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A CONSTRUCTIVE ANALYSIS OF A PROOF THAT THE
NUMERICAL RANGE IS CONVEX

DOUGLAS BRIDGES anD ROBIN HAVEA

Abstract

It is shown where the classical proof of the convexity of the nu-
merical range of an operator on a Hilbert space breaks down by using
principles that are not valid in intuitionistic logic. Those breakdowns
are then repaired, as far as possible, to provide constructive versions
of the convexity theorem. Finally, it is shown that our results are the
best possible in a constructive setting.

1. Introduction

The classicaloeplitz—Hausdorff theoresays that iff" is a bounded linear operator on
a Hilbert spacéd, then its numerical range

W(T) ={{Tx,x):x € H, |x]| =1}
is convex. In his discussion of the proof of this theorem, Halrbppp. 317—-318] comments
that
‘Every known prooflof Theoreml] is computational’

Ironically, his proof is not really computational; for example, it cannot be translated directl
into the language of recursive function theory. Our plan in this paper is to show

» where the proof given by Halmos (a proof he ascribes to C. de Boor) breaks dow
constructively by requiring some intuitionistically invalid logical principle, and

 to what extent those breakdowns can be repaired using intuitionistic logic.

The end-product of our analysis is the provision of fully constructive proofs of the following
results. (Note, however, that the statement ‘Every bounded operator on a Hilbert space
an adjoint’ cannot be proved constructively [5].)

Theorem 1. Let T be a selfadjoint operator on a Hilbert spaég, letx, y be unit vectors
in H such that(Tx, x) # (Ty, y), and let

ht)y=tx+1—-1ty O<r<l.
Then for eachlr € [0, 1] there exists € [0, 1] such that

(T (1 @I7 0@ ) 1O I7 1) = ¢ (T, ) + A=) (T, »).

Theorem 2. If T is a bounded operator oH with an adjoint, then the closure & (T) is
convex.
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A constructive analysis of a proof that the numerical range is convex

We apply the woratonstructiveexclusively to mathematics that uses intuitionistic logic
and is based on principles—for example, those of intuitionistic Zermelo—Fraenkel s
theory—that do not entail logical propositions, such as the law of excluded middle, that i
outside the scope of intuitionistic logic; sé& 2]. One feature of a constructive proof is that
it can readily be translated into the language of recursive mathem@}ios omputable
analysis [12]. (There are situations where, using an appropriate translation, a classical pr
can routinely be converted into a constructive one. For example, this is the situation wi
so—callechegative formulaén classical predicate logic; see [11, pp. 56-68].)

For background information about constructive analysis we refer the readedtd 1].

In practice, our paper requires almost no knowledge of constructive mathematics beyond
appreciation that we cannot, constructively, compare real numbers as freely as is possi
(and trivial) using classical logic.

We begin by outlining Halmos’s proof of the Toeplitz—Hausdorff theorem. Given unit
vectorsx, y in H, write& = (Tx,x), n = (Ty, y). We must show thatt + (1 —1t)n €
W (T) for eachr € [0, 1]. To this end, we split the proof into a number of steps as follows.

(i) Assuming that # n, reduce to the case whefe= 1 andn = 0.

(i) Writing B = % (T — T*), further reduce to the case whéi®x, x) = 0 = (By, y)
and ReBx, y) = 0.

(iii) Writing
ht)=tx+1-1y O<r<D,
observe that as the vectorsy are linearly independent(z) never vanishes.

(iv) Expanding(Bh(t), h(t)), show thatTh(z), h(t)) € R for eachr € [0, 1]. Hence the
function
(Th(t), h(t))
T R
A @)l

is real-valued and continuous { 1]. Since its values at 0 and 1 are, respectively, 0
and 1, we conclude from the intermediate value theorem that the range of this functic
is[0, 1].

What, then, are the problems with the foregoing steps? In Step (i) we cannot expect
decide, for any complex numbersandn, thats = noré # 5. (Two vectors, y aredistinct,
which we signify byx # y, if |[x — y|| > 0.) The problem with Step (ii) occurs where
Halmos multiplies a certain complex numkbeby a complex numbex of unit modulus to
obtain Rg(Az) = 0; perhaps surprisingly, this cannot be done constructively for a genere
z € C. In Step (iii) we need to prove, for eacte [0, 1], not just that- (2 (¢) = 0) but that
h(t) # 0 in the stronger sense thigi(z)|| > 0; note that this sense is stronger unless we
are prepared to accept the constructively dubious principle known as Markov’s principle -
see [4, pp. 137-138].

