B of all the fields B is
also a direct product; its Galois group is the direct product of the Galois
groups of its components, and thus is isomorphic to 4.

Let B, w45, 04 be the field B and the values of 7 and 0, respectively, which
correspond to the pair (7, 7). We consider the expression ;3 ,0;; in B. Each
element 6,; has p 2y conjugates, and thus there are 0(4) conjugate expressions
of the form Y,3,0;/, where 6;; is some conjugate of 8;;. These expressions
are all different since the fields B,; intersect only in Ro. Thus ;3 ,8;; has
degree 0(A4) over Ry, and is therefore primitive in B. B is normal, and hence
the equation IT(x — 3,3 ,6,/) = 0 has group 4.
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Note 1. It is not necessary to use the decomposition of 4 into cyclic direct
factors of prime power order; any decomposition into cyclic direct factors will
suffice. The values of m can then be taken as the orders of these cyclic direct
factors.

Note 2. The construction yields a field of group 4 as a subfield of the
cyclotomic field of index II; ;r;;. It was proved by Kronecker that every
Abelian field is a subfield of some cyclotomic field; however, our construction
yields only those Abelian fields which are subfields of cyclotomic fields of
square-free index.

3.2. Examples. (1) We construct an equation for the group 4 ~ Cy; X C,
(the so-called four-group).

We take 711 = 3, m12 = 5. We have that Bi; = Ro(e;), and therefore
611 = €. To find 65, we require a primitive 4th congruence root of 1 mod 5;
p = 2is such a value. Thus, 8;2 = €5 + €5, and the field Ro(e3 + €5 + €5?) has
group A. By finding the conjugates of e; + €5 + e5* and multiplying, we
obtain the corresponding equation as f(x) = x* + 4x3 4+ 5x2 + 2x + 4 = 0.

(2) Let A >~ C; X C;. A is isomorphic to the cyclic group of order 6; we
therefore immediately have one equation of group A, the 7th cyclotomic
equation. We construct another one.

We take w11 = 3, 721 = 7. Again, 61; = e3. For 025, we require a primitive
6th congruence root of 1 mod 7; we set p = 3. Then 631 = €7 + €7, and the
field Ro(es + €7 + €°) has group A. The corresponding equation is

x% + 5x° + 8x* 4+ 3x% 4 3x2 + 30x + 13 = 0.

4.1. In this section we give a method for constructing equations with given
group; it is an extension of a method given in (6) for cyclic groups only.

Let K be a normal algebraic extension of Ry, with Galois group G = {o; = 1,
o3, . . ., ox}. Then there exists a normal basis for K over Ry; that is, an element
0 in K such that ¢1(8), ..., 0,(8) form a basis for K over R, (see 1, p. 66). K
can now be considered as a hypercomplex algebra over R, with basis elements
c1(0),...,0,(0);lety;* (4,5, = 1,...,n) be the structure constants of this
algebra, defined by

aw»amw=gvﬁw@ (14" € Ro).

Let f(x) be the normal irreducible polynomial having roots ¢1(8), . . ., ¢,(0);
®[f(x)] is then the regular representation G, of G.

LeMMA 4.1. 6 can be so chosen that the values v ;¥ have the following properties:

1) Z ’ijm’Yiml = Z ’Yijm’)’mkl (all 1,7, k, D),

a1y 1@ i = s (all i, j, B,
o | 3) Xi) vif = 8z (all j, k) (Kronmecker 6),
L) Yo s = vif (all 4, , k and all « € G,).
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Proof. Let a; denote ¢;(0) (¢ =1, ..., n). (1) and (2) follow immediately
from the associativity and commutativity of K. (3) Let }_;a; = r; 7 is rational
and non-zero. The set {a;/7: 2 = 1, ..., n} is then also a normal basis for K,

and we can replace 8 by 0/r. We assume that this has been done; i.e., 8 is so
chosen that > ;0;(0) = 1. Thus X ;= a; giving > ;> xyifor = aj.
Equating coefficients of oy yields (3). (4) The relation aa; = 3 yyifoy is a
relation between the roots of the equation f(x) = 0.Itis therefore left invariant
by any permutation ¢ in G,. Hence a,its; = Y xvi ety SIVING X 1Yene Qo =
> xYi/fasr. Equating coefficients of oy yields (4).

