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Abstract. J. Murre has conjectured that every smooth projective vaietf dimensiond admits a
decomposition of the diagonal = po + - - - +p2a € CH?(X x X) ® Q such that the cyclgs; are
orthogonal projectors which lift the lkaineth components of the identity mapétale cohomology.

If this decomposition induces an intrinsic filtration on the Chow groupXofve call it a Murre
decomposition. In this paper we propose candidates for such projectors on 3-folds by using fiber
structures. Using Mori theory, we prove that every smooth uniruled complex 3-fold admits a Murre
decomposition.
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1. Introduction

Let F' be a subfield ofC. We denote byV (F') the category of smooth, pro-
jective varieties ovel’ with the usual morphisms. Let'V (F') be the catego-

ry with the same underlying object, but where the morphisms are replaced by
correspondences of degree zero, i.e. for two irreducible varigfigs we have
Mor(X,Y) := CHY™X) (X x Y). If f € Mor(X,Y) we view it as a homomor-
phismf,: CH*(X) — CH*(Y), by definingf.(W) = (pr2).((W x X) N f).
GivenX3, X2, X3 € V(F) the composition of correspondenges Mor(X1, X2)

andg € Mor(X>, X3) is defined by

go f = (priz){(pr12)* f N (pras)*g}
An elementp € Mor(X, X) is called aprojector if p o p = p. A special example
is the diagonal, denoted b¥. Finally denote byM (F) the category okffec-
tive Chow motives where objects are pairsX, p) with X € V(F) andp €
Mor(X, X) a projector. The morphisms are described by N&t p), (Y, q)) :=
goMor(X,Y)op.
DEFINITION 1.1. LetM = (X, p) € M(F). Define

CH'(M) = p,CH'(X)®Q
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DEFINITION 1.2. LetX € V(F') be a smooth projective variety of dimensién
We say thafX has aMurre decompaosition, if there exist projectorgg, p1, - - . , p2q

in CHY(X x X) ® Q such that the following properties hold (modulo rational
equivalence for (1) and (2)):

(1) pjopi = dij - pi

() A=3pi

(3) In cohomology thep; induce the(2d — i,:)-th Kiinneth component of the
diagonal.

(4) po,... yDj—1 andpsz, ..., p2q acttrivially on CHI (X) ® Q.

(5) Ifwe putF°CH’(X)®Q = CH’(X)®Qand inductivelyF*C H/ (X)®Q :=
Ker(poj 11—k |pr-1), then this descending filtration is intrinsic, i.e. does not
depend on the particular choice of the

(6) Always FICH/(X) ® Q = CH},\(X) ® Q.

The motives X, p;) are traditionally denoted b (X) and we writeh(X) =
RO(X) + --- + h?4(X). In (6) one also wants to have thefC H’ (X) ® Q is the
kernel of the cycle class map in rational Deligne cohomology, but this is very hard
to verify in general.

(1)—(6) have been proved for curves, surfaces ([11]), products of a curve and
a surface ([10]), abelian varieties ([2]) and certain varieties close to projective
varieties. Recently B. Gordon and J. Murre [4] computed the Chow motive of
elliptic modular varieties using work of A. Scholl [13].

S. Saito has proposed a filtration in [12] which has property (6). Manin ([8])
and Murre ([11]) have quite generally definggl p1, p2q_1,p24 fOr every X. A.
Scholl has refined this in [13] to have also the property that p%, ., wherep'™
denotes a transpose of a projegioMurre has formulated the following

CONJECTURE:Every smooth projective F-variety admits a Murre decompo-
sition.

J. Murre ([10]) has studied the case of a product of a curve with a surface where
one in fact has a Murre decomposition. Inspired by this, we have tried to construct
projectors in the following situation: Lgt Y — S be a morphism from a smooth

3-fold Y to a smooth surfacg with connected fibers. Choose a smooth hyperplane
sectioni: Z — Y and leth = f|z. Look the following cycles

mo 1= (i x 1).(h x £)'mi(S),
T2 .= %(1 X Z)*(f X h,)*ﬂ'l(S),

in CH3(Y xY) ® Q. Here ther;(S) are orthogonal projectors of a Murre decom-
position of S as constructed by Murre ([11]) and is the number of points on a
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general fiber oh. We are able to construct orthogonal projecteys . . , wg in the
following way:

o -= 700

M100 Mo2  T10° 22  T100° 732
2 2 2

T .= T10 —

T100 Mo2 200 W22  T200 732
2 2 2

M2 = T20 + o2 — M20© T02 —

710 © 7122 _ 720 © 7122 _ T40 © 7132

T4 ‘= T40 + 22 — M40 O T22 —

2 2 2
) MO M32  T200 W32 M40 O T32
eER T TS T Ty T T
g - = T42
7T3Z:A—Zﬂ'i.

