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A CONSTRUCTIVE ANALYSIS OF A PROOF THAT THE
NUMERICAL RANGE IS CONVEX

DOUGLAS BRIDGES and ROBIN HAVEA

Abstract

It is shown where the classical proof of the convexity of the nu-
merical range of an operator on a Hilbert space breaks down by using
principles that are not valid in intuitionistic logic. Those breakdowns
are then repaired, as far as possible, to provide constructive versions
of the convexity theorem. Finally, it is shown that our results are the
best possible in a constructive setting.

1. Introduction

The classicalToeplitz–Hausdorff theoremsays that ifT is a bounded linear operator on
a Hilbert spaceH, then its numerical range

W(T ) = {〈T x, x〉 : x ∈ H, ‖x‖ = 1}
is convex. In his discussion of the proof of this theorem, Halmos [6, pp. 317–318] comments
that

‘Every known proof[of Theorem1] is computational.’

Ironically, his proof is not really computational; for example, it cannot be translated directly
into the language of recursive function theory. Our plan in this paper is to show

• where the proof given by Halmos (a proof he ascribes to C. de Boor) breaks down
constructively by requiring some intuitionistically invalid logical principle, and

• to what extent those breakdowns can be repaired using intuitionistic logic.

The end-product of our analysis is the provision of fully constructive proofs of the following
results. (Note, however, that the statement ‘Every bounded operator on a Hilbert space has
an adjoint’ cannot be proved constructively [5].)

Theorem 1. LetT be a selfadjoint operator on a Hilbert spaceH , let x, y be unit vectors
in H such that〈T x, x〉 6= 〈Ty, y〉, and let

h(t) = tx + (1 − t) y (0 6 t 6 1) .

Then for eachc ∈ [0, 1] there existst ∈ [0, 1] such that〈
T
(
‖h(t)‖−1 h(t)

)
, ‖h(t)‖−1 h(t)

〉
= c 〈T x, x〉 + (1 − c) 〈Ty, y〉 .

Theorem 2. If T is a bounded operator onH with an adjoint, then the closure ofW(T ) is
convex.
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A constructive analysis of a proof that the numerical range is convex

We apply the wordconstructiveexclusively to mathematics that uses intuitionistic logic
and is based on principles—for example, those of intuitionistic Zermelo–Fraenkel set
theory—that do not entail logical propositions, such as the law of excluded middle, that lie
outside the scope of intuitionistic logic; see [9,2]. One feature of a constructive proof is that
it can readily be translated into the language of recursive mathematics [8] or computable
analysis [12]. (There are situations where, using an appropriate translation, a classical proof
can routinely be converted into a constructive one. For example, this is the situation with
so–callednegative formulaein classical predicate logic; see [11, pp. 56–68].)

For background information about constructive analysis we refer the reader to [1,4,11].
In practice, our paper requires almost no knowledge of constructive mathematics beyond an
appreciation that we cannot, constructively, compare real numbers as freely as is possible
(and trivial) using classical logic.

We begin by outlining Halmos’s proof of the Toeplitz–Hausdorff theorem. Given unit
vectorsx, y in H , write ξ = 〈T x, x〉 , η = 〈Ty, y〉. We must show thattξ + (1 − t) η ∈
W(T ) for eacht ∈ [0, 1]. To this end, we split the proof into a number of steps as follows.

(i) Assuming thatξ 6= η, reduce to the case whereξ = 1 andη = 0.

(ii) Writing B = 1
2i (T − T ∗), further reduce to the case where〈Bx, x〉 = 0 = 〈By, y〉

and Re〈Bx, y〉 = 0.

(iii) Writing

h(t) = tx + (1 − t) y (0 6 t 6 1) ,

observe that as the vectorsx, y are linearly independent,h(t) never vanishes.

(iv) Expanding〈Bh(t), h(t)〉, show that〈T h(t), h(t)〉 ∈ R for eacht ∈ [0, 1]. Hence the
function

t 7→ 〈T h(t), h(t)〉
‖h(t)‖2

is real-valued and continuous on[0, 1]. Since its values at 0 and 1 are, respectively, 0
and 1, we conclude from the intermediate value theorem that the range of this function
is [0, 1].

What, then, are the problems with the foregoing steps? In Step (i) we cannot expect to
decide, for any complex numbersξ andη, thatξ = η orξ 6= η. (Two vectorsx, y aredistinct,
which we signify byx 6= y, if ‖x − y‖ > 0.) The problem with Step (ii) occurs where
Halmos multiplies a certain complex numberz by a complex numberλ of unit modulus to
obtain Re(λz) = 0; perhaps surprisingly, this cannot be done constructively for a general
z ∈ C. In Step (iii) we need to prove, for eacht ∈ [0, 1], not just that¬ (h(t) = 0) but that
h(t) 6= 0 in the stronger sense that‖h(t)‖ > 0; note that this sense is stronger unless we
are prepared to accept the constructively dubious principle known as Markov’s principle —
see [4, pp. 137–138].

