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Abstract. J. Murre has conjectured that every smooth projective varietyX of dimensiond admits a
decomposition of the diagonal� = p0+ � � �+ p2d 2 CH

d
(X �X)
Q such that the cyclespi are

orthogonal projectors which lift the K̈unneth components of the identity map inétale cohomology.
If this decomposition induces an intrinsic filtration on the Chow groups ofX, we call it a Murre
decomposition. In this paper we propose candidates for such projectors on 3-folds by using fiber
structures. Using Mori theory, we prove that every smooth uniruled complex 3-fold admits a Murre
decomposition.
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1. Introduction

Let F be a subfield ofC . We denote byV (F ) the category of smooth, pro-
jective varieties overF with the usual morphisms. LetCV (F ) be the catego-
ry with the same underlying object, but where the morphisms are replaced by
correspondences of degree zero, i.e. for two irreducible varietiesX;Y we have
Mor(X;Y ) := CHdim(X)(X � Y ). If f 2 Mor(X;Y ) we view it as a homomor-
phismf� : CH�(X) ! CH�(Y ), by definingf�(W ) = (pr2)�((W � X) \ f).
GivenX1;X2;X3 2 V (F ) the composition of correspondencesf 2 Mor(X1;X2)
andg 2 Mor(X2;X3) is defined by

g � f = (pr13)�f(pr12)
�f \ (pr23)

�gg

An elementp 2 Mor(X;X) is called aprojector if p � p = p. A special example
is the diagonal, denoted by�. Finally denote byM(F ) the category ofeffec-
tive Chow motives, where objects are pairs(X; p) with X 2 V (F ) and p 2
Mor(X;X) a projector. The morphisms are described by Mor((X; p); (Y; q)) :=
q �Mor(X;Y ) � p.

DEFINITION 1.1. LetM = (X; p) 2M(F ). Define

CHi(M) := p�CH
i(X)
 Q
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2 PEDRO LUIS DEL ANGEL AND STEFAN M̈ULLER-STACH

DEFINITION 1.2. LetX 2 V (F ) be a smooth projective variety of dimensiond.
We say thatX has aMurre decomposition, if there exist projectorsp0; p1; : : : ; p2d

in CHd(X � X) 
 Q such that the following properties hold (modulo rational
equivalence for (1) and (2)):

(1) pj � pi = �i;j � pi
(2) � =

P
pi

(3) In cohomology thepi induce the(2d � i; i)-th Künneth component of the
diagonal.

(4) p0; : : : ; pj�1 andp2j+1; : : : ; p2d act trivially onCHj(X)
 Q.
(5) If we putF 0CHj(X)
Q = CHj(X)
Q and inductivelyF kCHj(X)
Q :=

Ker(p2j+1�k jF k�1), then this descending filtration is intrinsic, i.e. does not
depend on the particular choice of thepi.

(6) AlwaysF 1CHj(X)
 Q = CH
j
hom(X) 
 Q.

The motives(X; pi) are traditionally denoted byhi(X) and we writeh(X) =
h0(X) + � � �+ h2d(X). In (6) one also wants to have thatF 2CHj(X) 
 Q is the
kernel of the cycle class map in rational Deligne cohomology, but this is very hard
to verify in general.

(1)–(6) have been proved for curves, surfaces ([11]), products of a curve and
a surface ([10]), abelian varieties ([2]) and certain varieties close to projective
varieties. Recently B. Gordon and J. Murre [4] computed the Chow motive of
elliptic modular varieties using work of A. Scholl [13].

S. Saito has proposed a filtration in [12] which has property (6). Manin ([8])
and Murre ([11]) have quite generally definedp0; p1; p2d�1; p2d for everyX. A.
Scholl has refined this in [13] to have also the property thatpi = ptr2d�i, whereptr

denotes a transpose of a projectorp. Murre has formulated the following

CONJECTURE:Every smooth projective F-varietyX admits a Murre decompo-
sition.

