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MODULAR FORMS FROM CODES 

DAVID P. MAHER 

1. Introduction. In this paper we construct modular forms from combina­
torial designs, and codes over finite fields. We construct codes from designs, 
and lattices from codes. Then we use the combinatorial properties of the 
designs and the weight (or shape) structures of the codes to study the theta 
functions of the associated lattices. These theta functions are shown to be 
modular forms for the modular group or for various congruence subgroups. 
The levels of the forms we examine are determined by the dimensions of the 
codes and the characteristics of the fields. Using the Lee polynomial of the 
codes we can write the theta functions as homogeneous polynomials in modified 
Jacobi theta functions. By extending the underlying combinatorial structure, 
a modular form of half-integral weight is associated with a modular form of 
integral weight. 

Our codes may be nonlinear. From these we construct nonlinear lattices—non­
linear sets in Rw which are finite unions of translates of lattices. In order to 
show that the theta functions of these nonlinear lattices are modular forms, 
we extend the classical theta function transformation formula. This is done by 
applying the MacWilliams equations for nonlinear codes. 

Our methods enable us to give explicit bases for certain spaces of modular 
forms, and to express the members of these bases as polynomials in Jacobi 
theta functions. Theta function identities can be produced as a result of this 
process, and by identifying what we call shape relations [17]. 

Necessary details about modular forms may be found in [21], [22], or [19]. 
The method used here of treating modular forms of half-integral weight was 
introduced by Shimura [23]. Details about relationships between designs and 
codes may be found in [15], [7], and [1]. 

Broué and Enguehard showed close connections between weight poly­
nomials of linear self-dual binary and ternary codes and theta functions of 
unimodular lattices in [6]. Many of their results are generalized here. Other 
papers which examine theta functions associated with codes are [5], [17], and 
[24]. 

2. Codes, designs and lattices. Throughout this article p shall denote a 
positive prime integer, and Fp, the field with p elements. A code of length n 
over FP is a subset of F / , and a linear (n, k) code over ¥p is a ^-dimensional 

Received January 18, 1978 and in revised form December 1, 1978. 

40 

https://doi.org/10.4153/CJM-1980-005-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-005-6


MODULAR FORMS 41 

subspace of F / . The dual of a linear (n, k) code C over F / is the (n, n — k) 
code 

^ H ^ Fp
n\x-y = 0 , V y £ C}. 

Here x • y denotes the usual inner product over Fp. A linear code C is said to be 
s elf-orthogonal if C C CL and self-dual if C = C1. 

We shall consider codes over the field F 4 whose elements will be denoted by 
0, 1, f, f2 where f2 -f f + 1 = 0. For a £ F 4 , its conjugate â is a2. We use the 
Hermit ian inner product to define the dual of a code over F 4 : 

C-J- = {x\x- y = 0 V y G C}. 

Self-orthogonal and self-dual codes have been intensively studied and have 
connections with sphere packings and designs. Most of the codes we consider 
here are self-orthogonal or self-dual since we can classify their theta functions 
as modular forms. To give ourselves a plentiful supply of such codes, we 
construct them from designs. We can get several infinité classes of codes from 
these constructions. The parameters of the design underlying a code will be 
shown to specify the weight and level of the associated modular form. We shall 
also show tha t codes generated by certain designs generate two modular 
forms; one of integral weight of low level, and one of half-integral weight of 
generally higher level. We shall describe the relationship between the two 
modular forms via the weight enumerator of the code. We begin by describing 
some constructions of self-orthogonal and self-dual codes from designs after 
we set the notation. 

A t-(b, v, k, X) design is a pair (12, âS) where 12, the set of points or varieties 
has v elements, and âê, the set of blocks, is a set of subsets of 12 each having k 
elements, and such tha t card 3S = b. The pair must satisfy the condition tha t 
any set of t elements of 12 are contained in exactly X blocks. If / = 2 and 
b = v, we call the design projective (such designs are also called symmetric), and 
we refer to it as a (v, k, X) design. A projective plane of order A is an (A2 + N + 1, 
N + 1, 1) design. 

The incidence matrix of a design is a b X v matrix indexed by the blocks and 
points so t ha t the i, j t h entry is 1 if the ith block contains the j t h point, and is 
equal to 0 otherwise. Codes are formed from designs by taking the F^ spans of 
the rows of their incidence matrices. For example, the Steiner system of type 
(5, 8, 24) is a 5-(759, 24, 8, 1) design. The F 2 span of its incidence matrix is a 
self-dual code C2;24 known as the extended (24, 12) binary Golay code. I t is 
extended from a (23, 12) Golay code, also known as a quadrat ic residue code, 
by adding a par i ty check in the 24 th place of each code vector. This (23, 12) 
code is the F 2 span of a Steiner system of type (4, 7, 23), a 4-(253, 23, 7, 1) 
design. This extension process w îll be generalized below and will play a crucial 
role in the development of a relationship between modular forms of integral 
and half-integral weight. 
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The extended code C2,24 is doubly even, that is, the number of non-zero places 
in each code vector (known as the vector's weight) is divisible by 4. We shall 
see that this code is associated with a function which is a modular form of 
weight 12 for the full modular group. It has many other interesting properties: 
Its minimum non-zero weight is 8 which is best possible for a doubly even 
self-dual (24, 12) code. A lattice constructed from this code, the Leech lattice 
[11], yields a very dense, highly symmetric packing of R24. In fact, spheres of 
radius 2, centered at the lattice points, have non-intersecting interiors, and 
each sphere touches 196, 560 others. C2,24 has connections with sporadic simple 
groups, as its automorphism group is the Mathieu group M24, and the Conway 
group is a group of symmetries of the lattice. For more information on these 
connections, see [8] and [11]. 