One of the biggest problems with Halmos’s proof occurs at the end, with the application of
the intermediate value theorem: the best conclusion we have, constructively, using Halmos’s
argument as it stands, is that the range of the mappingt 7→ ‖h(t)‖−2 〈T h(t), h(t)〉 is dense
in [0, 1], which only enables us to assert that theclosureof the segment joining〈T x, x〉
and〈Ty, y〉 lies in W(T ). For the conclusion of the classical intermediate value theorem
to hold constructively, the continuous function must satisfy one of a number of additional
hypotheses, one of which is that the function be a polynomial, as follows.
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A constructive analysis of a proof that the numerical range is convex

Proposition 3. If f : [0, 1] → R is a polynomial function such thatf (0) < 0 and
f (1) > 0, then there existsx ∈ [0, 1] such thatf (x) = 0 (see[1, p. 63, Problem 17]).

Our proof of Theorem1 depends on our ability to show that if−1 6 a 6 1, 06 c 6 1,
andb ∈ R, then the quadratic equation

(2c (1 − a) + 2b − 1) t2 − 2 (c (1 − a) + b) t + c = 0 (1)

has a root in[0, 1]. (It is surely rare to find the humble quadratic equation playing such a
major part in a modern research paper!) For convenience we set

α = c (1 − a) + b,

pc(t) = (2α − 1) t2 − 2αt + c,

so that equation (1) is justpc(t) = 0. We also write

t− = α − √
α2 − 2αc + c

2α − 1
,

t+ = α + √
α2 − 2αc + c

2α − 1

for the standard solutions of equation (1) in the case 2α 6= 1.

2. Locating a root ofpc(t) in [0, 1]

To set the scene for this section, we first observe that the law of trichotomy

∀x ∈ R (x > 0 ∨ x = 0 ∨ x < 0)

cannot be proved constructively (see [4, pp. 3–4]). This is hardly surprising when we
consider that constructive proofs have computational interpretations: we can always feed a
real computer a number that, although nonzero, is too small for the computer to distinguish
it from 0; this is the numerical analyst’s problem ofunderflow.

How does this affect our subsequent constructive analysis? A typical situation that we
have to deal with below is one in which, for a certain parametrised family(px)x>0 of
polynomials, we know that the equationpx(t) = 0 has a solution if eitherx > 0 orx = 0.
Since we cannot assert that for allx > 0 eitherx > 0 or x = 0, we have to adopt a subtle
argument that, for a givenx > 0, creates a Cauchy sequence of approximate solutions to the
equationpx(t) = 0, the limit of which is an exact solution. The construction of the Cauchy
sequence depends on the constructively valid proposition that ifa, b are real numbers with
a < b, then for each real numberx, eitherx > a or x < b. Here is our first application of
this technique.

Lemma 4. Let I = [0, 1], and let(fc)c∈I be a family of mappings ofI into R such that
f0(0) = 0. Suppose that there exist strictly decreasing sequences(δn)

∞
n=1 , (εn)

∞
n=1 in (0, 1)

converging to0, such that if0 < x 6 δn, thenfx(t) = 0 for somet ∈ [0, εn]. Then for
eachc ∈ [0, δ1) there existst ∈ I such thatfc(t) = 0.

Proof. Givenc ∈ [0, δ1), construct an increasing binary sequence(λn) such that

λn = 0 ⇒ c < δn+1,

λn = 1 ⇒ c > δn+2.
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A constructive analysis of a proof that the numerical range is convex

We may assume thatλ1 = 0. If λn = 0, choosetn ∈ [
0, εn+1

]
such thatfδn+1(tn) = 0. If

λn = 1 − λn−1, thenδn+2 < c < δn, and so there existstn ∈ [0, εn] such thatfc(tn) = 0;
in this case we settk = tn for all k > n. Then(tn) is a Cauchy sequence in[0, 1]; in
fact, |tm − tn| < 2εn for all n > 2. Hence(tn) converges to a limitt∞ ∈ [0, ε1] ⊂ I . If
fc(t∞) 6= 0, thenλn = 0 for all n, so c = 0 = t∞ and thereforefc(t∞) = f0(0) = 0, a
contradiction. Hence, in fact,fc(t∞) = 0.

The following lemma is not quite as trivial as may at first appear, for ifp(x) is a monic
quadratic polynomial with rootst1, t2 given by the standard formula, then max{t1, t2} and
min {t1, t2} also satisfyp(x) = 0, and we may be unable to decide whether max{t1, t2} = t1
or max{t1, t2} = t2. It is, of course, impossible for a quadratic equation to have three distinct
roots.

Lemma 5. Let p(x) be a monic quadratic polynomial with real rootst1, t2 given by the
standard formula. Then|t | 6 max{|t1| , |t2|} for any real roott of p.