J. Murre ([10]) has studied the case of a product of a curve with a surface where
one in fact has a Murre decomposition. Inspired by this, we have tried to construct
projectors in the following situation: Letf :Y ! S be a morphism from a smooth
3-foldY to a smooth surfaceS with connected fibers. Choose a smooth hyperplane
sectioni:Z ,! Y and leth = f jZ . Look the following cycles

�i0 :=
1
m
(i� 1)�(h� f)��i(S);

�i2 :=
1
m
(1� i)�(f � h)��i(S);

in CH3(Y �Y )
Q. Here the�i(S) are orthogonal projectors of a Murre decom-
position ofS as constructed by Murre ([11]) andm is the number of points on a
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MOTIVES OF UNIRULED 3-FOLDS 3

general fiber ofh. We are able to construct orthogonal projectors�0; : : : ; �6 in the
following way:

�0 := �00

�1 := �10�
�10 � �02

2
�
�10 � �22

2
�
�10 � �32

2

�2 := �20+ �02� �20 � �02�
�10 � �02

2
�
�20 � �22

2
�
�20 � �32

2

�4 := �40+ �22� �40 � �22�
�10 � �22

2
�
�20 � �22

2
�
�40 � �32

2

�5 := �32�
�10 � �32

2
�
�20 � �32

2
�
�40 � �32

2

�6 := �42

�3 := ��
X
i6=3

�i:

The �j do not operate in the right way on cohomology, but if all higher direct
images sheavesRif�OY vanish fori > 1, they can be modified to form a Murre
decomposition. In particular a suitable blow upY of any smoothuniruled 3-fold
X over a subfield of the complex numbers has this property. Recall that a 3-foldX

is called uniruled, if there exists a dominant rational map' : S � P1 - - -! X for
some smooth projective surfaceS. By a theorem of Mori and Miyaoka ([9]), this
is equivalent to saying thatX has Kodaira dimension�1. There is no structure
theorem for these varieties which is as simple as in the case of ruled surfaces,
but there is a version in the category of 3-folds withQ -factorial and terminal
singularities ([7]) stating thatX is birationally equivalent to a 3-foldY which has
a fiber structure with rationally connected fibers over a base variety which can be
a point, a smooth curve or a normal surface. Using this and suitable modifications
of the projectors above we can therefore prove:

THEOREM 4.4. LetX be a smooth uniruled complex projective 3-fold. ThenX

admits a Murre decomposition.

We verify property (5) of a Murre decomposition in the sense that the induced
filtration onCH�(X)
Q depends only on the geometry of the birational mapping
r : X - - -! Y . In the proof of this theorem, which makes heavy use of Fulton’s
machinery of intersection theory, the Murre decomposition suggests the following
description of theChow motive of a complex uniruled 3-foldX (ignoring torsion):
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4 PEDRO LUIS DEL ANGEL AND STEFAN M̈ULLER-STACH

MotiveM h0
(X) h1

(X) h2
(X) h3

(X) h4
(X) h5

(X) h6
(X)

CH0
(M) Z 0 0 0 0 0 0

CH1(M) 0 Pic0(X) NS(X) 0 0 0 0
CH2

(M) 0 0 Ker( ) Im( ) H2;2
(X;Z) 0 0

CH3
(M) 0 0 0 0 Ker(alb

X
) Alb(X) Z

However it remains to prove thatCH2(h2(X)) = Ker( ) andCH2(h3(X)) =
Im( ), where : CH2

hom(X) ! J2(X) is the Abel-Jacobi map. We hope that our
approach may also be used to construct projectors in other situations.

2. Projectors for special varieties

The easiest case in which one has a Murre decomposition is the case of projective
space, because thereH2k+1(X; C ) = 0 for all k > 0 and the other groups admit a
basis represented by algebraic cycles. One has a more general theorem:

THEOREM 2.1.LetX be a smooth variety of dimensionn and assume that for
certain1 6 q 6 n � 1 there is a basisfE1; : : : ; Etg of H2q(X;Q) and a basis
f`1; � � � ; `tg ofH2(n�q)(X;Q) represented by classes of algebraic cycles. Then:

(a) There exists a matrixB = (bij) 2 GLn(Q) such that the cyclep =
P
bij(`i�

Ej) 2 CH
n(X �X)
 Q operates as the identity onH2q(X;Q).

(b) For the same choice ofbij ; ptr =
P
bij(Ej�`i) 2 CH

n(X�X)
Q operates
as the identity onH2(n�q)(X;Q).

(c) Both cycles,p andptr are idempotent and therefore projectors.