Let A be the incidence matrix of a (v, k, X) design, and let p be a prime such 
that —X is a square mod p. Let A e be the v X (v + 1) Fp matrix whose first v 
columns are the columns of A, and whose last column contains \/ — X mod p in 
each entry. In many cases the spans of A and A e are self-orthogonal and self-
dual codes: 

PROPOSITION 1. Let C be the Fp span of A, and let Ce be the Fp span of Ae. 
Then if p\k — X but p2 \ k — X and p \ k then 

(i) C1- C C with codimension 1; 
(ii) Ce1- = Ce. 

The proof, which is elementary, can be found in [1] or [16], and also in [20] 
or [7] for the case of projective planes. 

As an example, consider a projective plane of order N. Its parameters satisfy 
Proposition 1 if p divides N just once, so a putative plane of order 10 yields 
(112,56) self-dual codes over F2 and F5. The binary code is doubly even with 
minimum weight 12. These facts have lent impetus to the investigation of the 
difficult question of existence of a plane of order 10, [14], [7]. The plane of 
order 2 yields the (7, 4) binary Hamming code €2,1 and the (8, 4) doubly even 
self-dual extended Hamming code Ci,%. 

A lattice in Kn is a discrete Z-module of rank n contained in Rw. To each 
(n, k) code C over Fp we define a lattice L(C) in Rw as follows: 

x £ L(C) <=$\/px G Zn and -\/px reduced mod p is in C. 

If C is a non-linear code, we can still define L(C) as above but L(C) is not a 
lattice, it is a finite union of translates of lattices which we call a nonlinear 
lattice. The volume of a lattice L is the absolute value of the determinant of a 
basis of L. It is also the measure of a fundamental rectangle. The dual of L is 

L1- = {x (E Rw| x-y £ Z}\/y £ L] 

PROPOSITION 2 [6]. For C an (n, k) code over Fp: 
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(i) L(C^) = L(C)^ 
(ii) vo l (L(C)) = £w/2-* 

(iii) If p = 2 then x • x is even for every x £ L(C) if and only if C is doubly 
even. 

The proof is straightforward and is omitted. 

Example. C2>8, the extended code we produced from the projective plane of 
order 2, is a doubly even self-dual code, hence by Proposition 2, L(C2 ( 8) is 
self-dual and even, i.e. its vectors are of even squared length. Such a lattice is 
also said to be unimodular and of Type II . Up to isomorphism there is only one 
type II unimodular lattice in R8, hence L(C2,8) is the lattice of the Lie algebra 
of type E8 [21]. Z,(C2j24) is also type II unimodular, one of 24 such in R24. I t is 
not the Leech lattice (one must use a bit more complicated construction to get 
t ha t lat t ice) , bu t is the lattice associated with the Lie algebra of type ^424. 
See [18]. 

Any lattice L defines a quadrat ic form Q : Zn —* R whose matrix A may be 
defined as follows: Let M be a matrix whose rows are a basis of L. Set A = MM1, 
t denoting transpose. Q(x) = xAx1. If C is a self-orthogonal code then the 
quadrat ic form for L(C) represents integers, and if C is doubly even also, then 
the form represents even integers. 

Complex lattices constructed from codes over F 4 are discussed a t the end of 
the next section. 

3. E n u m e r a t i n g p o l y n o m i a l s a n d t h e t a f u n c t i o n s . Impor t an t in the 
s tudy of codes are polynomials which count the number of vectors in each code 
which belong to respective classes. For example, the Hamming weight poly­
nomial WC(X, Y) of a code C is a polynomial which enumerates the number of 
vectors in C in each possible weight class, where the weight of a vector x, 
denoted wt (x ) , is the number of non-zero elements in its coordinate places: 

(1) WC(X, Y) = £ x € C 7 *»-»'<*> F»'<*>. 

Let Mn denote the group of n X n monomial matrices with ± 1 as non-zero 
entries. We let Mn act natural ly on F / and let 

a : Fp» -> FP
n/Mn 

be the canonical map of the induced equivalence relation. For x G F / , we call 
a (x) the shape of x. a (x) = a (y) if and only if x can be gotten from y by changing 
signs and permuting coordinates. For fixed p and n we abbreviate Fp

n/Mn by $f, 
the group of shapes in F / . 

For C a code over Fp, the shape enumerator of C is the formal sum 

(2) Pc = Y^x^c <r(x) = Z ) ^ asS 

where as = cardjx G C\a(x) = s}. 
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For an odd prime p set co = (p — l)/2\lorp = 2,setco = 1. Throughout the 
article an element of Fp, p odd, will be represented by an integer of absolute 
value less than or equal to co. F2 = {0, 1}. We shall view Pc as a homogeneous 
polynomial in co + 1 variables as follows: for x G F / we can represent <r{x) by 
an (co + 1)-tuple (o-0(x), cri(x), . . . , cr^x)) where o-*(x) is the number of 
occurrences of d=i in the coordinate places of x. Now for a code C we can write 
Pc as 

(3) PC(X0 , ^ Xw) = E , c c X o ' o ( % f f l ( I ) • • • Xu°»w. 

When p = 2 or 3, P c is the Hamming weight polynomial (1). In general we 
call Pc the Lee polynomial of C. 