Proof. Write p(x) = x2 + βx + γ . Let t be a root ofp, so that

p(x) = (x − t)
(
x − t ′

)
wheret + t ′ = −β andt t ′ = γ . Suppose that|t | > max{|t1| , |t2|}. Then since(|t | + ∣∣t ′∣∣)2 = β2 + 2 (|γ | − γ ) = (|t1| + |t2|)2 ,

we have

|t | + ∣∣t ′∣∣ = |t1| + |t2| 6 2 max{|t1| , |t2|} ,

whence
∣∣t ′∣∣ < max{|t1| , |t2|}. This leads to the absurd conclusion thatp(x) has three

distinct roots: namely,t, t ′, and at least one oft1 andt2. Hence|t | 6 max{|t1| , |t2|}.

Lemma 6. For eachε > 0 there existsδ > 0 such that if−1 6 a 6 1, |b| < δ, 0 6 c < δ,
andt is a real root of equation(1), then|t | < ε.

Proof. Recalling our introduction ofα at the end of Section1, we see that if 0< δ < 1,
|b| < δ, and 06 c < δ, then

|α| < δ (1 − a) + δ 6 3δ

and therefore ∣∣∣α2 − 2αc + c

∣∣∣ 6 |α|2 + 2 |α| c + c

< 9δ2 + 6δ2 + δ

< 16δ.

If also 0< δ 6 1/12, then|2α − 1| > 1 − 2 |α| > 1/2, and so the solutionst−, t+ of the
quadratic equation (1) satisfy

max{|t−| , |t+|} 6 2
(
|α| +

∣∣∣α2 − 2αc + c

∣∣∣) < 38δ.

Using Lemma5, we deduce that|t | < 38δ for all real rootst of equation (1). Givenε > 0,

it remains to takeδ = min
{

1
12,

ε
38

}
.
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Lemma 7. Let−1 6 a 6 1 and b < 0 6 c < 1
4. If |b| > 3c/2, then0 < t− < 1.

Proof. First note that

2α − 1 = 2c (1 − a) + 2b − 1 < 4c − 3c − 1 < −3

4
,

that

α − c = −ca + b < c + b < 0,

and that

2α − c = 2b + 2c(1 − a) − c < −3c + 4c − c = 0.

Since

α2 − 2αc + c > α2 − 2αc + c2 = (α − c)2 ,

it follows that
√

α2 − 2αc + c is real,
that

α −
√

α2 − 2αc + c 6 α − (c − α) = 2α − c,

and therefore that

t− = α − √
α2 − 2αc + c

2α − 1
> 2α − c

2α − 1
> 0.

On the other hand, since 06 c 6 1/4 and 2α − 1 < 0,

0 6 α2 − 2αc + c

= α2 − 2c
(
α − 1

2

)
< α2 − 1

2

(
α − 1

2

) = (
α − 1

2

)2
and therefore √

α2 − 2αc + c <
1

2
− α.

Hence

t− <
2α − 1

2

2α − 1

and thereforet− < 1.

Lemma 8. If −1 6 a 6 1, b > 0, and0 6 c < 1, thenpc(t) = 0 for somet ∈ [0, 1).

Proof. Sinceb is positive, so isα. Hence for everyc ∈ (0, 1),

pc(c
1/2) = (2α − 1) c − 2αc1/2 + c = 2α

(
c − c1/2

)
< 0.

But pc(0) = c > 0; so, by Proposition3, there existst ∈ (
0, c1/2

)
with pc(t) = 0. We

now invoke Lemma4 to show that for eachc ∈ [0, 1) there existst ∈ [0, 1) such that
pc(t) = 0.

Proposition 9. Let −1 6 a 6 1, b ∈ R, and0 6 c 6 1. Thenpc(t) = 0 for somet in
[0, 1].
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Proof. Givenc ∈ [0, 1], sincepc(0) = c andpc(1) = c − 1, we see from Proposition3
that if 0 < c < 1, then there existst ∈ (0, 1) such thatpc(t) = 0. Clearly,pc(t) = 0 has a
solutiont ∈ [0, 1] if c = 0 orc = 1. But what if, as can happen in the constructive context,
c is close to, but not necessarily distinguishable from, one of the numbers 0, 1? We consider
only the case where 06 c < 1, as the other case, 0< c 6 1, is handled similarly.

In view of Lemmas7 and8, we need only deal with what happens whenb is also near 0.
To this end we use Lemma6 to construct a strictly decreasing sequence(δn)

∞
n=1 of positive

numbers converging to 0, withδ1 < 1/4, such that if|b| < δn and 06 c < δn, then|t | < 1
n

for every solutiont of equation (1). Givenc ∈ [0, 1), define an increasing binary sequence
(λn) such that

λn = 0 ⇒ |b| < δn andc < δn+1,

λn = 1 ⇒ |b| > δn+1 or c > δn+2.