One of the biggest problems with Halmos’s proof occurs at the end, with the application
the intermediate value theorem: the best conclusion we have, constructively, using Halma
argument as it stands, is that the range of the mapping|| 2 (1) =2 (Th(1), h(t)) is dense
in [0, 1], which only enables us to assert that thesureof the segment joining7 x, x)
and(Ty, y) lies in W(T). For the conclusion of the classical intermediate value theorern
to hold constructively, the continuous function must satisfy one of a number of addition:
hypotheses, one of which is that the function be a polynomial, as follows.
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Proposition 3. If f : [0,1] — R is a polynomial function such that(0) < 0 and
f (1) > 0, then there exists € [0, 1] such thatf (x) = O (see[1, p. 63, Problem 17]).

Our proof of Theoreni depends on our ability to show thati#l < a <1, 0< ¢ < 1,
andb € R, then the quadratic equation

el—a)+2b—-1t>?—2(cL—a)+b)t+c=0 (1)

has a root if0, 1]. (It is surely rare to find the humble quadratic equation playing such ¢
major part in a modern research paper!) For convenience we set

a=c(1—a)+b,
pe(t) = (20 — 1) 12 — 2at +c,

so that equation (1) is jugt.(r) = 0. We also write

-V Zmcie

20— 1 ’
; _a+m
T 200 — 1

for the standard solutions of equation (1) in the case£1.

2. Locating a root ofp.(¢) in [0, 1]
To set the scene for this section, we first observe that the law of trichotomy
VxeR(x>0vx=0vx <0

cannot be proved constructively (se& pp. 3—4]). This is hardly surprising when we
consider that constructive proofs have computational interpretations: we can always fee
real computer a number that, although nonzero, is too small for the computer to distingui
it from O; this is the numerical analyst’s problemwfderflow.

How does this affect our subsequent constructive analysis? A typical situation that v
have to deal with below is one in which, for a certain parametrised fagiy, ~o of
polynomials, we know that the equatipn(z) = 0 has a solution if either > 0 orx = 0.
Since we cannot assert that for all> 0 eitherx > 0 orx = 0, we have to adopt a subtle
argument that, for a given > 0, creates a Cauchy sequence of approximate solutions to th
equationp, (¢) = 0, the limit of which is an exact solution. The construction of the Cauchy
sequence depends on the constructively valid proposition thabiére real numbers with
a < b, then for each real number eitherx > a or x < b. Here is our first application of
this technique.

Lemmad. Let] = [0, 1], and let(f.).c; be a family of mappings df into R such that
fo(0) = 0. Suppose that there exist strictly decreasing sequeigks ; , (¢,);~1in (0, 1)

converging ta0, such that if0 < x < §,, then £, (r) = 0 for somer < [0, ¢,]. Then for
eachc € [0, §1) there exists € I such thatf,.(z) = 0.

Proof. Givenc € [0, §1), construct an increasing binary sequeficg such that

A =0=c < dny1,
Mm=1=c> 42
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We may assume thay = 0. If A, = 0, choose, € [0, &,41] such thatfs, ., (1,) = 0. If
An =1—A,-1, thend, ;2 < ¢ < §,, and so there existg € [0, ¢,] such thatf,(z,) = O;
in this case we se, = ¢, for all k > n. Then(z,) is a Cauchy sequence [0, 1]; in
fact, |t,, — 1,| < 2¢, for alln > 2. Hence(z,) converges to a limity, € [0,e1] C 1. If
fe(tso) # 0, thenr,, = 0 for all n, so ¢ = 0 = 7, and thereforef.(1o0) = fo(0) = 0, a
contradiction. Hence, in facf, (o) = 0. O

The following lemma is not quite as trivial as may at first appear, fpi(if) is a monic
quadratic polynomial with roots, > given by the standard formula, then max 7>} and
min {t1, 2} also satisfyp (x) = 0, and we may be unable to decide whether fagx,} = 11
ormax({r, t2} = t2. Itis, of course, impossible for a quadratic equation to have three distinc
roots.