Often a code vector x G Fp
n will play the role of an integer vector. For 

example we define 

IWI2
 = Z J = I * > 2 

where x ; is an integer such that \xj\ ^ co. Context should eliminate any 
ambiguity. If s is a shape, we define ||s||2 = |(x||2 where a(x) = s. o-*(s) is the 
number of occurrences of dbi in x. For 5 G 5f we will always suppose x(s) to be 
some representative of 5. 

The enumerating function of a lattice L, its theta series, is defined 

(4) eL =X^ L çH*H 2 =Zz € zng z A 2 f . 

If the quadratic form for L represents integers only then 

(5) 0L = ^T=obkg
k where i* = cardjx G Z| ||x||2 = &J. 

If we replace the formal variable q by exp(7ri;s) where z is in H, the upper 
half complex plane, then QL(z) is a holomorphic function on H, and is said to be 
holomorphic at co by virtue of the fact that (5) converges for q = exp (71-12;), 
since bk < nk for all k. 

Let 5 be a shape and x(s) a representative of 5. We consider jx(s)} as a 
single element, non-linear code. Denote the coefficients of the theta function of 
{x(s)\ by as,k. Then 

(6) a8tk = C a r d b G pZn\ \\x(s) + ;y||2 = *} . 

This is the number of vectors in L({x(s)}) at squared distance k from the 
origin. One may readily show thata5>fc is independent of the representative x(s) 
of 5. Consider a formal shape polynomial 

(7) Z rss = £ r j ' o ^ l i ^ w . . . Xa™(8\ 

We shall say that (7) defines a shape relation if £ rfls(z) = 0 where 0S is the 
theta function of the code {x(s)j. Equivalently, (7) defines a shape relation if 

(8) £ r^,.fc = 0 for all k. 

Shape relations are interesting because 
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(i) They define relations among theta functions. 
(ii) As polynomials, they form ideals which are the kernels of the homo-

morphisms we shall define which map algebras of Lee polynomials into algebras 
of modular forms. 

(iii) A shape relation holds the difference in information given by the shape 
enumerator of a code and tha t given by the theta function. 

There are no shape relations for shapes over Fp, p = 2 or 3, bu t there are for 
p è 5. See [17]. 

The main result of [17] showed tha t the theta function of a code can be 
obtained by evaluating the Lee polynomial of the code on a set of modified 
Jacobi the ta functions. We need to introduce a classical Jacobi the ta function 
[25]: 

(9) 0^(v\z) = X^^ez exp(Ttm2z + 2iritnv) 

where v 6 C, z G H. For given p and / £ {0, 1, . . . , œ] set 

(10) 4>Ptl(z) = exp(l2wiz/p)ez(lz\pz) 

so tha t 

02,i(s) = 62(0|22) = exp(wiz/2)Gz(z\2z) 

in the notat ion of [25]. 
Let J ^ be a family of codes over Fp, and let & (s/) be the graded subalgebra 

of C[X 0 , . . . , Xu] generated by the Lee polynomials of the elements of se. The 
grading is by homogeneous degree, or equivalently, according to the ambient 
dimensions or lengths of the associated codes. Let ^(s/) be the graded 
algebra of holomorphic functions on H generated by the the ta functions 
&L(O (z) of elements of s/. 

T H E O R E M 3 [17]. If s/ is any family of codes over Fp, then 
(i) Pc(4>Pto(z), . . . , 4>p,u(z)) = &L(O(Z) and hence the function Pc —• © L ( O 

defined on the generators of â? (s/) may be extended to an algebra homomorphism 

(ii) The kernel of % is an ideal of shape relations. 
(iii) % is infective if p = 2 or 3. 

Theorem 3(i) was proven for p = 2 and 3 by Broué and Enguehard in [6]. 
Sloane [24] has proven an analog of (i) for codes over F 4 using complex 
lattices: 

Consider the Eisenstein integers S3 = {a -{- b£\a, b £ Z} where f = 

exp(27ri|3). Since f 2 - f f + l = 0 i n < f there is a natural reduction from 

<o to F 4 . An (^-lattice is a rank n discrete (^-module contained in Gn. To each 
(n, k) code Cover F 4 we may associate an ^-dimensional ^ - l a t t i c e A(C) which 
consists of all vectors x G Cn which can be obtained by adding twice an 
Eisenstein integer to each component of a code vector and then dividing b y y / 2 . 
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The thêta function of a complex lattice is defined as in (7) except that for 
x £ Cn, ||x||2 = x • x. Now set 

(11) ^o(z) = e2(0\2z)92(0\6z) + e3(0|2z)93(0|6s) 

(12) *i(z) = e2(0|2s)93(0|6s) + 02(O|6s)e3(O|2s) 

then 
}po(z) = 0 ^ ( z ) and ^ (2 ) = 61+^(2;). 

THEOREM 4. (Sloane [24]) If C is a code over F4 Jfeew 

eA(c)(2) = TM*o(*),*i(*)). 
The Poisson summation formula [4] gives a relation between the sum or 

integral of the values of a function defined on a topological group and the sum 
or integral of the values of the Fourier transform of the function defined on the 
dual group. When this formula is applied to lattices it yields the theta function 
transformation formula: 

(13) 0L±(z) = (z/i)-n/*vo\(L)0L(-l/z). 

When the formula is applied to linear codes [10], [16], it yields the MacWilliams 
relations for code enumerating polynomials. For Hamming polynomials we 
have: 

(14) PC±(X, Y) = (Card(C))-1P c(X + (p - 1) F, X - F). 