We may assume thatλ1 = 0. If λn = 0, settn = 0. If λn = 1 − λn−1, then we have three
cases to deal with. In the first case,b < −δn+1 and so, by Lemma7, there existstn ∈ (0, 1)

such thatpc(tn) = 0; in the second case,b > δn+1 and so, by Lemma8, there exists
tn ∈ [0, 1) such thatpc(tn) = 0; in the third case,c > δn+2 and so, by the observation
at the start of this proof, there exists a solutiontn of equation (1) in(0, 1). In each of
these three cases, we settk = tn for all k > n, and we note that|tn| < 1/(n − 1), since
λn−1 = 0 and therefore max{|b| , c} < δn−1. This completes the inductive construction of
tn. Since|tn| 6 1/(n − 1) for eachn > 2, (tn) is a Cauchy sequence, and so converges
to a limit t∞ ∈ [0, 1]. If pc(t∞) 6= 0, thenλn = 1 for all n; whencec = 0 = t∞ and
pc(t∞) = p0(0) = 0, which is absurd. We conclude thatpc(t∞) = 0.

3. Proofs of the main results

We are almost ready to prove Theorems1 and2, but we still require a couple of lemmas.

Lemma 10. Letx, y be unit vectors inH , and for eacht ∈ [0, 1] leth(t) = tx + (1 − t) y.
If 0 6 t 6 ε < 1

2, then‖h(t)‖ > 1 − 2ε and∥∥∥‖h(t)‖−1 h(t) − y

∥∥∥ 6 4ε

1 − 2ε
.

Proof. We have

‖h(t)‖ > (1 − t) ‖y‖ − t ‖x‖
> 1 − ε − ε

= 1 − 2ε.

Since‖h(t)‖ 6 1, it follows that 06 1 − ‖h(t)‖ < 2ε; whence∥∥∥‖h(t)‖−1 h(t) − y

∥∥∥ = ‖h(t)‖−1 ‖tx + (1 − t) y − ‖h(t)‖ y‖

6 1

1 − 2ε
(t ‖x − y‖ + |1 − ‖h(t)‖| ‖y‖)

6 1

1 − 2ε
(2ε + 2ε)

= 4ε

1 − 2ε
,

as required.
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For our next lemma we recall that a mappingf : X → Y between metric spaces is
sequentially continuousif f (xn) → f (x) whenever(xn) is a sequence converging tox in
X; and that iff is sequentially continuous andX is complete, thenf isstrongly extensional,
in the sense thatf (x) 6= f (y) implies thatx 6= y (see [7, Theorem 1]).

Lemma 11. LetT be a sequentially continuous operator on a Hilbert spaceH , letx, y be
unit vectors inH such that〈T x, x〉 6= 〈Ty, y〉, and write

h(t) = tx + (1 − t) y (0 6 t 6 1) .

Thenh(t) 6= 0 for everyt ∈ [0, 1]. Moreover, ifT is bounded, theninf t∈[0,1] ‖h(t)‖ > 0.

Proof. ReplacingT by T − 〈Ty, y〉 I , whereI is the identity operator onH , we may
assume that〈Ty, y〉 = 0. If 0 < t < 1, then〈

T

(
t

1 − t
x

)
,

t

1 − t
x

〉
= t2

(1 − t)2
> 0 = 〈T (−y), −y〉 ;

so, as the quadratic form induced byT is sequentially continuous,(t/(1 − t))x 6= −y and
thereforetx + (1 − t) y 6= 0. If either 06 t < 1

3 or 2
3 < t 6 1, then Lemma10 yields

‖h(t)‖ > 1
3. Putting these three possibilities fort together, we conclude thath(t) 6= 0 for

all t ∈ [0, 1].
Now consider the case whereT is bounded and not just sequentially continuous. Choose

δ > 0 such that if‖z‖ 6 1,
∥∥z′∥∥ 6 1, and

∥∥z − z′∥∥ < δ, then
∣∣〈T z, z〉 − 〈

T z′, z′〉∣∣ < 1/9.

If t ∈
[

1
4, 3

4

]
, then 〈

T

(
t

1 − t
x

)
,

t

1 − t
x

〉
= t2

(1 − t)2
> 1

9
,

so as〈T (−y) , −y〉 = 0, we have
∥∥∥ t

1−t
x + y

∥∥∥ > δ and therefore‖h(t)‖ > (1 − t) δ > 1
4δ.

Taking this with the cases 06 t < 1
3 and2

3 < t 6 1, we see that‖h(t)‖ > min
{

1
3, 1

4δ
}
.

Proof of Theorem1. Let x, y be unit vectors inH , and let 06 c 6 1. We seekt ∈ [0, 1]
such that 〈

T
(
‖h(t)‖−1 h(t)

)
, ‖h(t)‖−1 h(t)

〉
= c 〈T x, x〉 + (1 − c) 〈Ty, y〉 . (2)

First, observe that since〈T x, x〉 6= 〈Ty, y〉, we can find scalarsλ, µ such that
〈(λT + µI) x, x〉 = 1 and〈(λT + µI) y, y〉 = 0; in that case

c = λ (c 〈T x, x〉 + (1 − c) 〈Ty, y〉) + µ,

so if there existst ∈ [0, 1] such that〈
(λT + µI)

(
‖h(t)‖−1 h(t)

)
,
(
‖h(t)‖−1 h(t)

)〉
= c,

then equation (2) holds. Thus we need only consider the case where

ξ = 〈T x, x〉 = 1, η = 〈Ty, y〉 = 0.