Lemma 5. Let p(x) be a monic quadratic polynomial with real rootg > given by the
standard formula. Thefr| < max{|#1], |z2|} for any real rootr of p.

Proof. Write p(x) = x? + Bx + y. Letr be a root ofp, so that
p(x)=(x—1)(x —1)
wherer + ' = —p andtt’ = y. Suppose thdt| > max{|t1], |z2|}. Then since
(1t +[¢')* = B2+ 20y 1 = v) = (1l + 22,
we have
lt] + || = ltl + It2] < 2max{|ta] , [22]}
Whence|t’\ < max{|t1], |#2|}. This leads to the absurd conclusion thdt) has three

distinct roots: namely, ¢/, and at least one of andr. Hencelr| < max{|s], |2|}. O

Lemma 6. For eache > Othere exist$ > Osuchthati-1<a <1,|b] <6§,0< ¢ <6,
andt is a real root of equatiorfl), then|t| < ¢.

Proof. Recalling our introduction of at the end of Sectiofh, we see that if 0< § < 1,
|b| < 8,and 0< ¢ < §, then

la| <8(1—a)+8 <38
and therefore
o? —2ac+c §|a|2+2|(x|c+c
<98% +66%+5
< 166.

Ifalso0< é§ < 1/12,then2«e — 1| > 1 — 2|«| > 1/2, and so the solutions, 7. of the
quadratic equation (1) satisfy

max{lr_|, [r4]} < 2 (Ial + ‘(xz — 2uc+ cD < 385,

Using Lemmab, we deduce thdt| < 386 for all real roots of equation (1). Givers > 0,
it remains to také = min [ =, is} ) O

https://doi.org/10.1112/51461157000000279 Published online by Cdrf@4lidge University Press


https://doi.org/10.1112/S1461157000000279

A constructive analysis of a proof that the numerical range is convex

Lemma7. Let-1<a<landb <0< c < 3. If [b] > 3c/2, then0 < r_ < 1.

Proof. First note that
20—1=2c(l—a)+2b—1<4c—3c—1< —g,

that
a—c=—-ca+b<c+b<0,
and that
20—c=2b+2c(l—a)—c < —-3c+4c—c=0.
Since

012—20¢c+c>a2—2ac+cz=(ot—c)2,

it follows thatv/a2 — 2ac + ¢ is real,
that
a—+vVa2—2ac+c<a—(c—a)=2a—c,

and therefore that

o —~aZ—2ac+c S 20 — ¢
20 — 1 T 20—1

l/4and2 — 1 <0,

= > 0.

On the other hand, sinceQ ¢

NN

and therefore

a2 —2ac+c < %—a
Hence
2q — 1
- zz 1
and therefore_ < 1. O

Lemma8. If -1 <a <1, b>0,and0 < ¢ < 1, thenp.(r) = Ofor somer € [0, 1).
Proof. Sinceb is positive, so is. Hence for every € (0, 1),

pc(cl/z) =2a—1c— 20ct? 4+ ¢ = 2a (c — 01/2) < 0.
But p.(0) = ¢ > 0; so, by Propositior8, there exists e (0, c/2) with p.(r) = 0. We

now invoke Lemmad to show that for eacla € [0, 1) there exists € [0, 1) such that
pe(t) = 0. U

Proposition 9. Let—1 < a < 1, b € R, and0 < ¢ < 1. Thenp.(¢) = 0 for somet in
[0, 1].
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Proof. Givenc € [0, 1], sincep.(0) = ¢ andp.(1) = ¢ — 1, we see from PropositioB
thatif 0 < ¢ < 1, then there existse (0, 1) such thatp.(t) = 0. Clearly,p.(t) = 0 has a
solutionr € [0, 1] if ¢ = 0 orc = 1. But what if, as can happen in the constructive context,
cis close to, but not necessarily distinguishable from, one of the numb&PaWe consider
only the case where € ¢ < 1, as the other case,0 ¢ < 1, is handled similarly.