Proof. LetA = (Ei � `j) be the intersection matrix, then takeB = A�1. 2

Moreover, one can explicitely say how these projectors operate on cycles, name-
ly:

PROPOSITION 2.2.Letpbe as before and letk 6= q. Then, for allZ 2 CHk(X)

Q one hasp(Z) = 0 as an element ofCHk(X) 
 Q.

Proof. By dimension reasons, asp(Z) 2 hEii � CHq(X)
 Q. 2

LEMMA 2.3. Let p be as before andZ 2 CHq(X) 
 Q. If [Z] denotes the
homology class ofZ onH2q(X;Q), then[p(Z)] = p([Z]) = [Z].

Proof. p operates as the identity onH2q(X;Q). 2

COROLLARY 2.4.Letpbe as before, then(Ker p)\CHq(X)
Q = CH
q
hom(X)


Q.
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MOTIVES OF UNIRULED 3-FOLDS 5

Proof. p(Z) =
P
bij(`i � Z)Ej . 2

EXAMPLES: Smooth Fano 3-folds and Calabi-Yau 3-folds have the property that
the Hodge numbershi;0 are always zero fori = 1;2 and therefore theorem 2.1
applies. Another example is a del Pezzo fibrationf : X ! B: to illustrate this, let
` be the extremal rational curve,F a general fiber,Y be a section ofj�mKX j,C a
twofold intersection in the linear systemjY j and hence a multisection off overB,
such thatC is a smooth curve dominatingB. H2(X;Q) is free of rank two. Then
theorem 2.1 produces the following projector

p2 :=
1
r
(C � F ) +

1
m
(`� Y )�

d

m � r
(`� F );

whered = Y 3 andr := (C:F ). Note that(�KX :`) = 1. p2 is unique as a cycle
up to the choices ofY;C; F and`.

3. Murre decompositions of birational conic bundles

Let f :Y ! S be a morphism from a smooth projective 3-foldY to a smooth
projective surfaceS, such that every fiber off is rationally connected and the
general fiber off is isomorphic toP1. Choose a smooth hyperplane section
i:Z ,! Y such thath := fjZ :Z ! S is surjective and generically finite. Then
define cycles

�i0 :=
1
m
(i� 1)�(h� f)��i(S);

�i2 :=
1
m
(1� i)�(f � h)��i(S);

in CH3(Y � Y )
 Q for 0 6 i 6 4. Here the�i(S) are the orthogonal projectors
of a Murre decomposition ofS as constructed by Murre ([11]) (and improved by
A. Scholl in [13] to have also the property that�i = �tr4�i) andm is the number of
points on a general fiber ofh. The following is ourkey result in some sense:

LEMMA 3.1.

(a) �i0 � �j0 = �ij�i0

(b) �i2 � �j2 = �ij�i2

(c) �j2 � �i0 = 0
(d) �40 � �02 = �00 � �j2 = �i0 � �42 = 0
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6 PEDRO LUIS DEL ANGEL AND STEFAN M̈ULLER-STACH

Proof. (a) Using the projection formula and the theory of Gysin maps for l.c.i.
morphisms from [3, prop. 6.6(c)] in the following diagram

Y � Y � Y ! Y � Y

" "
Z � Y � Y ! Z � Y

# #
Z � S � Y ! Z � Y

# #
S � S � S ! S � S

where the vertical maps are canonical l.c.i. morphisms, one obtains:

�i0 � �j0 =
1
m2(pr

Y�Y�Y
13 )�((i� 1)�((h� f)�(�j(S))� Y \ Y

�(i� 1)�((h� f)�(�i(S))))

=
1
m2(pr

Y�Y�Y
13 )�((i� 1� 1)�(h� f � f)�(�j(S)� S)

\(1� i� 1)�(f � h� f)�(S � �i(S)))

=
1
m2(pr

Y�Y�Y
13 )�(i� 1� 1)�[(h� f � f)�(�j(S)� S)

\(i� 1� 1)�(1� i� 1)�(f � h� f)�(S � �i(S))]

=
1
m2(i� 1)�(pr

Z�Y�Y
13 )�[(h� f � f)�(�j(S)� S)

\(1� i� 1)�(i� 1� 1)�(f � h� f)�(S � �i(S))]

=
1
m2(i� 1)�(pr

Z�Y�Y
13 )�[(h� f � f)�(�j(S)� S)

\(1� i� 1)�(h� h� f)�(S � �i(S))]