Writing

h(t) = tx + (1 − t) y (0 6 t 6 1) ,
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a = Re〈x, y〉 andb = Re〈T x, y〉, and using routine computations with inner products,
we see that

c =
〈
T
(
‖h(t)‖−1 h(t)

)
, ‖h(t)‖−1 h(t)

〉
= ‖h(t)‖−2 〈T h(t), h(t)〉

if and only if pc(t) = 0. It now follows from Proposition9 that there existst ∈ [0, 1]
such thatc ‖h(t)‖2 = 〈T h(t), h(t)〉. SinceT , being selfadjoint, is sequentially continuous
[3, Theorem 4], it follows from this and Lemma11 that equation (2) holds withz =
‖h(t)‖−1 h(t).

Corollary 12. Let T be a bounded operator on a Hilbert spaceH , and letx, y be unit
vectors such that〈T x, x〉 6= 〈Ty, y〉 and 〈T x, y〉 6= 〈T ∗x, y〉. Then for eachc ∈ [0, 1]
there exists a unit vectorz ∈ H such that〈T z, z〉 = c 〈T x, x〉 + (1 − c) 〈Ty, y〉.
Proof. Write T = A + iB with A = 1

2 (T + T ∗) andB = 1
2i (T − T ∗). Then〈Bx, y〉 6=

0, so (as in Step (ii) of Halmos’s proof) there existsγ ∈ C such that|γ | = 1 and
Re〈B (γ x) , y〉 = 0. Set

hγ (t) = t (γ x) + (1 − t) y.

Then (as on page 317 of [6])
〈
Bhγ (t), hγ (t)

〉 = 0 for all t ; so (as in Step (iv) of Halmos’s
proof)

〈
T hγ (t), hγ (t)

〉 = 〈
Ahγ (t), hγ (t)

〉
. Also, 〈T x, x〉 = 〈A (γ x) , γ x〉 and〈Ty, y〉 =

〈Ay, y〉. Applying Theorem1 with A replacingT andγ x replacingx, for eachc ∈ [0, 1]
we obtaint ∈ [0, 1] such that〈

T
(∥∥hγ (t)

∥∥−1
hγ (t)

)
,
∥∥hγ (t)

∥∥−1
hγ (t)

〉
=
〈
A
(∥∥hγ (t)

∥∥−1
hγ (t)

)
,
∥∥hγ (t)

∥∥−1
hγ (t)

〉
= c 〈A (γ x) , γ x〉 + (1 − c) 〈Ay, y〉
= c 〈T x, x〉 + (1 − c) 〈Ty, y〉 ,

as required.

Proof of Theorem2. Given thatε > 0 andc ∈ [0, 1], we seek a unit vectorz such that

|〈T z, z〉 − c 〈T x, x〉 − (1 − c) 〈Ty, y〉| < ε. (3)

If |〈T x, x〉 − 〈Ty, y〉| < ε, we may takez = x. Thus we may assume that〈T x, x〉 6=
〈Ty, y〉.

First consider the case whereT is selfadjoint. Define a functionf : [0, 1] → R by

f (t) =
∣∣∣〈T (‖h(t)‖−1 h(t)

)
, ‖h(t)‖−1 h(t)

〉
− c 〈T x, x〉 − (1 − c) 〈Ty, y〉

∣∣∣ .
SinceT is bounded, it is straightforward to show, using Lemma11, thatf is uniformly
continuous on[0, 1]; so

m = inf
06t61

f (t)

exists. It follows from Theorem1 that if m > 0, then¬ (〈T x, x〉 6= 〈Ty, y〉) and therefore
〈T x, x〉 = 〈Ty, y〉; whence, trivially,m = 0, a contradiction. We conclude thatm = 0;
whence equation (3) holds withz = ‖h(t)‖−1 h(t) for somet ∈ [0, 1].

Now consider the general case. WriteT = A + iB, whereA = 1
2 (T + T ∗) andB =

1
2i (T − T ∗) are bounded selfadjoint operators, and letε > 0. Noting that

〈Ax, x〉 = 〈T x, x〉 6= 〈Ty, y〉 = 〈Ay, y〉
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and thatA is bounded, we see from Lemma11 that

0 < r = inf {‖h(t)‖ : 0 6 t 6 1} .

Either Re〈Bx, y〉 6= 0 or |Re〈Bx, y〉| < r2ε. In the first case we apply Corollary12 to
obtain a unit vectorz such that equation (2), and therefore equation (3), holds. In the second
case we apply the first part of the proof withT replaced byA to obtaint ∈ [0, 1] such that∣∣∣〈A (‖h(t)‖−1 h(t)

)
, ‖h(t)‖−1 h(t)

〉
− c 〈Ax, x〉 + (1 − c) 〈Ay, y〉

∣∣∣ <
1

2
ε.