In view of Lemmas/ and8, we need only deal with what happens wida also near 0.
To this end we use Lemntito construct a strictly decreasing seque@g;° ; of positive
numbers converging to 0, with < 1/4, such that ifb| < §, and 0< ¢ < §,, then|t| < %
for every solutiory of equation {). Givenc € [0, 1), define an increasing binary sequence
(A) such that

rn=0= |b| <, andc < 8,41,
A =1=|b| > 6,41 0rC > §p42.

We may assume thay = 0. If A, = 0, setr, = 0. If A, = 1 — A,,_1, then we have three
cases to deal with. In the first cagex< —6,.+1 and so, by Lemma, there exists, € (0, 1)
such thatp.(z,) = 0; in the second casé, > §,,1 and so, by Lemma, there exists

t, € [0, 1) such thatp.(z,) = 0O; in the third case¢ > 6,2 and so, by the observation
at the start of this proof, there exists a solutignof equation (1) in(0, 1). In each of
these three cases, we set= 1, for all kK > n, and we note thaf,| < 1/(n — 1), since
An—1 = 0 and therefore mai{p|, ¢} < 8,—1. This completes the inductive construction of
t,. Sincelt,| < 1/(n — 1) for eachn > 2, (z,) is a Cauchy sequence, and so converges
to a limit 7o € [0, 1]. If p.(too) # O, thenir, = 1 for all n; whencec = 0 = ¢, and
pe(tso) = po(0) = 0, which is absurd. We conclude that(z.) = O. O

3. Proofs of the main results
We are almost ready to prove Theorehend?2, but we still require a couple of lemmas.

Lemma 10. Letx, y be unitvectorsirH, and for eachr € [0, 1] leth(r) = tx+(1—1) y.
IfO<t<e< 3, then|h(®)| > 1- 2 and

e
1-2¢

[in@1=tno - | <
Proof. We have
1@ > @ =0 Iyl =1 x|

Sincellh(r)] < 1, itfollows that 0< 1 — ||k (?)|| < 2¢; whence

[1r @17 = 5| = 1RO I+ @ =0y = 1] I

< — 1—||h
12 (llx =yl + 11— [R@I 11y
1
<
S 12 (28 + 2¢)
_4e
S 1-2¢
as required. O
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For our next lemma we recall that a mappifig: X — Y between metric spaces is
sequentially continuoui$ f(x,) — f(x) whenever(x,) is a sequence converging.tdn
X;andthatiff is sequentially continuous ardis complete, therf is strongly extensional,
in the sense that (x) # f(y) implies thatx # y (see [7, Theorem 1]).

Lemma 11. LetT be a sequentially continuous operator on a Hilbert spatdet x, y be
unit vectors inH such that{(Tx, x) # (Ty, y), and write

ht)=tx+1—-1t)y O<r<l.
Thenh(r) # Ofor everyt € [0, 1]. Moreover, ifT is bounded, themf,c[o g5 [12(t)]| > O.

Proof. ReplacingT by T — (Ty, y) I, where[ is the identity operator o, we may
assume tha{Ty, y) = 0.1f0 < ¢ < 1, then

T(— : 0= (T )
= > = —_ —_ N
- ) 1= T a=? Yy
S0, as the quadratic form induced Byis sequentially continuous:/(1 — ¢))x # —y and

thereforerx + (L—1)y # 0. If either 0< t < § or § < ¢ < 1, then Lemmal0 yields
lh(@®)] > % Putting these three possibilities fotogether, we conclude thatr) # O for
allr € [0, 1].

Now consider the case whefes bounded and not just sequentially continuous. Choose
8 > Osuchthatiflz| < 1,|z'| <1,and|z—z'| <38, then|(Tz,z) — (TZ, )| < 1/9.

If r € [711 %],then
t t 2
T X, X )= ! 2}’
1—1 1—1 1-12" 9

soas(T (—y),—y) =0, we hav#ﬁx + yH > § and thereforgh(t)|| > (1 —1) 6 > %8.