=
1
m2(i� 1)�(pr

Z�Y�Y
13 )�(1� i� 1)�[(1� i� 1)�

�(h� f � f)�(�j(S)� S) \ (h� h� f)�(S � �i(S))]

=
1
m2(i� 1)�(pr

Z�S�Y
13 )�(1� h� 1)�(h� h� f)�

�[(�j(S)� S) \ (S � �i(S))]
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MOTIVES OF UNIRULED 3-FOLDS 7

=
1
m
(i� 1)�(pr

Z�S�Y
13 )�(h� 1� f)�[(�j(S)� S)

\(S � �i(S))]

=
1
m
(i� 1)�(h� f)�(prS�S�S13 )�(�j(S)� S) \ (S � �i(S))

([3; prop:6:6(c)])

=
1
m
(i� 1)�(h� f)�(�i(S) � �j(S)) = �ij�i0:

Similarly one proves (b).
(c) As before, one finds that

�j2 � �i0 =
1
m2(i� i)�(pr

Z�S�Z
13 )�(1� f � 1)�[(1� f � 1)�

�(h� 1� h)�(�i(S)� S \ S � �j(S)) \ (Z � Y � Z)]

=
1
m2(i� i)�(pr

Z�S�Z
13 )�[(h� 1� h)�(�i(S)� S \ S

��j(S)) \ (1� f � 1)�(Z � Y � Z)] = 0

because(1� f � 1)�(Z � Y � Z) = 0 due to dimension reasons.
(d) In a similar way these 3 identities follow for dimension reasons. 2

Define now a set of cycles�0; : : : ; �6 in the following way:

�0 := �00

�1 := �10�
�10 � �02

2
�
�10 � �22

2
�
�10 � �32

2

�2 := �20+ �02� �20 � �02�
�10 � �02

2
�
�20 � �22

2
�
�20 � �32

2

�4 := �40+ �22� �40 � �22�
�10 � �22

2
�
�20 � �22

2
�
�40 � �32

2

�5 := �32�
�10 � �32

2
�
�20 � �32

2
�
�40 � �32

2

�6 := �42

�3 := ��
X
i6=3

�i:
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8 PEDRO LUIS DEL ANGEL AND STEFAN M̈ULLER-STACH

COROLLARY 3.2.The�j defined above form a set of orthogonal projectors such
that�k = �tr6�k.

THEOREM 3.3.

�i = �ijon

8>>>>>>><
>>>>>>>:

f�Hj(S;Q) if j = 0;1

f�Hj(S;Q) � Q � [Z] if j = 2

f�Hj(S;Q) � [Z] � f�H2(S;Q) if j = 4

[Z] � f�H3(S;Q) if j = 5

[Z] � f�H4(S;Q) if j = 6:

Proof. First note that one has the equation:

�i0(f
��) =

1
m
(i� 1)�(h� f)��i(S)(f

��)

=
1
m
(prY�Y2 )�[(i� 1)�(h� f)��i(S) \ (f��� Y )]

=
1
m
(prY�Y2 )�(i� 1)�[(h� f)��i(S) \ (i� 1)�(f��� Y )]

=
1
m
(prY�Y2 )�(i� 1)�(h� f)�[�i(S) \ �� S]

=
1
m
(prZ�Y2 )�(h� f)�[�i(S) \ �� S]

=
1
m
(prS�Y2 )�(h� 1)�(h� f)�[�i(S) \ �� S)]

= (prS�Y2 )�(1� f)�[�i(S) \ �� S)]

= f�(prS�S2 )�[�i(S) \ �� S] = f��i(S)(�):

Therefore�i0 operates as�ij onf�Hj(S), proving the assertion for�0 and�1.
On the other hand, using projection formula, one gets

�i2(f
��) =

1
m
(prY�Y2 )�[(1� i)�(f � h)��i(S) \ (f��� Y )

=
1
m
i�(pr

S�Z
2 )�(f � 1)�[(f � 1)�(1� h)�(�i(S)

\(�� S)) \ (Y � Z)]
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MOTIVES OF UNIRULED 3-FOLDS 9

=
1
m
i�(pr

S�Z
2 )�[(1� h)�(�i(S)

\(�� S)) \ (f � 1)�(Y � Z)] = 0;

since(f � 1)�(Y � Z) = 0:

Take anyD 2 Hk(S;Q) with k = 0;2;3;4 and considerC := i�h
�(D).