Since

|〈Bh(t), h(t)〉| = 2t (1 − t) |Re〈Bx, y〉| 6 1

2
r2ε,

〈T x, x〉 = 〈Ax, x〉 and 〈Ty, y〉 = 〈Ay, y〉 ,

it follows that∣∣∣〈T (‖h(t)‖−1 h(t)
)

, ‖h(t)‖−1 h(t)
〉
− c 〈T x, x〉 + (1 − c) 〈Ty, y〉

∣∣∣
6
∣∣∣〈A (‖h(t)‖−1 h(t)

)
, ‖h(t)‖−1 h(t)

〉
− c 〈Ax, x〉 + (1 − c) 〈Ay, y〉

∣∣∣
+ ‖h(t)‖−2 |〈Bh(t), h(t)〉|

< 1
2 ε + r−2 1

2 r2ε

= ε,

as we wanted.

4. Weakening the hypotheses of Theorem1

It would be interesting, if not necessarily of great practical value, to remove from The-
orem1 the hypothesis that〈T x, x〉 6= 〈Ty, y〉. To show that we can do this under certain
circumstances, we need a lemma that examines the behaviour of the roots ofpc(t) in [0, 1]
whenb is large and positive.

Lemma 13. For each positive integern there existsKn > 0, independent of the parameters
a andc of pc, such that ifb > Kn, then0 6 t− 6 1

n
.

Proof. Noting thatα > b − 2, we see that ifb is large and positive, then so areα and
2α − 1, and alsoα2 − 2αc + c < α2; whence

t− = α − √
α2 − 2αc + c

2α − 1
>

α − α

2α − 1
= 0.

Also, since for suchb,

α2 − 2αc + c > α2 − 2αc1/2 + c =
(
α − c1/2

)2
,

we have

t− <
α − (

α − c1/2
)

2α − 1
= c1/2

2α − 1
6 1

2b − 5
.

Thus it is enough to setKn = (n + 5)/2.
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Returning to Theorem1, let us remove the hypothesis that〈T x, x〉 6= 〈Ty, y〉, and
instead assume that〈T x, y〉 6= 〈Ty, y〉 〈x, y〉. Write

δ = |〈T x, y〉 − 〈Ty, y〉 〈x, y〉| > 0,

ξ = 〈T x, x〉 and η = 〈Ty, y〉 .

ReplacingT by T − ηI , if necessary, we may assume thatη = 0. Fix c ∈ [0, 1]. With Kn

as in Lemma13, construct an increasing binary sequence(λn)
∞
n=1 such that

λn = 0 ⇒ |ξ | < K−1
n δ,

λn = 1 ⇒ |ξ | > K−1
n+1δ.

If λ2 = 1, then we are back in the case already covered by Theorem 1; so we may assume
thatλ2 = 0. If λn = 0, setzn = y. If λn = 1− λn−1, thenn > 3 and we can chooseγ ∈ C
such that|γ | = 1 and

b = Re
(
ξ−1 〈T (γ x) , y〉

)
= |ξ |−1 δ > Kn.

Writing hγ (t) = t (γ x) + (1 − t) y, and applying Lemma13 with ξ−1T replacingT and

γ x replacingx, we computet ∈
[
0, 1

n

]
such that

z = ‖h1(t)‖−1 h1(t)

satisfies

〈T z, z〉 = c 〈T (γ x) , γ x〉 = cξ.

Settingzk = z for all k > n, we see from Lemma10 that

‖h(t)‖ > 1 − 2

n
> 1

3

and‖zk − y‖ 6 4
n−2. This completes the construction of a sequence(zn) of unit vectors in

H .
Since‖zm − zn‖ 6 8

n−2 wheneverm > n > 3, (zn) is a Cauchy sequence and therefore
converges to a unit vectorz∞ ∈ H . Suppose that〈T z∞, z∞〉 6= cξ . Thenλn = 0 for all n;
whenceξ = 0, z∞ = y, and

〈T z∞, z∞〉 = 〈Ty, y〉 = 0 = cξ,

a contradiction. It follows thatcξ = 〈T z∞, z∞〉 ∈ W(T ).

5. Limiting examples

We end the paper with two Brouwerian examples which show that our main results, and
the weakening of the hypotheses of Theorem1 that we have just discussed, are the best
possible in the constructive setting. For these examples (which we state as propositions) we
need to appreciate that for each positive integerN the following omniscience principle is an
essentially nonconstructive result. (For example, LLPO2 cannot be derived within Heyting
arithmetic and is false, even classically, in the recursive model of constructive mathematics;
see [4, Chapters 1, 3 and 7].)
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LLPO N : If (an) is a binary sequence with at most one term equal to 1, then
there existsj , where 06 j 6 N − 1, such thatakN+j = 0 for all k.

(See [10, §3].)
The principle LLPO2 is known as thelesser limited principle of omniscience, and is

usually denoted by LLPO. It implies the intermediate value theorem in the following form.

LLPO: If f is a continuous mapping on[0, 1] such thatf (0)f (1) 6 0, then
there existst ∈ [0, 1] such thatf (t) = 0.

The proof is a standard interval-halving argument, based on the observation that LLPO
implies (it is actually equivalent to) the proposition

∀x ∈ R (x > 0 ∨ x 6 0) .