Taking this with the cases@ ¢ < £ and3 < ¢ < 1,weseethdth(r)| > min [% %8}. O
Proof of Theorenmi. Letx, y be unit vectors inH, and let 0< ¢ < 1. We seek € [0, 1]
such that

(T (IO h®) IO hO) = ¢ Tx.0) + A= Ty, y). ()

First, observe that sinad x, x) # (Ty, y), we can find scalars, i such that
(AT + ul)x,x) = Land((AT + ul) y, y) = 0; in that case

c=A(c(Tx,x)+A—=0)(Ty,y) +u,
so if there exists € [0, 1] such that
(@7 +wD (@170 ) (oI h©) = e,
then equation (2) holds. Thus we need only consider the case where
§=(Tx,x)=1 n=(Ty,y)=0.
Writing
h(t)=tx+(1-1ny O<r<),
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a = Re(x, y) andb = Re(Tx, y), and using routine computations with inner products,
we see that

¢ = (T (IkOIh®) , IO I 8) = 1OI72Th@), 7))

if and only if p.(r) = 0. It now follows from Propositiord that there exists € [0, 1]
such that ||h(1)||%2 = (Th(t), h(z)). SinceT, being selfadjoint, is sequentially continuous
[3, Theorem 4], it follows from this and Lemmal that equation Z) holds withz =
IR @)~ (). m

Corollary 12. Let T be a bounded operator on a Hilbert spaég and letx, y be unit
vectors such thatTx, x) # (Ty, y) and(Tx,y) # (T*x, y). Then for eaclc € [0, 1]
there exists a unit vectare H suchthat(Tz,z) = c¢(Tx,x) + QL —¢c)(Ty, y).

Proof. Write T = A +iB with A = (T + T*) andB = 2 (T — T*). Then(Bx, y) #
0, so (as in Step (ii) of Halmos’s proof) there existse C such that|y| = 1 and
Re(B (yx),y) =0. Set

hy() =t(yx)+ A —-1)y.

Then (as on page 317 of]) (Bh,,(t), hy(t)) = 0 for all ¢; so (as in Step (iv) of Halmos’s
proof) (Thy, (1), hy (1)) = (Ahy, (1), hy, (1)) . Also, (Tx, x) = (A (yx), yx) and(Ty, y) =
(Ay, ). Applying Theoreml with A replacing? andy x replacingx, for eache € [0, 1]
we obtainr € [0, 1] such that

<T (”hy(f)”_lhy(f)> ; hy(’)H_lhy(’)> = <A (th(r)”_lhy(f)) ; hy(’)H_lhy(f)>
c{A(yx),yx)+ (1L —c)(Ay,y)
c(Tx,x)+ L —0c)(Ty,y),

as required. O

Proof of Theoren2. Given thate > 0 andc € [0, 1], we seek a unit vectarsuch that
Tz, z) —c(Tx,x) — (L —c)(Ty, y)| <e. 3)

If (Tx,x)—(Ty,y)| < e, we may takez = x. Thus we may assume théfx, x) #
(Ty,y).
First consider the case whefeis selfadjoint. Define a functioif : [0, 1] — R by

F@ =|{T (IO 8@) . IhOI h©) = ¢ (T, x) = Q=0 (Ty, »)|.

SinceT is bounded, it is straightforward to show, using Lemira that f is uniformly
continuous o010, 1]; so

= inf
m Ogglf(t)

exists. It follows from Theoreni that if m > 0, then— ((T'x, x) # (Ty, y)) and therefore
(Tx,x) = (Ty, y); whence, trivially,n = 0, a contradiction. We conclude that = 0;
whence equation (3) holds with= ||i(7)[| "L h(¢) for somer € [0, 1].

Now consider the general case. Write= A + iB, whereA = % (T+T*) andB =
% (T — T*) are bounded selfadjoint operators, anctlet 0. Noting that

(Ax,x) =(Tx,x) #(Ty,y) = (Ay, y)
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and thatA is bounded, we see from Lemnia that
O<r=inf{|h@®)|:0<t<1}.

Either Re(Bx, y) # 0 or [Re(Bx, y)| < r2¢. In the first case we apply Corollafy? to
obtain a unit vectot such that equatior2j, and therefore equatioB), holds. In the second
case we apply the first part of the proof withreplaced byA to obtainz € [0, 1] such that

(4 (1@ 178 ) 1RO hO) = ¢ (A%, x) + @ = o) (Ay, 3)| < Le.