4.2, When 6 is chosen as in Lemma 4.1, the coefficients of f(x) can be
expressed in terms of the values v;*. Let T represent the 3-dimensional array
of 3 rational numbers v,*; let ¢T' be the array obtained by writing vy%,; in
place of v, /. For¢ € G,, T = ¢ (by (4.1.1), (4)).

Let ¢(as, ..., @) be any symmetric polynomial in aj, . . ., a,. By repeated
application of the multiplication law, ¢(a1, ..., a,) = X a(T)a;, where
each a;(T') can be calculated as a polynomial in the elements of T.

For any given 7, there is a permutation ¢, in G, which carries 1 to 7, as G,

is transitive. We have that Y ,a;(T)a; = ¢(a1, ..., a,) = (1) « « . ) Qopn) =
S wai(o, Do, = > a:(T)a,, ;. Equating coefficients of «,, a,.(I') = a,(T); this
is true for all 7, and thus ¢ (a1, ..., @) = a1(T)X @ = a1(T') (see the proof

of Lemma 4.1, (3)). Thus each coefficient in f(x) can be written as a poly-
nomial in the elements of T'; let f(x) = x® — s;(T)x™ 1 + ... 4+ (—1)%,,(T).

4.3. We now show that if for a given group G we can find values of v;;*
satisfying conditions (4.1.1) such that the resulting polynomial f(x) is irreduc-
ible, then &[f(x)] = G,.

THEOREM 4.3. Let G be a group of order n, and let its regular representation
as a permutation group be G,. Let v, /* (3,5, k = 1, ..., n) be rational numbers
satisfying conditions (4.1.1). From the values v,;*, a certain polynomial f(x) can
be obtained; if the values v, are such that this polynomial is irreducible, its
Galots group is G,.

Proof. Let x4, . .., x, be arbitrary symbols which are multiplied according
to the law wxx; = D xyifxx; let 4 be the hypercomplex algebra over the
rationals having these symbols as basis elements. From (4.1.1), (1) and (2),
A is associative and commutative.

As previously, let T' be the 3-dimensional array of #® rational numbers v,,;*

G, j,k=1,...,n), and let ¢(xy, ..., x,) be any symmetric polynomial in
X1, .+ .y Xz As in § 4.2, since from (4.1.1), (4), T = oT (all ¢ € G,), we have
that ¢ (x1, ..., %) = a1(T)X %, Let

J@ = T1 & = =;
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then f(x) = & — s1(T) (T axa)x™ 1 + ... + (—1)%,(T) Y &, where the s,(T)
(z=1, ..., n) are polynomials in the elements of T'. Since 5;(T) (X ;) =
(i), s1(T) = 1. Let f(x) = & — s;(D)a™ 1+ ... + (—1)",(T).

From (4-1_-1)» (3), (Zifci)xj = 22k % = Labpi =_x,;thus, (X x4) i§
an identity 1 in A. Let R, be the subset of 4 given by {rl: r € R}. Since 1
is an identity, Ry o~ R,, and thus R, is a field. f(x) is a polynomial over this

field.
Suppose that f_(x) is irreducible over Ry; then f(x) is irreducible over R..
Since f(x1) = 0,1, %1, . . ., "~ form a basis for the extension field Ro(x;). As

these elements are linearly independent over Ry, they are linearly independent
over R, also. They all belong to 4, and A is of order #; hence, they form a

basis for 4, and therefore 4 = Ry(x1). As X2,y Xn also belong_ to4,itisa
splitting field for f(x). 4 is of order z over Ry, and thus |&(4/R,)| = n. But
by (4.1.1), (4), any permutation ¢ € G, of x1, ..., %, yields an automorphism

of A over Ro; hence, & (f(x)/Ro) = ®(4/Ry) = G,.

Under the isomorphism Ry~ R,, the polynomial f(x) is carried to f(x).
Thus the splitting field of f(x) is isomorphic to the splitting field of f(x), the
roots of f(x) being carried to the roots of f(x). Hence ®(f(x)/Ro) =
@(J?(x)/Ro) = G,.

Note. The equation f(x) = x® — si(I)x™ 1+ ...+ (—1)%s,(T') depends
only on the order of G and not on its structure; the s;(I') are known poly-
nomials in the #3 unknowns v;*. Also, conditions (4.1.1), (1), (2), and (3) do
not involve the structure of G. The equation f(x) = 0 is therefore a general
form for equations of this type having group of order », provided T is such that
f(x) is irreducible and that conditions (1), (2), and (3) are satisfied. The
structure of the group is then imposed on the general equation by condition

).