i#3

The m; do not operate in the right way on cohomology, but if all higher direct
images sheaveR’ f,Oy vanish fori > 1, they can be modified to form a Murre
decomposition. In particular a suitable blow Ypof any smoothuniruled 3-fold

X over a subfield of the complex numbers has this property. Recall that a ¥fold

is called uniruled, if there exists a dominant rational gags x P - - - — X for

some smooth projective surfade By a theorem of Mori and Miyaoka ([9]), this

is equivalent to saying thaXf has Kodaira dimensioaoc. There is no structure
theorem for these varieties which is as simple as in the case of ruled surfaces,
but there is a version in the category of 3-folds wighfactorial and terminal
singularities ([7]) stating thaX is birationally equivalent to a 3-folf which has

a fiber structure with rationally connected fibers over a base variety which can be
a point, a smooth curve or a normal surface. Using this and suitable modifications
of the projectors above we can therefore prove:

THEOREM 4.4. Let X be a smooth uniruled complex projective 3-fold. TBen
admits a Murre decomposition.

We verify property (5) of a Murre decomposition in the sense that the induced
filtration onC H*(X) ® Q depends only on the geometry of the birational mapping
r. X ---— Y. In the proof of this theorem, which makes heavy use of Fulton’s
machinery of intersection theory, the Murre decomposition suggests the following
description of th&€how motive of a complex uniruled 3-folcX (ignoring torsion):
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Motive M h°(X) RYX) K3(X) AK3(X) h*(X) R (X)  h8(X)
CH°(M) Z 0 0 0 0 0 0
CH'(M) 0 PiP(X) NS(X) 0 0 0 0
CH?*(M) 0 0 Ker(y)) Im(yp) H?>*(X,7Z) 0 0
CH?3(M) 0 0 0 0 Kefalb,)  Alb(X) A

However it remains to prove that H2(h?(X)) = Ker(y) and CH?(h3(X)) =
Im(¢), wherey: CHZ,.(X) — J?(X) is the Abel-Jacobi map. We hope that our
approach may also be used to construct projectors in other situations.

2. Projectors for special varieties

The easiest case in which one has a Murre decomposition is the case of projective
space, because thelE?*+1(X, C) = 0 for all k > 0 and the other groups admit a
basis represented by algebraic cycles. One has a more general theorem:

THEOREM 2.1.Let X be a smooth variety of dimensianand assume that for
certainl < ¢ < n — 1there is a basid Es, ..., E;} of H%(X,Q) and a basis
{e1,---,¢,} of HA"—9) (X, Q) represented by classes of algebraic cycles. Then:

(a) There exists a matri® = (b;;) € GLn(Q) such thatthe cyclg =} b;;(¢; x
E;) € CH"(X x X) ® Q operates as the identity dif%/(X, Q).

(b) Forthe same choice of;, p!" = 3" b;; (E;j x¢;) € CH™(X x X)®Q operates
as the identity o2~ (X, Q).

(c) Both cyclesp andp!” are idempotent and therefore projectors.

Proof. Let A = (E; - ¢;) be the intersection matrix, then take= A~1. O

Moreover, one can explicitely say how these projectors operate on cycles, name-
ly:

PROPOSITION 2.2Letp be as before and lét# ¢. Then, forallZ € CH*(X)®
Qone hay(Z) = 0as an element af H*(X) ® Q.

Proof. By dimension reasons, @67) € (E;) C CHY(X) ® Q. O
LEMMA 2.3. Let p be as before and € CHY(X) @ Q. If [Z] denotes the
homology class of on H%(X,Q), then[p(Z)] = p([Z]) = [Z].