Since
[(Bh(t), h(n))| = 2t (L— 1) IRe(Bx, y)| < 5 r,

(Tx,x) =(Ax,x) and (Ty,y)=(Ay,y),
it follows that
(T (IhOI R ®) . IOIA0) = ¢ (Tx,3) + @ = ) (Ty, )|

< |(A (IO R®) L 1RO I 8O) = ¢ (Ax, ) + @ = o) (Av, )|
1RO [KBR@, ho)

1 —21 2
<z&+r “3rve
= €&,

as we wanted. O

4. Weakening the hypotheses of Theofem

It would be interesting, if not necessarily of great practical value, to remove from The
orem1 the hypothesis thatT'x, x) # (Ty, y). To show that we can do this under certain
circumstances, we need a lemma that examines the behaviour of the rppts)af [0, 1]
whenb is large and positive.

Lemma 13. For each positive integer there existX,, > 0, independent of the parameters
a andc of p., such thatifb > K, then0 < r— < 1.

Proof. Noting thate > b — 2, we see that ib is large and positive, then so aweand
20 — 1, and als@? — 2ac + ¢ < a?; whence

a— a2 —2ac+c o —a

20— 1 " 210

=

Also, since for suclb,
2
a2—2ac+c > a? — 2acl/2+c = (oz —cl/z) ,

we have
o — (0[ - cl/z) /2 1
- < = < .
200 — 1 20 —1 " 2b—5
Thus itis enough to s&k,, = (n + 5)/2. O
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Returning to Theoreni, let us remove the hypothesis thdtx, x) # (Ty, y), and
instead assume théf x, y) # (Ty, y) (x, y). Write

§=UTx,y) —(Ty,y){x,y)| >0,

£=(Tx,x) and n=(Ty,y).

ReplacingT by T — nl, if necessary, we may assume that 0. Fix ¢ € [0, 1]. With K,
as in Lemmél3, construct an increasing binary sequefigg,” ; such that

=0 = [£] <K;ls,

m=1 = [E]>K, 1.

If > = 1, then we are back in the case already covered by Theorem 1; so we may assu
thatip = 0.1f A, =0, setz,, = y. If 4, = 1—A,,_1, thenn > 3 and we can choogee C
such thafy| = 1 and

b=Re(s7(T (yx).3)) = 161718 > Ki.

Writing 4, () =t (yx) + (1 — ) y, and applying Lemma3 with £17 replacingr and
yx replacingx, we compute € [O, %] such that

2=l @I~ ha @)
satisfies
(Tz,z) = c(T (yx),yx) =ck.
Settingzy = z for all k > n, we see from Lemmao0 that

Il >1-2> 2
and|zx — yll < %. This completes the construction of a sequeg of unit vectors in
H.

Since||z, — zull < % wheneverm > n > 3, (z,) is a Cauchy sequence and therefore
converges to a unit vectar, € H. Suppose thaltl 7.0, 700) # c&. Theni, = 0 for all n;
whencet =0,z = y, and

(Tzo0, 200) = (Ty, y) =0 =&,

a contradiction. It follows thaté = (Tzeo, 200) € W(T).

5. Limiting examples

We end the paper with two Brouwerian examples which show that our main results, at
the weakening of the hypotheses of Theorkthat we have just discussed, are the best
possible in the constructive setting. For these examples (which we state as propositions)
need to appreciate that for each positive intégéhe following omniscience principle is an
essentially nonconstructive result. (For example, Lk@nnot be derived within Heyting
arithmetic and is false, even classically, in the recursive model of constructive mathematic
see [4, Chapters 1, 3and 7].)

https://doi.org/10.1112/51461157000000279 Published online by Cat{ddge University Press


https://doi.org/10.1112/S1461157000000279

A constructive analysis of a proof that the numerical range is convex
LLPO y: If (a,) is a binary sequence with at most one term equal thén
there existy, where 0< j < N — 1, such thaty v ; = O for all k.

(See [10, 83].)
The principle LLPQ is known as thdesser limited principle of omnisciencend is
usually denoted by LLPO. It implies the intermediate value theorem in the following form

LLPO: If fisacontinuous mapping 4, 1] such thatf (0) f (1) < 0O, then
there exists € [0, 1] such thatf () = 0.