Observe that[C] = f�(D) � [Z]. The same computation as above in cohomology
shows that

�i2([C]) =:
1
m
(prY�Y2 )�[(1� i)�(f � h)��i(S) \ [C]� [Y ]]

= i�h
�(�i(S)(D)):

As the�i(S) induce the K̈unneth decomposition of�S on cohomology, it follows
that�i(S)([D]) = �ik([D]) and therefore one gets�i2([C]) = �ik[C].

Moreover, a similar argument together with Chow’s moving lemma shows that

�i0([C]) =
1
m
(prY�Y2 )�[(i � 1)�(h� f)��i(S) \ [C]� [Y ]]

=
1
m
(prY�Y2 )�(i� 1)�[(h� f)��i(S) \ (i� 1)�[C]� [Y ]]

=
1
m
(prZ�Y2 )�[(h� f)��i(S) \ [C \ Z]� [Y ]]

=
1
m
(prS�Y2 )�(h� 1)�[(h � 1)�(1� f)��i(S) \ [C \ Z]� [Y ]]

=
1
m
(prS�Y2 )�[(1� f)��i(S) \ h�[C \ Z]� [Y ]]

=
1
m
f�(prS�S2 )�[�i(S) \ h�[C \ Z]� [S]]

=
1
m
f��i(S)(h�[C \ Z]) = 0;

if i 6= k + 2. As a consequence one also gets�i0 � �j2([C]) = �jk�i0([C]), which
proves the assertion for�2; �4; �5 and�6 and the theorem. 2

Now assume additionally thatf :Y ! S is a desingularization of a conic bundle
morphismf 0:X 0 ! S0 in the sense of [7], i.e. there is a commutative diagram

Y
f
- S

X 0
?

�

f 0
- S0;

�

?
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10 PEDRO LUIS DEL ANGEL AND STEFAN M̈ULLER-STACH

with blow-up morphisms�; � . Also we assumeZ � Y is a sufficiently general
smooth hyperplane section ofY that dominatesS.

Then we can choose irreducible divisorsH1; :::;Hr in Y such thatH1 = Z and

H1;1(Y;Q) =
rM
i=1

Q[Hi ];

form a basis ofH1;1(Y;Q) and such thatf�Hi = 0 inCH0(S) for i > 2, i.e.Hi is
exceptional with respect tof for i > 2.

LEMMA 3.4. For every cycleW one has�20(W ) = 1
m
f��2(S)(h�(W \ Z)) 2

f�CH�(S)
 Q. LetW be a cycle withf�(W ) = 0. Then�02(W ) = 0 already in
the Chow group ofY .

Proof.

�02(W ) =
1
m
(prY�Y2 )�[(1� i)�(f � h)��0(S) \ (W � Y )]

=
1
m
i�(pr

S�Z
2 )�[(1� h)��0(S) \ (f � 1)�(W � Z)] = 0

by [3, prop. 6.6(c)] and sincef�(W ) = 0 2 CH�(S).
On the other hand

�20(W ) =
1
m
(prY�Y2 )�[(i� 1)�(h� f)��2(S) \ (W � Y )]

=
1
m
(prZ�Y2 )�[(h� f)��2(S) \ ((W \ Z)� Y )]

=
1
m
(prS�Y2 )�[(1� f)��2(S) \ (h� 1)�((W \ Z)� Y )]

=
1
m
(prS�Y2 )�(1� f)�[�2(S) \ h�(W \ Z)� S)]

=
1
m
f�(prS�S2 )�[�2(S) \ h�(W \ Z)� S]

=
1
m
f��2(S)(h�(W \ Z)) 2 f�CH�(S)
 Q: 2
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COROLLARY 3.5.