Proof. p operates as the identity dif??(X, Q). O

COROLLARY 2.4.Letpbe as before, thefKer p)NCHI(X)®Q = CH{ (X)®
Q.
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Proof. p(Z) => bij (fl : Z)Ej. a

EXAMPLES: Smooth Fano 3-folds and Calabi-Yau 3-folds have the property that
the Hodge numbers’C are always zero foi = 1,2 and therefore theorem 2.1
applies. Another example is a del Pezzo fibraforX — B: to illustrate this, let

¢ be the extremal rational curvg,a general fibe” be a section of —mKx|,C a
twofold intersection in the linear systeixi| and hence a multisection gfover B,

such thalC is a smooth curve dominating. H?(X, Q) is free of rank two. Then
theorem 2.1 produces the following projector

pzZ:%(CXF)—i- ExY)— -2 (exP),

1
m m-r

whered = Y2 andr := (C.F). Note that(— K x.¢) = 1. p, is unique as a cycle
up to the choices of, C, F and/.

3. Murre decompositions of birational conic bundles

Let f:Y — S be a morphism from a smooth projective 3-fatdto a smooth
projective surfaceS, such that every fiber of is rationally connected and the
general fiber off is isomorphic toP!. Choose a smooth hyperplane section
itZ — Y such thath := fz:Z — S is surjective and generically finite. Then
define cycles

0 = %(Z X 1)*(h X f)*ﬂ'l(S),

T2 .= %(1 X Z)*(f X h,)*ﬂ'l(S),

in CH3(Y x Y) ® Q for 0 < i < 4. Here ther;(S) are the orthogonal projectors
of a Murre decomposition of as constructed by Murre ([11]) (and improved by
A. Schollin [13] to have also the property that= =% ;) andm is the number of
points on a general fiber &f The following is ourkey resultin some sense:

LEMMA 3.1.

(@) mio © mjo = dijmi0

(b) mip 0 mj2 = dijmi2

(C) T2 O M0 = 0

(d) ma0 0 mo2 = Mo © Tj2 = Tig © Wa2 = 0
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Proof. (a) Using the projection formula and the theory of Gysin maps for I.c.i.
morphisms from [3, prop. 6.6(c)] in the following diagram

YXY XY - Y xY

T T
ZXY XY - ZxY

l {
Zx8xY — ZxY

l {
SxSxS —- SxS8

where the vertical maps are canonical |.c.i. morphisms, one obtains:
w00 10 = 3 (prls™ V). x D ((h x ) (x(8) x Y 1 ¥
x (2 x 1)« ((h x f)*(m:(S5))))
= Ll )} DX Dl x fx 1) (15(S) % )
N(Lx1x21).(f xhxf)(S xm(S)))
= Ll ) X L) Dl S x ) y(8) x 9)
NEx1IxD)*(1Ixix1).(f xhxf)(Sxm(S)))]
= X Dulor VNI X D) (5 (9) x )
NAxix1),(ix1x1)*(f xhxf)(Sxm(S)))]
= X D rZs ) S % 1) (15(8) % )
N(Ax i x 1) (hxhx[f) (S xm(S))]
= %(i X 1) (pr ) (I x i x 1),[(1x i x 1)*
x(hx fx F)*(xi(S) x S) N (hx b x f)*(S x mi(S))]
= %(i x 1) (pri V), (1 x h x 1)(h x b x f)*

X[(mj(S) x 8) N (S x m(9))]
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= L ix Dulprfs SVl x 1 x 1) (8) x )
N(S x m;(9))]
= (i (o 1) rs S s (8) x ) 01 (S x ()
(1. prop6s(c))
= %(z X 1)y (h x f)*(m;i(S) o 7;(S)) = dijmio.

Similarly one proves (b).
(c) As before, one finds that

1, . .
T2 mio = —5 (i X i)« (prig ) (1x f x u[(1x f x 1)

X(hx1xh)"(m(S)xSNSxmi(S)N(ZxY x Z)]

1
56 % i) (prfy ).l x 1x h)*(mi(S) x SN S

xmi(S)N(Ax fx1),(ZxY xZ)]=0

becausél x f x 1).(Z x Y x Z) = 0 due to dimension reasons.
(d) In a similar way these 3 identities follow for dimension reasons.
Define now a set of cycles, . . . , w6 in the following way:

T = T00

T100 702 7100 M22  T10° 732
2 2 2

T = T10 —

T100 Mo2 7200 T22 7200 732
2 2 2

Mo 1= T20 + M2 — W20 © T2 —

TM100 M2  T200 22  T400° 32
2 2 2

T4 ‘= T40 + 22 — M40 O T22 —

M0O M32  T200 32 7400 732

5= T 2 2
TG .= T42
3= A — Zm.

i#3
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COROLLARY 3.2.Ther; defined above form a set of orthogonal projectors such
thatm, = ﬂéﬁk.