The proof is a standard interval-halving argument, based on the observation that LLF
implies (it is actually equivalent to) the proposition

VxeRx>0vx<0).
Now let T be a selfadjoint operator off, and letx, y be unit vectors ind. Write

&§=(Tx,x),

h(t)=tx+(1-1y O<r<),
and
a=Re(x,y), b=Re(Tx,y).

As before, we may assume th@y, y) = 0. Routine computation with inner products
show that

(T (OI8O IO hO) = ¢ (Tx,x) + A= Ty, ) (@)
if and only if
pt) =Qc(A—a)é+2b— €)1 — (2c(1—a)& +2b)t + c€ = 0.
Sincep is continuous and
pOp)=c(c—1)& <0,

we see from the foregoing remark about the intermediate value theorem that LLPO impli
the existence of € [0, 1] such that equatiordj holds. Hence LLPO implies that we can
remove the hypothesi§' x, x) # (Ty, y) from Theoremil.

The following converse shows that we cannot hope to improve, constructively, on The
orem1 and the extension discussed in the preceding section.

Proposition 14. The following statement implies LLPO.

If T is a selfadjoint operator on @-dimensional complex Hilbert spadé€, if x, y are
unitvectors ind suchthat (Tx, x)+ (1 —¢) (Ty, y) belongs ta¥ (T) for eachc € [0, 1],
and if

ht)y=tx+A—-1y O<Kr<],

then for eachr € [0, 1] there exists € [0, 1] such that

(T (I OI*h®) OI8O = ¢ (Tx, x) + @ = ) (T3, 3)
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Proof. Let H be a 2-dimensional Hilbert space, andy orthogonal unit vectors irH .

Given a binary sequende,,) with at most one term equal to 1, let

e ¢]

§=Za2n +a2n+1_

2
n
n=1

With K,, as in Lemmal3, define a selfadjoint operatéron H by

00 00
Ty = (Z 612n§2 + ZaZn—&-lKnS) X,

n=1 n=1

Tx =&x+ (Z agnéz + ZGZn+1Kn§) Y.

n=1 n=1

Givenc € [0, 1], consider the problem of finding a unit vectoe H such that

(Tz,z) =c(Tx,x)+c(Ty,y) =ct.

Writing z = Ay + ux, with |12 4 |1|? = 1, we reduce equation (5) to

)«

oo oo
ul? + 2Re<)»u* (Z amE®+ ) ami1Kné

n=1 n=1

®)

which is satisfied by takingg = +/1 —c andu = i /c. Thusc (T'x,x) + (1L —¢) (Ty, y)

belongs tow (T').

Next, writingh = Re(T x, y) and takinge = % we see that equation (5) becomes

2bt2—(§—|—2b)t-|—%§=0,
which, if &€ #£ 0, can be rewritten

2b , ( Zb) 1
—t“— |1+ —)t+==0.
& § 2

If apy = 1, then equation (6) becomes
21— (1+28) 1+ =0,
whose only solution iffi0, 1] is
_ 142 -V1+482
4

On the other hand, oy 1 = 0, then equation (6) becomes

2an2—(1+21<">;+§=0,

whose only solution iffi0, 1] is

_ 142K, — J1+4K?
B 4K, '
We now proceed as follows. First, noting that

i 1426 — /14 4¢2 1

£—0t 4 2’
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we findr > 0 such that ifi&| < r, then

1428 — /14482 o3
4 i

[ee)

Secondly, noting that
im LT 2Kn —V1+4KZ 0
n— 00 4K, -
we compute a positive integaf such that
1+2K, —/1+4K;
< =
4K, 8
forall » > N. Now suppose that equatiod)(has a solutiom = t < [0, 1], and consider
ay. If . = 1 for somek < N, then eithewm,, = 0 for all evenn or elseq,, = 0 for all
oddrn; so we may assume that = O for all k < N; we may also assume thigt| < r.

Eithert > % ort < g. Consider the first case, and supposedbat; = 1 for somen with
2n+1> N.Thenb = K,& #0, so

1+2K, —2/1+4K?