�2(Y )(Hi) =
1
m
f�(h�(Hi \ Z)) 2 f

�CH1(S)
 Q for i > 2:

By theorem 3.3�2(Y ) operates as zero on Pic0(Y ), therefore the image of�2(Y ) in
CH1(Y )
 Q is a finite dimensional vector space. By changing our generatorsHi

above modulo classes in Pic0(Y ) = f�Pic0(S), we may assume that they generate
Im(�2) � CH1(Y )
 Q. Then we write uniquely

�2(Y )(Hi) =
X
k

ai;kHk 2 CH
1(Y )
 Q;

with a matrixA = (ai;k) 2 Mat(r � r;Q). �2(Y ) being a projector implies that
A2 = A. Choose algebraic cycles`1; :::; `r such that̀ 1 = F , a general fiber off ,
and such that their cohomology classes form a basis ofH2;2(Y;Q). By Poincaŕe
duality the intersection matrixM = (mi;j) := (`1; : : : ; `r)

T (H1; : : : ;Hr) has
nonzero determinant.
We define

q2 := �2(Y ) +
X

bi;j(`i �Hj)�
X

bi;j(`i �Hj) � �2;

with some matrixB = (bi;j) 2 Mat(r � r;Q).

LEMMA 3.6. If B = M�1(1 � A), thenq2 is a projector and operates as the
identity onH2(Y;Q).

Proof. �2 acts as the identity onf�H2(S;Q) by theorem 3.3. The higher
direct imagesRif�OY vanish fori > 1 by [7]. Therefore by the Leray spectral
sequenceH2(Y;OY ) = f�H2(S;OS) and it is enough to show thatq2 operates
as the identity onH1;1(Y;Q) too. Butq2 acts via the matrixMB + A + BA on
H1;1(Y;Q) with respect to the basisfHig. Now �2

2 = �2 and we getA2 = A

and thereforeBA = 0. By definition ofB, we obtain thatMB + A + BA =
M(M�1(1�A)) +A = 1.
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To show thatq2 is a projector, let us writeq2 = �2 + � � ��2. Note that
�� = �, sinceBMB = B. From BA = 0 we deduce that�2� = 0.
Therefore

q2 � q2 = �2
2 + �2 + ��2��2 + �2� � �2��2

+��2 � ���2 � ��2�2 � ��2�

= �2 + � � ��2 = q2

is a projector. 2

THEOREM 3.7.The following cyclesp0(Y ) := �0(Y ); p1(Y ) := �1(Y ),
p2(Y ) := q2 � �1(Y ) �

P
bi;j(`i �Hj)� �1(Y ) �

P
bi;j(`i �Hj) � �2(Y )p4 :=

ptr2 (Y ); p5(Y ) := �5(Y ); p6(Y ) := �6(Y ); p3(Y ) := � �
P

i6=3 pi define pro-
jectors, which satisfy properties(1); (3); (4) and (6) of a Murre decomposition.
Property(5) holds in the following sense:F 1CHi(Y ) 
 Q = CHi

hom(Y ) 
 Q,
F 2CH2(Y ) 
 Q �= f�Ker(albS) � CH2

AJ(Y ) 
 Q (kernel of Abel-Jacobi map)
andF 2CH3(Y ) 
 Q �= Ker(albY ). Moreoverp0(Y ); p1(Y ); p2(Y ) are mutually
orthogonal.

Proof. By lemma 3.6 above, (1),(2) and (3) are straightforward.
To prove (4),(5) and (6) forj = 1, note that Pic(Y ) 
 Q = f�Pic0(S) 
 Q �L
i Q �Hi. By theorem 3.3 above,p1 operates on Pic0(Y ) 
 Q = f�Pic0(S) 
 Q

as the identity and trivially on
L

i Q �Hi. Vice versap2 is the identity on
L

i Q �Hi

and zero onf�Pic0(S)
 Q, because it acts trivially onf�H1(S;Q). All the other
projectors are zero onCH1(Y ) 
 Q. Therefore we get (4)–(6) forj = 1 with
F 2CH1(Y )
 Q = 0.

For j = 2, property (4) follows from the analogous assertion forS. By con-
structionF 1CH2(Y )
Q = Ker(p4) = CH2

hom(Y )
Q. ThenF 2CH2(Y )
Q =
Ker(p3) \ Ker(p4) = Im(p2) = Im(�2(Y )).

Now we show thatF 2CH2(Y ) 
 Q �= f�F 2CH2(S) 
 Q � CH2
AJ(Y ) 
 Q:

�02 operates as zero onCH2(Y ) by Chow’s moving lemma and ifC is any
curve homologous to zero onY , then by Lemma 3.4,�20(C) = f�h�(C \ Z) 2
f�F 2CH2(S)
 Q.