THEOREM 3.3.

( f*HI(S,Q) if j=0,1

fFHI(S,Q ®Q-[2] if j=2

m; = 6;;0N f*HJ(S,@)@[Z]- frH?(S,Q) if j=4
[Z]- f*H3(S,Q) if j=5

| [Z2]- f*H*(S,Q) if j=6.

Proof. First note that one has the equation:
miolf°0) = (i x 1) (h x f)* () (/")

(pry 1.1 % .l x £)mi(S) 1 (7 x V)]

(pry )l x Dul(h % £)mi(8) 1 6 % 1) (P x V)]

(ory ). % Dl x 1) () N x 8

(prd> YY) (h x £)*[m(S) Na x 8]

SIH SIH SIH SIH SIH

(pr3™ )« (b x Db x f)*[mi(S) N x S)]

= (pr3™ )« (1 x ) [mi(S) N x S)]
= [*(pry)ulmi(S) Na x 8] = frmi(S) ().

Thereforer;o operates aé;; on f*H(S), proving the assertion farg and.
On the other hand, using projection formula, one gets

ma(f°) = = (pr VLI x ) (f x W) (S) 1 (% )

= %Z*(prfxz) (f x Dl(f x 1)" (1 x B)* (mi(S)

N(ax S)) N (Y x Z)]
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= I ) ()
N(ax ) N(f x1).(Y x Z)] =0,
since(f x 1).(Y x Z) =0.

Take anyD € H*(S,Q) with & = 0,2,3,4 and consideC' := i,h*(D).
Observe thalC| = f*(D) - [Z]. The same computation as above in cohomology

shows that
w10 = (prd ¥ )[(A X i)u(f X B m(S) N [C] x [V]
= i (mi(5)(D)).

As ther;(.S) induce the Kinneth decomposition @t s on cohomology, it follows
thatm;(S)([D]) = d;x([D]) and therefore one gets,([C]) = d;x[C].
Moreover, a similar argument together with Chow’s moving lemma shows that

mio([C]) = —(pry )i x 1) (h x f)*mi(S) N [C] x [V]]

(pry " )a (i x D) [(h x f)*mi(S) N (i x 1)*[C] x [Y]]

(pry "V )ul(h < f)*mi(S) N[O N Z] x [Y]]

(3" ) (h x 1)i[(h x 1)* (L% f)*mi(S) N [C N Z] x [Y]]

(3" )1 x f)*mi(S) Nh[C N Z] x [Y]]

F¥(or3 ™ ®)slmi(S) N hi[C 0 Z] x []

P 3k 33k 3k 3e 3

=~ fm(8)(hu[C N Z) =0,

if i # k + 2. As a consequence one also getse 7;2([C]) = d;,mio([C]), which

proves the assertion fat, 74, 75 andmrg and the theorem. O
Now assume additionally thgt Y — S is a desingularization of a conic bundle

morphismf’: X’ — S’ in the sense of [7], i.e. there is a commutative diagram
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with blow-up morphismsr, 7. Also we assumeZ C Y is a sufficiently general

smooth hyperplane section Bfthat dominates.
Then we can choose irreducible diviséfs, ..., H, in Y such thatd; = Z and

Hll Y@ @@

form a basis of7 (Y, Q) and such thaf, H; = 0in CHO(S) fori > 2,i.e.H; is
exceptional with respect tbfor : > 2.