T = < -

4K, 8

a contradiction; hence, = 0 for all oddk > N and therefore for all odd. Now consider
the case < g, and suppose thab, = 1 for somen with 22 > N. Thenb = £2 # 0, and

1428 — /1482 o3
= 4%_ = é k]
sincelé| < r; this contradiction ensures that = 0 for all evenk > N and therefore for
all evenk. O

C’

Finally we consider the possibility of improving Theor&nOn inspection of the proof
of that theorem, we see that the convexityo{7') can be established, provided that, for
any complex numbey, we can find a complex numbersuch thaty| = 1 and Re.z = 0.
We can do this with the aid of LLPO as follows.

Under LLPO, either Re> 0 or Re: < 0. Thus the continuous functiofi defined on
[0, 7] by f(1) = Re(€'z) satisfiesf (0) f(r) < 0. By the remarks on the intermediate
value theorem at the beginning of this section, there exigt40, =] such thatf (r) = 0;
so Reyz= 0 wherey = €.

To prove that Theorerd cannot be improved constructively, it is enough to show that
the proposed improvement would entail LLR®or this we need one more lemma.

Lemma 15. If &, u are complex humbers satisfying the equations
4Re(Ap*) +2|ul? =1,
A2+ |ul? =1,
then|r| > £ and|ul| > .
Proof. If |u| < £, then|4Re(An*)| < ¢ and so
* 2 4 2
ARe(Ap*) + 2|ul* < st <l
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a contradiction; whenck| > £. On the other hand, if\| < £, then]4Re(Ap*)| < 2 and
so
ARe(Ap*) +2|ul > 2 (1 — |A|2> e
>2(%) -4
> 1,

a contradiction. Hencg.| > . O

Proposition 16. The following statement implies LLBO
The numerical range of a selfadjoint operator oB-dimensional complex Hilbert space
is convex.

Proof. LetH, x, y, (a,), be as in the proof of Propositidit. Define

o0

azp + asp+1+ asn42
§= Z 02 ’

n=1
and define a selfadjoint operatbron H by

00 00 00
Ty = (Z a3ni§ + Za3n+liné + Za3n+2né) X,

n=1 n=1 n=1

o0 o0 o
Tx =Ex+ (— Y azié = azuing + Za3n+zns> y.
n=1 n=1 n=1

Consider the problem of finding a unit vectoe Ay + ux satisfying
(Tz,2) = 5 (T, x) +5(Ty.y) = 5 §
which reduces to

oo o0 o0
l1l? & + 2Rewu* (Zasnif + Zasnﬂiné' + Zaan+2n5> = % .

n=1 n=1 n=1
If azy+1 = 1, we must solve the equations

2|ul? — 4NIm (ap*) = 1,
P+ [l = 1.
We then have
m ()| = = 1 200 < =
4N T 4N
If azy+2 = 1, we must solve the equations
2|ul? + ANRe(ap*) = 1,
P+ [l = 1.
In this case|Re(Au*)| < %. If azy = 1, we must solve the equations
2|p|? — 4lm (ap*) = 1,
AP+ ul? =1

https://doi.org/10.1112/51461157000000279 Published online by Cat)idge University Press


https://doi.org/10.1112/S1461157000000279

A constructive analysis of a proof that the numerical range is convex

In this case we must hayg| > % and|u| > % by Lemmal5 (applied witha replaced by
—id).

Now suppose that we have found a unit veeter Ay + pux satisfying equation (5) with
c= % Either|au*| < 2% orau* # 0. Inthe first case we see from the foregoing arguments
thata, = 0 for eachu. In the second case either Rgt*) £ 0 or Im(A*) # 0. To handle
the first of these alternatives, we choasseuch that% < |[Re(Au™)]. If a1 = 1 for
somen > v, then|Re(Au*)| < 2 < 2, a contradiction. It follows that ifi3,1 = O for
alln < v, thenas,1 = 0 for alln. Hence

Vi (agn = 0) V ¥n (azy+1 = 0) V Vn (agns2 = 0) . )

Finally, assumingthat Iri..*) = 0, and choosing a positive integesuch thatim (Au*)| >
%, we see that ifi3,42 = 0 for alln < v, thenags, 2 = 0 for all n, whence equation7{
holds in this case also. O
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