This proves thatF 2CH2(Y )
Q � f�F 2CH2(S)
Q, but since�2(Y )operates
as the identity on every fiber off , we get equality. This is then independent of all
choices, because this is the case forF 2CH2(S) by [11]. FinallyF 3CH2(Y )
Q =
0, sincep2 acts as the identity onF 2CH2(Y )
Q = Im(p2). Hence we get (5) and
(6) for j = 2.

Finally considerCH3(Y ): ClearlyF 1CH3(Y )
Q = Ker(�6) = CH3
hom(Y )


Q. FurtherF 2CH3(Y )
Q = Ker(�5jF 1CH3(Y )
Q)and we claim thatF 2CH3(Y )
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Q �= Ker(albY ) 
 Q, where albY : CH3(Y )hom ! Alb(Y ) is the Albanese map.
But there is a commutative diagram

CH3(Y )hom - Alb(Y )

CH2(S)hom

f�

?

- Alb(S):
?

f�

Both vertical maps are isomorphisms. To computeF 2CH3(Y ) 
 Q we take
any closed pointP in Y and compute thatf��5(P ) = f�

1
m
i�h

�(�3(S)(P )) =
�3(S)(f�(P )).

This shows thatf�F 2CH3(Y ) 
 Q �= F 2CH2(S) 
 Q �= Ker(albS) 
 Q

by [11]. ThereforeF 2CH3(Y ) 
 Q �= Ker(albY ) 
 Q, which is independent of
all choices again by [11]. FinallyF 3CH3(Y ) 
 Q = 0, since ifP =

P
aiPi

is a zero cycle onY with
P
ai = 0, thenf��4(P ) = f��

t
20(P ) + f��

t
02(P ) =

f�
1
m
(1�i)�(f�h)��2(S)(P )+f�

1
m
(i�1)�(h�f)��4(S)(P ). But�4(S) = S�e,

hence the last term is zero and the first term becomes�2(S)(f�P ). But�2(S) acts as
the identity onF 2CH2(S)
Q. Thusf�F 3CH3(Y )
Q � F 3CH2(S)
Q = 0.

This finishes the proof of the theorem. 2

Remark. Using a non-commutative version of the Gram-Schmidt process ([11,
remark 6.5.]), one can always modifyp4(Y ); p5(Y ); p6(Y ) such thatp0(Y ); : : : ;
p6(Y ) are orthogonal.

4. Murre decompositions of uniruled 3-folds

Let k = C . By a 3-fold we just mean a normal 3-dimensional complex variety.

DEFINITION 4.1. A 3-foldX is calleduniruled , if there exists a dominant rational
map' : S � P1 - - -! X for some surfaceS.

THEOREM 4.2 (9).A smooth projective 3-foldX is uniruled if and only if it has
Kodaira dimension�1, i.e. no multiple ofKX has sections.

THEOREM 4.3 (7).Let X be a uniruled 3-fold with onlyQ -factorial terminal
singularities. Then there exists a birational mappingr : X - - -! Y which is a
composition of flips and divisorial contractions, such thatY has an extremal ray
R whose extremal contraction mapf : Y ! Z satisfies one of the following cases:

(a) dim(Z) = 0; Y is a Q-Fano 3-fold with�(Y ) = 1, i.e.�mKY is an ample
Cartier divisor for somem > 1 and the divisor class group is free with one
generator.
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(b) Z is a smooth curve andY is a del Pezzo fibration overZ, i.e. the general
fibre off is a del Pezzo surface.

(c) Z is a surface with at most quotient singularities andY is a conic bundle
overZ. In cases (b) and (c) the reduced preimage of any irreducible divisor is
again irreducible.

THEOREM 4.4.Let X be a smooth complex uniruled 3-fold. ThenX admits a
Murre decomposition.

Remark. We verify property (5) of a Murre decomposition in the sense that the
induced filtration onCH�(X)
 Q depends only on the geometry of the birational
mappingr : X - - -! Y .

Proof. SinceX is uniruled, it is birational to one of the following varieties:

(a) AQ-Fano 3-foldY with �(Y ) = 1, i.e.�mKY is an ample Cartier divisor for
somem > 1 and the divisor class group is free with one generator.

(b) A del Pezzo fibration over a smooth curve.

(c) A conic bundle over a normal surface with at most quotient singularities.