LEMMA 3.4. For every cycléV one hasroo(W) = L f*my(S)(h (W N Z)) €
f*CH*(S) ® Q. LetW be a cycle withf, (W) = 0. Thenmo(W) = 0 already in

the Chow group of'.
Proof.
Rl W) = (pry Y ).[(1x 1) x h)*mo(S) O (W x V)]
= Li oy I % B mo(S) N (f X 1. (W x 2)] =0

by [3, prop. 6.6(c)] and sincé. (W) = 0 CH*(S).
On the other hand

waoW) = (pry *).[(i % 1o x f)"na(8) 0 (W x Y)]
(5 )ul(h x J) 72(S) N (W N 2Z) x )]
(o5 ).1(L x £)"72(S) 0 (h x D.((W 1 2) x V)]

(pr3™ ) (1 x f)*[m2(S) Nha(W 0 Z) % 5]

3le SIH SIH Ell—‘ Ell—‘

¥ (pr3*%)s[m2(S) N hu(W N Z) x 8]

[fma(S)(h.(WN Z)) € fFCH*(S) ® Q O
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COROLLARY 3.5.

wa(¥)(Hy) = [ (ho(H:0 7)) € FOHY(S) 90 for i >2

By theorem 3.3r>(Y') operates as zero on P{&"), therefore the image ab(Y) in
CHY(Y) ® Qis a finite dimensional vector space. By changing our generatprs
above modulo classes in Bjg") = f*Pic°(S), we may assume that they generate
Im(mp) € CHY(Y) ® Q. Then we write uniquely

mo(Y)(H;) =Y aixHr € CHNY) ® Q,
k

with a matrix A = (a;;) € Mat(r x r,Q). m2(Y") being a projector implies that
A? = A. Choose algebraic cyclés, ..., ¢, such that; = F, a general fiber of,
and such that their cohomology classes form a basi%#(Y, Q). By Poincaé
duality the intersection matrin/ = (m;;) = (f1,...,4)" (Hy,...,H,) has
nonzero determinant.

We define

g2 = 7T2(Y) + szg(& X Hj) — Zb%](& X Hj) o T,
with some matrixB = (b; ;) € Mat(r x r, Q).

LEMMA 3.6. If B = M~1(1 — A), theng, is a projector and operates as the
identity onH2(Y, Q).

Proof. 7, acts as the identity orf*H?(S,Q) by theorem 3.3. The higher
direct imagesR’ f.Oy- vanish fori > 1 by [7]. Therefore by the Leray spectral
sequencdl?(Y,Oy) = f*H?(S,Os) and it is enough to show thas operates
as the identity orff"*(Y, Q) too. Butg, acts via the matrix)/B + A + BA on
HY(Y,Q) with respect to the basi§H;}. Now 75 = 7, and we getd? = A
and thereforeBA = 0. By definition of B, we obtain thatB + A + BA =
MM 1-A)+A=1
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To show thatg, is a projector, let us writg, = m + 5 — Gm. Note that
66 = (B, since BMB = B. From BA = 0 we deduce that,8 = 0.
Therefore

G20 G2 = 5 + 3% + Brafimy + moff — mafm2
+pBmo — BBy — Proma — B8
=ma+ [ —PBr2=q

is a projector. O

THEOREM 3.7.The following cyclespo(Y) = mo(Y),p1(Y) = mi(Y),
pz(Y) =q2— 7(1(Y) o Z bi,j(fi X Hj) — 7(1(Y) o Z bi,j(fi X Hj) o 7(2(Y)p4 =
P8 (Y).ps(Y) = ms(Y),pe(Y) := ms(Y),ps(Y) == A — ¥, 3p; define pro-
jectors, which satisfy propertied), (3), (4) and (6) of a Murre decomposition.
Property (5) holds in the following sensef'CH(Y) ® Q = CHj,(Y) ® Q,
F2CH?(Y) ® Q & f*Ker(alby) C CHZ,(Y) ® Q (kernel of Abel-Jacobi map)
and F2CH3(Y) ® Q = Ker(alb,.). Moreoverpo(Y), p1(Y),p2(Y) are mutually
orthogonal.

Proof. By lemma 3.6 above, (1),(2) and (3) are straightforward.

To prove (4),(5) and (6) foj = 1, note that PitY') ® Q = f*Pic(S) ® Q @
@, Q - H;. By theorem 3.3 abovey operates on PiY) ® Q = f*Pid®(S) ® Q
as the identity and trivially o@D, Q - H;. Vice versa; is the identity orgd, Q - H;
and zero ory*Pic®(S) ® Q, because it acts trivially ofi* H1(S, Q). All the other
projectors are zero o6 H*(Y) ® Q. Therefore we get (4)—(6) foj = 1 with
F2CHY(Y)®Q=0.