4.4. The conditions of (4.1.1) can be simplified considerably. Let T'; =
lviifl, Cx = [v:*], and let P, be the (rn X #) matrix obtained by applying
the permutation ¢ to the columns of the identity matrix. Also, let o; be the

- permutation in G, which carries 1 to 7; we have that G, = {c,: 2 = 1, ..., n}.

Conditions (1)—(4) can now be shown to be equivalent to the following set:

(a) C; is symmetric,
(b) Z_;’Yi;:ajl (j=1,"'rn)’
1 (c) Cy = P,,CiPs’ k=2...,n),

(d) Z ‘ijm’Yiml = Z ’Yum’)’mkl
m

fori=Fk4+1,...,—-1,j=1,...,0—1k=1,...,n—2,l=1.
Conditions (a), (b), and (c) clearly imply (2), (3), and (4). The equations
included in (1) butnotin (d) can be obtained from (d) by forming appropriate
double sums and using (2), (3), and (4).

(4.4.1)
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For a given group of order » we can thus write the conditions as Diophantine
equations in the 3n(n + 1) variables required to write a general symmetric
(n X ) matrix C;. Condition (b) yields » linear equations, condition (c)
enables us to write down the matrices C; (¢ = 2, ..., n), and condition (d)
yields $(n — 1)2(» — 2) quadratic equations. Particular solutions for C; can
be obtained, if solutions exist, by programming the Diophantine equations for
a computer. Clearly, the number of equations increases very rapidly with #;
the method is therefore only practicable for small groups.

4.5. When a matrix C; has been obtained satisfying conditions (4.4.1), we
wish to compute f(x). This can be done either directly, following the method
of proof of Theorem 4.3, or by using the following result.

LeMMA 4.5. Let Cy be a matrix satisfying conditions (4.4.1). Let 3 x,/t1 =
Syp1 - 1; then S,y1 1s the sum of the elements in the first row of (T'y)".

Proof. Let
x1 ma"
2 m ("
x;" = (m,")'%, where T =|" and m,;(" =
Xn, min(r)

Then x,/t! = (m,”)'T' &, and thus (m,D) = (m,P)' (T;)". But from (c),
T, = P, TP,/ therefore (m,™tV) = (m,V) P,;(I'1)"P,’. Now m;® = §,,,
thus (m,V)'P,;, = (mNL) P, =1, 0, ..., 0]; hence (m;, )" is the
result of applying the permutation ¢, to the first row of (I';)". As < runs from
1 to #, each element of the first row appears in the first place exactly once.

We have that S,41 = >, x,/" = 3 ,(m,*tD)'%; equating coefficients of
X1y, Spp1 = 2, im ™. Thus S;41 is the sum of the elements appearing in the
first place as 7 runs from 1 to #, or the sum of the elements in the first row of
(Fl) T,

When the values of .S, have been obtained for » = 1, ..., # using this
lemma, the values of s, can be obtained from Newton’s equations. f(x) can then
be tested for reducibility by Kronecker’s method. (See, for instance, 5, p. 77.)
If f(x) is irreducible, it will, by Theorem 4.3, have Galois group G,.

4.6. Example. We construct an equation having as group G the four-group.

The regular representation is o1 = 1, o2 = (1 2) (3 4), o3 = (1 3) (2 4),
os = (14)(2 3). Let
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the four linear equations (b) can then be written down. The matrices C,, Cs,
Cs Ty, Ty, T'3,and T'scan be constructed in terms of the ten unknowns a, 2 J»
and the nine quadratic equations (d) written down. These thlrteen DlO-
phantine equations were programmed for a computer, and a large number of
solutions was obtained.? One such solution was a = —1%, b = —%, ¢ =1,
d=1e=—% f=5/4, g=—% h=—-5/4, 1= —1, j=3% T, can be
written down, and the first rows of I';?and I';® computed. (It is necessary only
to find the first row of each power of T'; if in computing the next higher power
we postmultiply by I'y.)

Using Lemma 5.4, the values S; = 1, S; = —3/2,S; = 5/2, S, = 11/8 are
obtained, and from Newton’s equations we then have that s; = 1, s, = 5/4,
s3 = 7/4, sa = 19/16. Thus f(x) = x* — x% 4+ 5x2/4 — Tx/4 + 19/16; this
polynomial is irreducible. Hence by Theorem 4.3, f(x) = 0 has as Galois
group the regular representation of the four-group.
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