In cases (a), (b)H2(X;Q) andH4(X;Q) are generated by classes of algebraic
cycles. Thus we definep0(X) = feg�X andp6(X) = X�feg for some rational
point e 2 X, p1(X) andp5(X) as in [11] andp2(X) andp4(X) = p2(X)tr as
in theorem 2.1. Then it is immediate to verify all properties (2)-(6) similar to the
proof of 3.7 while property (1) can be achieved like in [11, remark 6.5.], by the
non-commutative Gram–Schmidt process.

In case (c) we may assume that after blowing upX along several smooth
subvarieties, there is a situation as in the previous section:

Let ':Y ! X be the blow-up and assume thatf :Y ! S is a morphism to a
smooth surfaceS with rationally connected fibers. Take the projectorsp0(Y ); : : : ;
p6(Y ) as defined in the last section.

To define the projectors forX, consider the graph�' � Y �X of '. Define

pi(X) := �' � pi(Y ) � �
tr
' = ('� ')�(pi(Y ));

(by Liebermann’s lemma [6]) for 06 i 6 2. We claim that allpi(X) are orthogonal
projectors.

By induction on the number of blow-ups we may assume that there is just one
blow-up along a smooth subvarietyW � X.
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Consider the canonical diagram

Y � Y � Y
pr13
- Y � Y

X � Y �X
?

pr13
- X �X

?

;

where the vertical maps are'�1�' and'�'. LetE be the exceptional divisor.
Then we compute for 06 i; j 6 2:

pi(X) � pj(X)

= (pr13)�(('� id)�pj(Y )�X \X � (id� ')�pi(Y ))

= ('� ')�(pr13)�(pj(Y )� Y \ Y � (id � ')�(id � ')�pi(Y ))

= ('� ')�(pr13)�(pj(Y )� Y \ Y � (pi(Y ) + (id � j)�Qi;j))

= ('� ')�(pr13)�(pj(Y )� Y \ Y � pi(Y )) + ('� ')�(pr13)�(pj(Y )

�Y \ Y � (id � j)�Qi;j)

= ('� ')�(pi(Y ) � pj(Y ) + (pr13)�(pj(Y )� Y \ Y � (id � j)�Qi;j));

whereQi;j 2 CH3(Y �E) andj:E ,! Y is the inclusion. Hence

Ci := pi(X) � pi(X) � pi(X)

= ('� id)�(pr13)�(pi(Y )�X \ Y � (id � i)�(id� 'E)�Qi;i)):

pi(Y ) =
1
m
(i � 1)�(h � f)��i(S) + Ti with T0; T1 = 0 andT2 =

P
cij(`i �

Hj) �
P
bi;j(`i � Hj) � �2(Y ) for some integersci;j ; bi;j which is supported on

(Z � Y ) [ (`i � Y ). ThereforeCi is supported on'(Z)�W . Herei : W ! X is
the inclusion and'E : E !W is the restriction of' toE.

If W is a point,Ci = 0 by dimension reasons. IfW is a curve,Ci = a('(Z)�W )
with a 2 Z. ButCi = pi(X) � pi(X)� pi(X) operates as zero on the cohomology
class of every curveT 2 CH2(X), since by Chow’s moving lemma we can choose
T to be disjoint fromW and use thatpi(Y )(T ) = 0 in cohomology fori = 0;1;2.
Thereforea = 0 andpi(X) is a projector.

For i 6= j, pi(X) � pj(X) = ('�')�(pr13)�(pj(Y )� Y \ Y � (id� j)�Qi;j)
sincepi(Y ) andpj(Y ) are orthogonal. As above this implies thatpi(X) � pj(X)
is supported on'(Z) �W for all j. By the same argument with Chow’s moving
lemma forCH2(X) as before,pi(X) � pj(X) = 0.
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16 PEDRO LUIS DEL ANGEL AND STEFAN M̈ULLER-STACH

Now define

p4(X) = p2(X)tr ; p5(X) = p1(X)tr ; p6(X) = ptr0 and

p3(X) = ��
X
i6=3

pi(X)

Properties (3)–(6) follow from theorem 3.7 together with the split exact sequences
([3, prop. 6.7])

0! CHk(W )! CHk(E)� CHk(X)! CHk(Y )! 0

(1) and (2) can be obtained again via the Gram-Schmidt process. 2
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