For Lee polynomials it's a bit more complicated: 
For p ^ 3, l,j integers set 

(15) x(/,o) = 1 iez 
\(l,j) = exp(27rilj/p) + exp(-2wlj/p) j 9* 0 

then 

(16) PC±(X0, A V . . , Xu) = (Card(C))"1 

X Pc(E^oX(0,j)X,,i:%oX(l,i)Z,, . . . ,ZUM"J)X>). 
These formulas may be organized as follows: 

(17) PC±(X0, Xu..., Xu) = (Ca rd (C) ) -y / 2 P c ( (Zo , Xu . . . , X„)MP) 

where Mp is a matrix acting on the row7 vector (X0, Xi, . . . , XJ) and 

Mi=V2\l - Î ) ' M*=Uî\l - l ) ' V2V1 - 1 / ' 1¥1,~V3 

.1 

2 
a -+- a 

2 , 3 a + a 

2 \ 
2 1 3 1 

a -\- a / 

2TT 

2 2 2 > 

,1 
/32 + /35 

fi' + fi' 

/32 + /r 
/33 + /34 

fiz + fi* 
fi + fi" 
fi2 + (35

( 

Mb = 

^ 1 | ± P t - P p - r p P "f P 1 ^ _ 2^/7 
M 7 = ~~/J\ -, n2 . ^5 ^3 , ni n , n6 I P — £ 
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Mac Williams, Sloane, and Goethals [13] proved (16) for nonlinear codes 
after defining the dual weight (shape) enumerator of a nonlinear code. They 
also define a formal dual for nonlinear binary codes that has the property that 
C±J- = C if C contains the zero vector. This dual is consistent with their 
definition of dual weight enumerator. 

We shall briefly paraphrase the development of the dual enumerator of a 
nonlinear code C given in [13] for those cases in which we are interested. We 
want a definition of the dual shape enumerator of a code C such that 

(i) If C is linear, the dual enumerator is the enumerator of C1-. 
(ii) The MacWilliams equations hold formally for nonlinear codes. 

For C linear, the MacWilliams equation asserts that P c± is equal to the 
average over C of the formal Fourier transform values of the shape function 
x —» a(x). This is seen to be true by applying the Poisson summation formula 
to the code C-1, using the fact that C = C±A- is isomorphic to the character dual 
of F//C-1 . So in order to satisfy (i) and (ii) for C arbitrary, we define the dual 
shape enumerator PC

L by 

(18) iV = Z a^s 

where the coefficient a / is defined by an averaging process similar to the one 
mentioned above. We need to give the following definitions in order to explicitly 
define a/- as in [13]: 

Let G be a copy of the group F / but with the addition operation of Fp
n 

written as multiplication in G. Now we can consider the group algebra C[G]. 
The standard characters of Fp

n may be defined on G and linearly extended to 
C[G]. Let C be a code with elements xi} . . . , xu. Set C equal to Xi + x2 + • • . 
+ xu considered as an element of C[G]. For y Ç F / , let xv be the character 
associated with its image y in C[G]. We define a^ to be the complex number 

(19) a± = ( C a r d ( C ) ) - 1 Z ^ ) - X ^ ( Ô 

where the sum is over all y £ Fp
n which have shape 5. Since 

we see that in defining a,1 we are averaging the values of the character Xv on 
the elements of C. The introduction of the group algebra permits the Mac­
Williams equations to be proven in a formal framework which allows averaging 
the values of Xvon elements of C[G] which correspond to codes equivalent to C. 
The details are in [13] where it is shown that (17) is satisfied with Pc1- replaced 
by Pc1", and that Pc± = Pc1- when C is linear. 

Although the dual weight enumerator of a nonlinear code is not always the 
enumerator of another code, many pairs of nonlinear codes are known whose 
enumerators satisfy (17), and there are many nonlinear codes C with the 
property that Pc1- = Pc These are called formally self-dual codes. Examples 
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may be found in [13]. The lattices of some of these codes are interesting in that 
they yield sphere packings which are denser than any of the known linear 
packings. So we would like a theta function transformation formula for non­
linear lattices induced from codes. Such a formula will be used later to show 
that the theta functions of lattices formed from formally self-dual codes such as 
the Nordstrom-Robinson code of length 16, are modular forms. We define the 
dual theta function for a nonlinear code C in Fp

n to be 

(20) eiiC) (z) = £ ! W aUHs) (z)^(*)... <&is) (z) 

where «/- is defined by (19). 
If C is linear, then 6^c) = 6L{C±). 
We define the volume of a non-linear lattice induced from a code C to be 

Card(C)/>w/2. 

THEOREM 5. If C is any code in F / , linear or not, then 

ei(C)(z) = (z/t)-»»vo\(L(c))eL{c)(-i/z). 
We first prove 

LEMMA. 

(21) 4>Ptl(~l/z) = ( zA)^ - 1 / 2 (E i -oX( / f j ) ^ t i ( Z ) ) p^2; 

(22) <Ko( - lA) = (z/i)-2^>2(<t>2^(z) +*2, i (z) ) ; 

(23) 0 2 , i ( - l / 2 ) = ( 2 / i ) '2-^ 2 (*2,o(z) - *2,i(*)); 

w/zere \(ljj) is defined by (15). 

Equations (22) and (23) were proved in [6] and may also be deduced by 
appropriately modifying the following proof of (21): 
Define 

(24) &(z, x, y) = ^2mez ^xp(iviz{m — y)2 + 2irintx — irixy) 

where z £ H; x, y Ç C. The transformation formula for this function is given 
in [9]: 

(25) &(z,x,y) = (-iz)~ll29(-z-\y, -x). 