For j = 2, property (4) follows from the analogous assertion $oBy con-
structionF1CH?(Y) ® Q = Ker(ps) = CHZ,(Y)®Q. ThenF?CH?(Y)®Q =
Ker(ps) NKer(pa) = Im(p2) = Im(m2(Y)).

Now we show that"?CH?(Y) ® Q = f*F2CH?*(S) ® Q C CH,(Y) ® Q
Tz Operates as zero o H2(Y) by Chow’s moving lemma and i€’ is any
curve homologous to zero dn, then by Lemma 3.4520(C) = f*h.(C N Z) €
f*F?CH?(S) ® Q.

This proves thaF2C H?(Y)®Q C f*F?CH?(S)®Q, butsincer,(Y) operates
as the identity on every fiber gf, we get equality. This is then independent of all
choices, because this is the casefé€' H2(S) by [11]. Finally F3SCH?(Y)®Q =
0, sincep; acts as the identity oA2C' H?(Y) ® Q = Im(p,). Hence we get (5) and
(6) forj = 2.

Finally consideC H3(Y): Clearly F1C H3(Y)®Q = Ker(rg) = CHZ,((Y)®
Q. FurtherF2CH3(Y)®Q = Ker(ms| p1cir2(y)00) @nd we claim thaf?C H3(Y)®
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Q = Ker(alby-) ® Q, where ally : CH3(Y)nom — Alb(Y) is the Albanese map.
But there is a commutative diagram

CH3(Y)phom — Alb(Y)

5. -

CH?(S)hom — Alb(S).

Both vertical maps are isomorphisms. To compiteC H3(Y) ® Q we take
any closed point” in Y and compute thaf,rs(P) = f.2i.h*(m3(S)(P)) =
m3(S) (f+(P)).

This shows thatf. F2CH3(Y) ® Q & F2CH?(S) ® Q = Ker(albg) ® Q
by [11]. ThereforeF2CH3(Y)) ® Q = Ker(alb,) ® Q, which is independent of
all choices again by [11]. Finallyf3CH3(Y) ® Q = 0, since if P = Y a;P;
is a zero cycle ofY with 3" a; = 0, thenf,ma(P) = fimbo(P) + fumby(P) =
Fo (1x0)s (f X h)*a(S)(P)+ fo 2 (ix 1) (hx £)*7a(S) (P). Butma(S) = S xe,
hence the lastterm is zero and the first term becomies) (. P). Butm,(S) acts as
the identity onF?CH?(S) ® Q. Thusf, FPCH3*(Y)®Q C FPCH?*(S)®Q = 0.

This finishes the proof of the theorem. O

Remark Using a non-commutative version of the Gram-Schmidt process ([11,
remark 6.5.]), one can always modify(Y), p5(Y'), ps(Y") such thatp(Y), ...,
pe(Y') are orthogonal.

4. Murre decompositions of uniruled 3-folds

Letk = C. By a 3-fold we just mean a normal 3-dimensional complex variety.

DEFINITION 4.1. A3-foldX is calleduniruled, if there exists a dominant rational
mapy: S x P1---— X for some surfacé.

THEOREM 4.2 (9).A smooth projective 3-fol& is uniruled if and only if it has
Kodaira dimension-oc, i.e. no multiple ofK x has sections.

THEOREM 4.3 (7).Let X be a uniruled 3-fold with onlyQ -factorial terminal
singularities. Then there exists a birational mapping X ---— Y which is a
composition of flips and divisorial contractions, such tifahas an extremal ray
R whose extremal contraction mgp Y — 7 satisfies one of the following cases:

(@) dm(Z) = 0,Y is aQ-Fano 3-fold withp(Y') = 1, i.e. —mKy is an ample

Cartier divisor for somen > 1 and the divisor class group is free with one
generator.
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(b) Z is a smooth curve antl is a del Pezzo fibration ovef, i.e. the general
fibre of f is a del Pezzo surface.

(c) 7 is a surface with at most quotient singularities ardis a conic bundle
overZ. In cases (b) and (c) the reduced preimage of any irreducible divisor is
again irreducible.

THEOREM 4.4.Let X be a smooth complex uniruled 3-fold. Th&nhadmits a
Murre decompoaosition.

Remark We verify property (5) of a Murre decomposition in the sense that the
induced filtration orC H*(X') ® Q depends only on the geometry of the birational
mappingr: X ---— Y.