Now letT be a selfadjoint operator onH, and letx, y be unit vectors inH . Write

ξ = 〈T x, x〉 ,

h(t) = tx + (1 − t) y (0 6 t 6 1) ,

and

a = Re〈x, y〉 , b = Re〈T x, y〉 .

As before, we may assume that〈Ty, y〉 = 0. Routine computation with inner products
show that 〈

T
(
‖h(t)‖−1 h(t)

)
, ‖h(t)‖−1 h(t)

〉
= c 〈T x, x〉 + (1 − c) 〈Ty, y〉 (4)

if and only if

p(t) = (2c (1 − a) ξ + 2b − ξ) t2 − (2c (1 − a) ξ + 2b) t + cξ = 0.

Sincep is continuous and

p(0)p(1) = c (c − 1) ξ2 6 0,

we see from the foregoing remark about the intermediate value theorem that LLPO implies
the existence oft ∈ [0, 1] such that equation (4) holds. Hence LLPO implies that we can
remove the hypothesis〈T x, x〉 6= 〈Ty, y〉 from Theorem1.

The following converse shows that we cannot hope to improve, constructively, on The-
orem1 and the extension discussed in the preceding section.

Proposition 14. The following statement implies LLPO.
If T is a selfadjoint operator on a2-dimensional complex Hilbert spaceH, if x, y are

unit vectors inH such thatc 〈T x, x〉+(1 − c) 〈Ty, y〉 belongs toW(T ) for eachc ∈ [0, 1],
and if

h(t) = tx + (1 − t) y (0 6 t 6 1) ,

then for eachc ∈ [0, 1] there existst ∈ [0, 1] such that〈
T
(
‖h(t)‖−1 h(t)

)
, ‖h(t)‖−1 h(t)

〉
= c 〈T x, x〉 + (1 − c) 〈Ty, y〉 .
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Proof. Let H be a 2-dimensional Hilbert space, andx, y orthogonal unit vectors inH .
Given a binary sequence(an) with at most one term equal to 1, let

ξ =
∞∑

n=1

a2n + a2n+1

n2
.

With Kn as in Lemma13, define a selfadjoint operatorT onH by

Ty =
( ∞∑

n=1

a2nξ
2 +

∞∑
n=1

a2n+1Knξ

)
x,

T x = ξx +
( ∞∑

n=1

a2nξ
2 +

∞∑
n=1

a2n+1Knξ

)
y.

Givenc ∈ [0, 1], consider the problem of finding a unit vectorz ∈ H such that

〈T z, z〉 = c 〈T x, x〉 + c 〈Ty, y〉 = cξ. (5)

Writing z = λy + µx, with |λ|2 + |µ|2 = 1, we reduce equation (5) to

|µ|2 ξ + 2Re

(
λµ∗

( ∞∑
n=1

a2nξ
2 +

∞∑
n=1

a2n+1Knξ

))
= cξ,

which is satisfied by takingλ = √
1 − c andµ = i

√
c. Thusc 〈T x, x〉 + (1 − c) 〈Ty, y〉

belongs toW(T ).
Next, writingb = Re〈T x, y〉 and takingc = 1

2, we see that equation (5) becomes

2bt2 − (ξ + 2b) t + 1

2
ξ = 0,

which, if ξ 6= 0, can be rewritten

2b

ξ
t2 −

(
1 + 2b

ξ

)
t + 1

2
= 0. (6)

If a2N = 1, then equation (6) becomes

2ξ t2 − (1 + 2ξ) t + 1

2
= 0,

whose only solution in[0, 1] is

t− = 1 + 2ξ −√
1 + 4ξ2

4ξ
.

On the other hand, ifa2N+1 = 0, then equation (6) becomes

2Knt
2 − (1 + 2Kn) t + 1

2
= 0 ,

whose only solution in[0, 1] is

t− = 1 + 2Kn −√
1 + 4K2

n

4Kn

.

We now proceed as follows. First, noting that

lim
ξ→0+

1 + 2ξ −√
1 + 4ξ2

4ξ
= 1

2
,
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we findr > 0 such that if|ξ | < r, then

1 + 2ξ −√
1 + 4ξ2

4ξ
> 3

8
.

Secondly, noting that

lim
n→∞

1 + 2Kn −√
1 + 4K2

n

4Kn

= 0,

we compute a positive integerN such that

1 + 2Kn −√
1 + 4K2

n

4Kn

<
1

8

for all n > N . Now suppose that equation (4) has a solutiont = τ ∈ [0, 1], and consider
aN . If ak = 1 for somek 6 N , then eitheran = 0 for all evenn or elsean = 0 for all
oddn; so we may assume thatak = 0 for all k 6 N ; we may also assume that|ξ | < r.
Eitherτ > 1

8 or τ < 3
8. Consider the first case, and suppose thata2n+1 = 1 for somen with

2n + 1 > N . Thenb = Knξ 6= 0, so

τ = 1 + 2Kn − 2
√

1 + 4K2
n

4Kn

<
1

8
c,

a contradiction; henceak = 0 for all oddk > N and therefore for all oddk. Now consider
the caseτ < 3

8, and suppose thata2n = 1 for somen with 2n > N . Thenb = ξ2 6= 0, and

t = 1 + 2ξ −√
1 + 4ξ2

4ξ
> 3

8
,

since|ξ | < r; this contradiction ensures thatak = 0 for all evenk > N and therefore for
all evenk.