By (10), (25), and (24) we have that 

(26) ct>p,i(-l/z) = exp(-l*iri/pz)@(-p/z, -l/z,0) 

= exp(-l2Ti/pz) • (-ip/z)-1/2&(z/p, 0, l/z) 

— p~1/2(z/i)V2^>2m£Zexp(irini2z/p — 2-iriml/p). 

Now the sum in (26) may be written as 

£ * € P Z Z ) " = - « exp(iri(k + j)2z/p - 2wi(k + j)l/p) 

= 2%-^Z)m€zexp(7ri(pm2z + 2iw> + j2z/p + 2wz/ - 2ijl/p)) 

= ]C5=-« ^xp(2irijl/p) exp(j2Triz/p) Xlmez exp(iripm2z + 2irinijz) 

= 2XoA(/,j)<fe,;(s), 
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and the lemma is proved. Now Theorem 5 follows from the lemma, Theorem 3, 
and the fact that the MacWilliams relations (16) hold for nonlinear as well as 
linear codes. 

4. Modular forms of integral weight. We begin by introducing notation 
and results for modular forms of integral weight and apply the theory of 
Sections 1 and 2 to determine the structure of the algebra of modular forms 
for certain congruence subgroups. 

• ^ 5 = U Î l)anàT=\l \)-
Set T = SLi(Z), the group generated by ± 5 and ±7 ' . T« is the subgroup 
generated by ± 5 and ± T 2 . For N a positive integer, we set 

T0(N) = { ( " b
dj € r |c = OmodJVJ 

To(N,2) = j ( " b
dj G T0(N)\b = 2 mod i v | 

^M(::M::)-(::)™4-
For V C r , let V denote the image of V under the canonical map 

SL2(Z)~>PSL2(Z). 

For 7 = 1 ,1 , / a function on H, k Ç Z, we set 

(27) / | [ 7 ] t = ( „ + d)-/(s±|). 

We define a modular form of weight k for a subgroup r" of T to be a function/ 
holomorphic on H, and at the cusps of r ' , (see [22], p. 29) that satisfies 

(28) / | [ 7 ] * = / for all 7 € I". 

The space of all such functions will be denoted by *JKk{Yf)y and if x is a non-
trivial character of V, and if instead of (28), / satisfies 

(29) x(T)*/ |hO*=/ 

then we will say that / is a modular form with character x and write 
/ G *sdfk(r'', x)- The algebra of modular forms for a given subgroup V of V 
graded over all weights divisible by d is denoted by 

00 

A;=0 
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PROPOSITION 6. (i) / / C is a formally self-dual code in F / , then QL{o is in 
^ n / 2 ( r e , x) where x<T2) = 1 and x(S) = i-

(ii) / / C is a doubly even, formally self-dual code in F2
W then BL(o is in 

e^ n / 2 ( r ) . 

Proof. The theta function of a formally self-dual code has an expansion in 
exp(7rtz), hence it is invariant under z —» z + 2. If the code is doubly even, 
it has an expansion in exp(27riz), so it is invariant under z—>z + 1. By 
Theorem 5 we have that (29) is satisfied for y = 5 in cases (i) and (ii). To 
finish case (ii) we must have that (28) is satisfied for S, but then n would have 
to be divisible by 8. But all doubly even self-dual codes are of length divisible 
by 8. For linear codes this follows from the classification theory for type II, 
unimodular lattices [21]; it follows in general by this argument of Serre's: 
If n ^ 0 mod 8 in case (ii), then by taking direct sums, if necessary, we can get 
a lattice L in dimension m such that m = 4 mod 8, and then by Theorem 5, 

eL(-i/z) = (-i)m<*zm'*eL(z). 

So the differential form a = GL(z)dzm/A is transformed into —a by S. Since a is 
invariant under T, ST transforms a into —a, but a contradiction arises since 
(ST)3 = 1. 

Let s/p denote the family of formally self-dual codes over Fp, and let o/1 

denote the family of elements of S$\ which are doubly even. 

THEOREM 7. (i) $2 maps ëP(<sé'z) isomorphically onto , ^ 4 ( r ) ; 
(ii) <ï>2 maps &($/%) isomorphically onto ^l(Te, x) ; 

(iii) % maps SP{sev) homomorphically into <JSfl(Te, x) ; the kernel being an 
ideal of shape relations on ¥/. 

Proof. Except for the ontoness claims, the theorem follows from Proposition 6 
and Theorem 3. Now recall the doubly even self-dual binary codes C\8 and 
6̂ ,24 formed from the projective plane of order 2 and the 5-(759, 24, 8, 1) 
design. Let their theta functions be denoted b y / a n d g. They are in e^#4(r) and 
^#12(T) respectively. In fact/(z) is the normalized Eisenstein series 

E2(z) = 1 + 240^! a*(n)q» 

and 

(1/42) (P - g) = g - 24ç + 252? - . . . = ^ n - i (1 ~ <f)24 = A(z) 

where q = e2iriz. It is well known [21], [19] that E2 and A freely generate 
^ 4 ( T ) , hence (i) follows. Now let C2,2 be the (2, 1) self-dual code consisting 
of the vectors (1, 1) and (0,0). L(C2;2) œ Z2. By Proposition 6, its theta 
function is in ^# i ( r 0 , x)- It is well known [19], [6] t h a t ^ ^ T e , x) is free on 
2 generators of weights 1 and 4. 9L(C2i2) and 0L(C2ig) may be taken as those 
generators. 
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Since 

pC22 = X2 + F2, PC2,8 = X8 + 14X4F4 + F8, 
P C 2 J 2 4 = X24 + 759X16F8 + 2576X12F12 + 759X8F16 + F24, 

i(P4
C2,2 - P c . , 8 ) = X 2 F 2 ( X 2 - F2)2 

(l/42)(P8
C2i8 - PC2(24) = X*Y*(X* - F4)4, 

we have as a corollary: 

THEOREM 8. (Gleason [10]) (i) ^ ( J / 2 ) is freely generated by X2 + F2 ^md 
X2F2(X2 - F2)2 

(ii) ^{s/i) is freely generated by X8 + 14X4F4 + F8 and X4Y4(X4 - F4)4. 