Proof. SinceX is uniruled, it is birational to one of the following varieties:

() AQ-Fano 3-foldY” with p(Y') = 1, i.e.—m Ky is an ample Cartier divisor for
somem > 1 and the divisor class group is free with one generator.

(b) A del Pezzo fibration over a smooth curve.
(c) A conic bundle over a normal surface with at most quotient singularities.

In cases (a), (b}I%(X, Q) andH*(X, Q) are generated by classes of algebraic
cycles. Thus we defing(X) = {e} x X andpg(X) = X x {e} for some rational
pointe € X, p1(X) andps(X) as in [11] andpz(X) andps(X) = po(X)" as
in theorem 2.1. Then it is immediate to verify all properties (2)-(6) similar to the
proof of 3.7 while property (1) can be achieved like in [11, remark 6.5.], by the
non-commutative Gram—-Schmidt process.

In case (c) we may assume that after blowing Xipalong several smooth
subvarieties, there is a situation as in the previous section:

Leto:Y — X be the blow-up and assume thaty” — S is a morphism to a
smooth surfacé with rationally connected fibers. Take the projectay&), .. .,
pe(Y') as defined in the last section.

To define the projectors foX, consider the graphi, C Y x X of . Define

pi(X) =Ty opi(Y) o T = (¢ x @) (pi(Y)),

(by Liebermann’s lemma [6]) for & i < 2. We claim that alp;(X ') are orthogonal
projectors.

By induction on the number of blow-ups we may assume that there is just one
blow-up along a smooth subvaridiy C X.
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Consider the canonical diagram

Y xY xY 22 yxy

XxY xX P8 xxX

where the vertical maps agex 1 x p andy x ¢. Let E be the exceptional divisor.
Then we compute for & 4,5 < 2:

pi(X) o pj(X)
= (pr13)«((p x id)up; (Y) x X N X x (id X ¢).pi(Y))
= (X @)« (pr13)+(p;(Y) x Y NY x (id x ¢)*(id x ¢).pi(Y))
= (¢ X ¢)«(pr1a)«(p;(Y) x Y N Y x (p;(Y) + (id x ). Qs,5))
= (p X @) (pr13)«(p; (V) X Y NY x pi(Y)) + (¢ x ¢)«(pr13)s (p; (Y)

XY MY % (id X 5). Qi)
= (e % @)u(Pi(Y) opj(Y) + (pr1a)«(p;(Y) x Y NY x (id x 5):Qi ),
whereQ; ; € CH3(Y x E) andj: E < Y is the inclusion. Hence
Ci = pi(X) o pi(X) — pi(X)
= (p X id)u (pr13)« (pi(Y) x X NY x (id x i).(id x 7). Qi3))-

pZ(Y) = %(Z X 1)*(}7, X f)*ﬂ'l(S) + T; with To, T1 = 0 andT> = Zcij(gi X
Hj;) =32 b;j(¢4; x Hj) o m(Y') for some integers; ;, b; ; which is supported on
(Z xY)U (4; xY). ThereforeC; is supported op(Z) x W. Herei: W — X is
the inclusion ang” : E — W is the restriction of to E.

If WisapointC; = 0bydimensionreasons.i¥ isacurveC; = a(p(Z)xW)
with a € Z.ButC; = p;(X) o p;(X) — p;(X) operates as zero on the cohomology
class of every curv& € C H?(X), since by Chow’s moving lemma we can choose
T to be disjoint fromi#” and use that;(Y)(T) = 0in cohomology for = 0,1, 2.
Thereforea = 0 andp;(X) is a projector.

Fori # j,pi(X) 0 p;(X) = (9 X ). (pr1a).(pj(Y) x Y 0 Y x (id % ). Qs ;)
sincep;(Y') andp;(Y’) are orthogonal. As above this implies thatX) o p;(X)
is supported orp(Z) x W for all j. By the same argument with Chow’s moving
lemma forC H?(X) as beforep;(X) o p;(X) = 0.
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Now define
pa(X) = pa(X)", ps(X) = p2(X)"", ps(X) = pf and

p3(X) = A= pi(X)
i#3

Properties (3)—(6) follow from theorem 3.7 together with the split exact sequences
([3, prop. 6.7])

0 — CH,(W) — CH(E) ® CHy(X) — CH,(Y) = 0

(1) and (2) can be obtained again via the Gram-Schmidt process. O
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