Finally we consider the possibility of improving Theorem2. On inspection of the proof
of that theorem, we see that the convexity ofW(T ) can be established, provided that, for
any complex numberz, we can find a complex numberγ such that|γ | = 1 and Reγ z = 0.
We can do this with the aid of LLPO as follows.

Under LLPO, either Rez > 0 or Rez 6 0. Thus the continuous functionf defined on
[0, π ] by f (t) = Re

(
eit z

)
satisfiesf (0)f (π) 6 0. By the remarks on the intermediate

value theorem at the beginning of this section, there existsτ ∈ [0, π ] such thatf (τ) = 0;
so Reγ z= 0 whereγ = eiτ .

To prove that Theorem2 cannot be improved constructively, it is enough to show that
the proposed improvement would entail LLPO3. For this we need one more lemma.

Lemma 15. If λ, µ are complex numbers satisfying the equations

4Re
(
λµ∗)+ 2 |µ|2 = 1,

|λ|2 + |µ|2 = 1,

then|λ| > 1
5 and|µ| > 1

5.

Proof. If |µ| < 1
5, then|4Re(λµ∗)| < 4

5 and so

4Re
(
λµ∗)+ 2 |µ|2 <

4

5
+ 2

25
< 1,
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a contradiction; whence|µ| > 1
5. On the other hand, if|λ| < 1

5, then|4Re(λµ∗)| < 4
5 and

so

4Re
(
λµ∗)+ 2 |µ|2 > 2

(
1 − |λ|2

)
− 4

5

> 2
(

24
25

)− 4
5

> 1,

a contradiction. Hence|λ| > 1
5.

Proposition 16. The following statement implies LLPO3.
The numerical range of a selfadjoint operator on a2-dimensional complex Hilbert space

is convex.

Proof. Let H, x, y, (an), be as in the proof of Proposition14. Define

ξ =
∞∑

n=1

a3n + a3n+1 + a3n+2

n2
,

and define a selfadjoint operatorT onH by

Ty =
( ∞∑

n=1

a3niξ +
∞∑

n=1

a3n+1inξ +
∞∑

n=1

a3n+2nξ

)
x,

T x = ξx +
(

−
∞∑

n=1

a3niξ −
∞∑

n=1

a3n+1inξ +
∞∑

n=1

a3n+2nξ

)
y.

Consider the problem of finding a unit vectorz = λy + µx satisfying

〈T z, z〉 = 1

2
〈T x, x〉 + 1

2
〈Ty, y〉 = 1

2
ξ

which reduces to

|µ|2 ξ + 2Reλµ∗
( ∞∑

n=1

a3niξ +
∞∑

n=1

a3n+1inξ +
∞∑

n=1

a3n+2nξ

)
= ξ

2
.

If a3N+1 = 1, we must solve the equations

2 |µ|2 − 4N Im
(
λµ∗) = 1,

|λ|2 + |µ|2 = 1.

We then have ∣∣Im (
λµ∗)∣∣ = 1

4N

∣∣∣1 − 2 |µ|2
∣∣∣ 6 3

4N
.

If a3N+2 = 1, we must solve the equations

2 |µ|2 + 4NRe
(
λµ∗) = 1,

|λ|2 + |µ|2 = 1.

In this case,|Re(λµ∗)| 6 3
4N

. If a3N = 1, we must solve the equations

2 |µ|2 − 4Im
(
λµ∗) = 1,

|λ|2 + |µ|2 = 1.
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In this case we must have|λ| > 1
5 and|µ| > 1

5, by Lemma15 (applied withλ replaced by
−iλ).

Now suppose that we have found a unit vectorz = λy +µx satisfying equation (5) with
c = 1

2. Either|λµ∗| < 1
25 orλµ∗ 6= 0. In the first case we see from the foregoing arguments

thatan = 0 for eachn. In the second case either Re(λµ∗) 6= 0 or Im(λµ∗) 6= 0. To handle
the first of these alternatives, we chooseν such that 3

4ν
< |Re(λµ∗)|. If a3n+1 = 1 for

somen > ν, then|Re(λµ∗)| 6 3
4n

< 3
4ν

, a contradiction. It follows that ifa3n+1 = 0 for
all n 6 ν, thena3n+1 = 0 for all n. Hence

∀n (a3n = 0) ∨ ∀n (a3n+1 = 0) ∨ ∀n (a3n+2 = 0) . (7)

Finally, assuming that Im(λµ∗) = 0, and choosing a positive integerν such that|Im (λµ∗)| >
3
4ν

, we see that ifa3n+2 = 0 for all n 6 ν, thena3n+2 = 0 for all n, whence equation (7)
holds in this case also.
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