These are also integral generators. More direct proofs of this important 
theorem may be found in [13]. 

Let A be an n X n matrix for an even integral quadratic form, then A is a 
symmetric matrix with integral entries and even integral entries on its diagonal. 
Given a positive integer N we say that A has level N if NA~l is also even 
integral. It is well known that if A has level N, the theta function 

2^2ÇZn expfaizAz1) is a modular form for r0(A
T) with character I —-— I. This 

also follows from Shimura's transformation formula of Proposition (13) 
below. 

THEOREM 9. (i) If C is a self-orthogonal doubly even (4w, k) code over F2 

containing the all-one vector then 

(i) eL(c )(*) e ^ 2 T O ( r 0 ( 2 ) ) . 

(ii) $2 maps C[X4 + F4, X4Y4] isomorphically onto ^ 4 ( r 0 ( 2 ) ) . 

Proof. Let C2,4 be the binary code consisting of the two vectors (1111) and 
(0000). PC2)4 = X4 + F4, and the quadratic form for L(C2,4) is given by 

[ 2 1 1 l"l 
1 2 0 0 
1 0 2 0 

Ll 0 0 2 J 

This matrix has determinant 4 but level 2, hence by the above remark 

eC2,4 e ^ 2 ( r 0 ( 2 ) ) . 

The character is trivial on r0(2). Clearly 

eC2i8 e^ 4 (r 0 (4 ) ) . 

N o w P F 4 = (1/12)(PC2>8 - P'U,,) hence 

$2(C[X4 + Y4,X4Y4]) C ^ ( r 0 ( 2 ) ) . 
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One calculates (see [22] p. 46) tha t 

d i m ^ n / 2 ( r o ( 2 ) ) = + 1, 

hence the mapping is onto. I t is infective by Theorem 3, so (ii) is proved. 
(i) follows since the polynomial of any linear doubly even code containing the 
all-one vector is in C[X* + F4 , X 4 F 4 ] . 

COROLLARY. A function holomorpkic on H and the cusps of f o(2) is a modular 
form for r 0 ( 2 ) if and only if it can be written as a symmetric polynomial in the 
Jacobi theta functions (/>2j0

4(s) and </>2ji
4(z). 

T H E O R E M 10. 

$ 2 

C[X\ F4] ^C[4>2
4,o(s), 4>Uz)} = ^ 4 ( r 0 ( 4 ) ) . 

The proof is similar to the proof of Theorem 9. Use the code C2i4 and the code 
containing only (0000). Also note t ha t 

dim^„/2(r0(4)) + 1. 

Given a series / = ^2nçz an(f\ we decompose / into even and odd par ts , 
/ = fe + /o, whe re / g = ^W€2Z arSt a n d / 0 = f — fe- I f - ^ is a space of functions 
with expansions in q, we denote by ^Jt'e the space of even par t s of ^ , and by 
-#o the space of odd par ts . 

T H E O R E M 11. For k £ 2Z: 

(i) ^ ( r ( 2 ) ) = ^ ( r e , x)e ® ^(?e, x)o; 
( i i ) ^ ( r 0 ( 2 ) ) =^k(reJx)e. 

Proof. Let / be in <J?k(Te, x)« Then by Theorem 7, / is a sum XI «fQi of 
the ta functions 9* of lattices L(Ct) of self-dual binary codes. We can assume 
the d to be linear, in fact direct sums of C2;2 's and C2,8's. Nowr the even pa r t 
of each Bt is the the ta function of the sublat t ice of index 2 of L(d) consisting 
of all vectors of even squared length, and this sublatt ice is the lat t ice of the 
maximal doubly even subcode of C*. Since n = 0 mod 4, this subcode contains 
the all-one vector. Hence by Theorem 9, the even par t of 9* is in ^ ( r 0 ( 2 ) ) 
for all i, and s o / e is. This proves (ii), since the dimension of both ^ A ( r 0 ( 2 ) ) 

and <J?k(Te> x)e is \~r\ + 1. Both F0(2) and Ye contain T(2) , and xe is 

trivial on T (2), sof,fe and hence / 0 are m^k ( Y (2) ). The dimension of ^ k ( Y (2) ) 
is k/2 + 1 which is the sum of the dimensions on the right hand side of (i) 

( d i r r i c ^ ( I V x)o not + 1, since the space is spanned by isobaric 

polynomials in 9Z4 and the Eisenstein series £ 2 , bu t E2 has no odd p a r t ) . 
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Sloane [24] uses similar techniques including Theorem 4 and a transformation 
formula for the ta functions of <f-lattices (analog of (13)), to show tha t 
^ ( f é % ) , the algebra generated by Hamming weight polynomials of self-dual 
codes over F 4 , is isomorphic to the algebra of modular forms for the subgroup 
of subst i tut ions of H generated by z —» z + \ / 3 " a n c l z —» (— \/z). He also shows 
tha t if A is a self-dual (^-lattice in Cn, then 6A(2s) is a modular form of 
weight n for f 0(3) . But ^ # ( r 0 ( 3 ) ) is not generated by the theta functions of 
these lattices. However, using Sloane's work, we can describe the s tructure of 
this algebra in terms of the Jacobi the ta functions. 

Sloane shows tha t the function 

Ae(«) = ? f l : = i (1 ~ <Zm)6U - qZmY 

is a linear combination of theta functions of self-dual codes over F 4 . A6(2s) is a 
cusp form for r 0 ( 3 ) of weight 6. Consider the S -lattice A3 (Example 5 of [24]) 
formed from 3 copies of the trivial code F 4

3 : 

A3 = A(F4
3) \J (u + A(F4

3)) U (2u + A(F4
3)) where 

» - i -^r <'• '• «• 
Now s e t a = Q#(2z) = \p0(z) (see (11) and (13)), and set 

0 = OA^Z) = M*Y + i(*o(*/3) - Mz)Y-

T H E O R E M 2. ^ 1 ( r 0 ( 3 ) ) = C[a, 0]. 

Proof, a — 9^(2z) £ ^ i ( r 0 ( 3 ) ) since ^ is a self-dual ^ - l a t t i c e . One may 
directly verify t ha t the realification of the lattice 2 A3 is the lattice associated 
with the Lie algebra of type E& (see [3]). The quadrat ic form of this real 
lattice is even integral of level 3, so 6A3(42;) Ç o /# 3 ( r 0 (3 ) ) . Now we show tha t 
these two functions generate the entire algebra. First, let JYk be the space of 
cusp forms of weight k for r 0 (3 ) and set 

Jt* = ^ ( r 0 ( 3 ) ) . 

Then by s tandard formulas derived using the Riemann-Roch theorem 
([22], pp. 46, 47), 

dim*yK** = 1 and dim^f/, = + 1, 

hence 

(30) JYk = A 6 ( 2 s ) ^ , _ 6 . 

Now one verifies tha t 

Jti = C(a 3 , 0 ) , Jet = C(a 6 , 02) 0 C ( A 6 ( 2 z ) ) , and 

Jlk = C (a\ j8*/8 ) 0 J/k for k = 0 mod 3. 

So by induction and (30) we see tha t polynomials in a and /3 generate ^ k 
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When k ̂  0 mod 3, the proof follows as above by multiplying each space by 
a or a2. 

5. M o d u l a r f o r m s of ha l f - in tegra l w e i g h t . We now turn to the class of 
self-orthogonal codes which have codimension one in their duals. Examples are 
the duals of the Fp spans of the incidence matrices of certain projective designs 
(see Proposition 1). Here the ambient dimension of a code will be odd, and so 
the wreight of the associated the ta function will be half-integral. We shall show 
tha t these functions are modular forms of level 2p. We use Shimura ' s method of 
dealing with modular forms of half-integral weight given in [23]. Set 

A = {(«, T(z))\a = yl
c
 b

dj e SL2(Z), T(Z) e Hoi(H) 

with TT(S)2 = tfcz + d),t£ C, |;| = 1 [ . 

Let Pr : A —» SL2(Z) be the natural projection. Give A a group s t ructure with 
composition law 

(a, TTOOKIS, p(z)) - * (a/3, ir((3(z)) • p(z)). 

Let A act on H by the action of its first component , and let A act "wi th weight 
n} on Ho l (H) in the following manner : 

(31) f\[a^{z)]n=f{az)ir{z)-\ 

A calculation shows t h a t / | [ ( a , ?r) • (/3, p)] = / | [ ( a , TT)]|[(yS, p)]. 

Definition. A holomorphic function / on H is a modular form of weight n/2 
for a subgroup Ar of finite index in A if 

0 ) / | [ f ]» = / f o r all f G A'; 
(ii) / is holomorphic a t each cusp of A'. 

W7hat (ii) means is t h a t / must have the proper ty t ha t the rational divisor 
associated w i t h / (as in [22] Section 2.4), consistent with the complex Riemann 
surface (Pr A ' / H ) * (defined in [22] Section 1.5), is a positive divisor. This is 
characterized by a certain expansion of / a t the cusp described as follows: 
For T a cusp, let a t Ar, h a positive integer be such t ha t a ( o o ) = r and 

a I d= I 1 , t \a~l generates the free cyclic pa r t of A / , the stabil i ty subgroup 

of r. Define a real number r by tn — e2riT, 0 ^ r S 1- Then (ii) means tha t 

(32) f\[a]n(z) = & an exp(2W(« + r)z/A). 

The the ta function transformation formulas wall insure t ha t our the ta functions 
will satisfy (32). A more general the ta function will yield cusp forms for 
subgroups of A. So we will define the ta functions as in [23]. 
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Let A be the matrix for a quadratic form having integral entries. We define 
the weak level of A to be the least integer N such that NA~l has integral 
entries. A complex valued spherical function P of order v with respect to A is a 
polynomial in n variables which is orthogonal to all homogeneous polynomials 
of degree less than v under the inner product: 

(P, Q)A = I P(x)Q(x)dx 
U B(A) 

where B(A) = {x £ Rn\xAxl S 1}. Let h £ Zw be such that Ah Ç NZn and 
let s ^ H. Then we define 

Q(z, h,A,N,P) = ^2m=hmo6N P{m) exp^wtzmAm'/N2). 

PROPOSITION 13. (Shimura [23]) For 7 = 1 , J £ SL2(Z) with b = 0 mod 2, 
c = 0 mod 2iV, we te;e: 

(33) 6(72, h,A,N,P) = exp{2iriabhAhl\N2) 

X (--f 4)(f ) V(<* + d)k/2e(z, ah, A,N, P) 

where k = n -\- 2v, ed — \ or i according as d = 1 or 3 mod 4 awd ( —) is 
Shimura s quadratic residue symbol where 

( j ) - " ( é ) < 
f c < 0,d < 0, 

y ~ .M, 
Furthermore, if A is even integral then the restriction c = 0 mod 27V may be 
changed to c = 0 mod A7', rmd if fro//^ ̂4 emd A^4-1 are even integral {i.e. A has 
level N) then (33) holds for all 7 £ r 0 (A) . 

For a prime £, recall that <t>p,o(z) is the theta function of the one dimensional 
lattice \/~pZ whose quadratic form matrix is (p). For p odd and 7 G r0(2p, 2), 
define 

(34) g(7,2) = 
<t>p,oj(z) 

0P,O(S) 

and for £ = 2, 7 £ r0(4), define g(y,z) in the same way. 
Using proposition 13 we get that 

(35) g(y,z) = (jje^icz + d^ 

where m = c/2p. So we see that the map 7 —» (7, g(7, s)) defines an injection 
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of T0(2p, 2) or r 0 ( 4 ) into A. Denote the image of this injection by Ao(2p, 2) 
or A0(4). 

PROPOSITION 14. / / C is a self-orthogonal code in Fp
n such that its codimension 

in its orthogonal is 1, then B L ( O (z) is a modular form for A0(2p, 2) . If p = 2 and 
C is also doubly even, then QL(o(z) is a modular form for A0(4). 

Remark. A little more generally we could require the codimension of C in O 1 

to be equivalent to n mod 2 as long as the associated quadra t ic form is of 
level p. Note tha t C satisfies the hypothesis of Proposit ion 14 if it is the F^ 
span of the incidence matr ix of a design satisfying the hypothesis of Proposi­
tion 1. 

Proof. If A is a quadrat ic form matr ix for C, it has weak level p and deter­
minant p so 

(-"-) fâW (Ik1)" »'•— -«/*• 
Hence, using (35) and Proposition 13, we see tha t the proposition follows. 

T H E O R E M 15. Let &x denote the C-algebra generated by the weight polynomials 
of all doubly even codes of weak level 2, and let ^ # ( A 0 ( 4 ) ) denote the algebra of 
modular forms for A0(4) graded over integral and half integral weights, then 

$ 2 
^ 1 = C[X, F4] » C [ * 2 , o ( s ) , 4>2.i(*)4] = ^ ( A o ( 4 ) ) . 

T h e theorem follows from Theorem 3 and Proposition 14 since the trivial 
code (0) and C2>4 have weak level 2 and their polynomials generate C[X, Y4]. 

There is a class Se of self-orthogonal codes whose quadra t ic forms are even 
integral and have de te rminant 2. Their the ta functions thus have level 2; 
however we have found no nice way to define a multiplier system for r 0 ( 2 ) 
similar to the method used for A0(2p, 2) and A0(4). But if we define 

Ao(2ï = {(y,g(y,z))\y = ( " j ) G r„(2) and 

g{y,z) = [ij^'icz + d)*| , 

and we let ^Jén be the linear space generated by the weight polynomials of 
self-orthogonal doubly even binary (n, (n — l ) / 2 ) codes, then 

*2(&n) C ^ n / 2 ( A 0 ( 2 ) ) . 

We can see tha t the forms of half-integral weight we have constructed for 
A0(2£, 2), A0(4) and A0(2) are associated with forms of integral weight for Te 

or r by vir tue of the fact t ha t the combinatorial s t ructures underlying the 
associated lattices may be simply extended to yield lattices for forms for Te 
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or T. This is true for forms associated with codes derived from designs satis­
fying the hypothesis of Proposition 1. Th i s association between the forms may 
be reflected algebraically via the polynomial representation. For example, if 
9 G $>i(3$)n then 

e = p(02tO(z),02,i6O) 

for some polynomial P, and 

02,0^(02,0! 02,l) + 0 2 , l P (02,1' 02,o) £ ^ (n + \) /2 ( T) . 

6. R e m a r k s . 1) Viewed from the perspective of [12], Theorem 3 produces 
mappings from algebras of invariants for certain finite matrix groups to alge­
bras of modular forms. Polynomials of self-dual codes turn out to be invariants 
for matrix groups by vir tue of the Mac Williams equations (17), and various 
types of regularity in the shapes represented by the vectors in such codes. 
These mappings are discussed in [17]. Relationships involving the modular 
group and invariance groups for polynomials of self-dual binary and ternary 
codes may be found in [6]. 

2) The methods given in this paper may be used to produce the ta function 
identities in two ways: 

i) By equating different polynomial representations of the same function: 
One example: For p = 2 or p = 1 mod 4, let i3p>2 be the (2, 1) linear code 
over Fp generated by ( l , \ / ~ 1)- Then 

pBtt2 = X2 + Y\ PB2,b = X2 + 4 F Z , etc. 

Now 

and so 

1 + 4g + V + Sq" + . . . = 02,o(s)2 + 4>2,i2(z) 

= 05,o(2;)2 + 405 ,i(s)05,2(s) 

Other examples may be found in [6] and [24]. The technique is useful in 
finding product expansions for some functions. 

ii) The % images of shape relations give theta function identities. So these 
relations can be found by calculating the kernels of the %'s. For example, it 
was shown in [17] tha t the kernel of $5 restricted to ëP (se^ is a principal ideal 
generated by X4 YZ - X2 Y2Z2 + 2 Y*Z* - XZ> - X YK 
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