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Abstract

We show that the automorphism groups of right-angled Artin groups whose defining graphs have at least
three vertices are not relatively hyperbolic. We then show that the outer automorphism groups are also not
relatively hyperbolic, except for a few exceptional cases. In these cases, the outer automorphism groups
are virtually isomorphic to either a finite group, an infinite cyclic group or GL2(Z).

2020 Mathematics subject classification: primary 20F67; secondary 20F65.

Keywords and phrases: automorphism group, right-angled Artin group, relative hyperbolicity.

1. Introduction

Associated with a finite simplicial graph Γ whose vertex set and edge set are V and E,
respectively, is the right-angled Artin group (RAAG) AΓ which is defined by the group
presentation:

AΓ = 〈v ∈ V | [u, v] = 1 for {u, v} ∈ E〉.
In these settings, Γ is said to be the defining graph of AΓ. As extreme examples,
RAAGs can be free abelian groups Zn, when the defining graphs are complete, or free
groups Fn, when the defining graphs have no edges. In contrast, generic RAAGs have
interesting behaviours; for example, some of their subgroups may not be isomorphic to
RAAGs. Subgroups of RAAGs, such as Bestvina–Brady groups [3], are actually quite
wild and have been used to construct examples of groups with peculiar properties. For
a brief introduction to RAAGs, we refer to Charney’s note [5].

In this paper, we look at the automorphism and outer automorphism groups of
AΓ denoted by Aut(AΓ) and Out(AΓ), respectively (the inner automorphism group
is denoted by Inn(AΓ)). Here, Out(Zn) will usually be identified with GLn(Z). Even
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though Zn and Fn have a lot of opposite properties in the algebraic sense, GLn(Z) and
Out(Fn) share many common properties: for example, both are virtually torsion-free,
residually finite and have finite virtual cohomological dimension. Charney and
Vogtmann extended these results to every Out(AΓ) in their papers [6, 7].

Another interesting common feature of GLn(Z) and Out(Fn) is that they are not
relatively hyperbolic, except when n is small enough, in which case they are actually
hyperbolic. Anderson et al. [1] established a simple criterion for showing nonrelative
hyperbolicity of groups generated by infinite order elements. Using this criterion, they
proved that, as long as n ≥ 3, GLn(Z) and Out(Fn), and even Aut(Fn), are not relatively
hyperbolic; see also Behrstock et al. [2]. It is then quite natural to ask whether Aut(AΓ)
and Out(AΓ) are always never hyperbolic. This turns out to be true, except for a few
cases.

Here are the two main theorems of this paper.

THEOREM 3.1. If a finite simplicial graph Γ contains at least three vertices, then the
automorphism group of the right-angled Artin group of Γ is not relatively hyperbolic.

THEOREM 4.1. If the outer automorphism group of a right-angled Artin group is
infinite and relatively hyperbolic, then it is virtually cyclic or virtually isomorphic
to GL2(Z).

We remark that even though Aut(AΓ) is almost never relatively hyperbolic, Genevois
proved in [9] that Aut(AΓ) is acylindrically hyperbolic if and only if Γ is not a join and
contains at least two vertices.

The definition and study of relatively hyperbolic groups come from the following
observation: even when a group G fails to be hyperbolic, it might still exhibit
hyperbolic behaviours if we look only ‘outside’ some proper subgroups, called
parabolic subgroups. With this observation in mind, one obstruction for being
relatively hyperbolic is the existence of a specific collection A of proper subgroups
which are far from being hyperbolic (for example, free abelian subgroups) and
are well-networked. The term ‘well-networked’ means that (1) the union of all the
subgroups inA generates a finite index subgroup of G and (2) for any A, A′ ∈ A, there
exists a sequence A1 = A, . . . , An = A′ such that Ai ∩ Ai+1 is infinite. If we find such a
collection of subgroups of G, then G is never relatively hyperbolic regardless of the
choice of parabolic subgroups.

Following the above idea, the notion of the commutativity graph of a group G is
recalled in Section 2.2 as a tool to show that G is not relatively hyperbolic. One of
the main assumptions to define the commutativity graph is the existence of a (possibly
infinite) generating set of G which consists of infinite order elements. However, there
are finite order elements in the usual generating sets of Aut(AΓ) and Out(AΓ). To handle
this problem, in Section 2.1, we find a finite index subgroup which is generated by a
finite collection of infinite order elements. In Sections 3 and 4, we prove that Aut(AΓ)
and Out(AΓ), respectively, are in general not relatively hyperbolic, by using those
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finite index subgroups and the fact that being (or not being) relatively hyperbolic is
a quasi-isometry invariant.

2. Preliminaries

We always assume Γ is a finite simplicial graph with vertex set V. For a vertex
v ∈ V , the link of v, denoted by lk(v), is the the full subgraph of Γ spanned by vertices
adjacent to v. Similarly, the star of v, denoted by st(v), is the full subgraph of Γ spanned
by vertices adjacent to v and v itself. We then say that v ≤ w if lk(v) ⊂ st(w). This
partial order induces an equivalence relation on V by setting v ∼ w if v ≤ w and w ≤ v.
The partial order then descends to a partial order on the collection of the equivalence
classes of vertices by setting [v] ≤ [w] if for some, and thus all, representatives v′ ∈ [v]
and w′ ∈ [w], we have v′ ≤ w′. A vertex v ∈ V is maximal if any vertex w such that
v ≤ w is actually equivalent to v.

2.1. (Outer) automorphism groups of RAAGs. A theorem which was conjectured
by Servatius [12] and proved by Laurence [10] says that Aut(AΓ) is generated by the
following four finite classes of automorphisms.

(1) Graph automorphisms. An automorphism of Γ induces an automorphism of
AΓ because it preserves the edges of Γ and thus the relations of AΓ. The
automorphism obtained this way is called a graph automorphism.

(2) Inversions. An automorphism of AΓ sending one generator v to its inverse v−1 is
called an inversion.

(3) Transvections. Take two vertices v and w in Γ such that v ≤ w. Then the
automorphism sending v to vw and fixing all the other vertices is called a right
transvection and is denoted by Rvw. We can similarly define a left transvection Lvw
by sending v to wv and still fixing all the other vertices.

(4) Partial conjugations. Let C be a connected component of Γ − st(v), for a vertex
v ∈ Γ. The automorphism defined by conjugating every vertex in C by v is called
a partial conjugation and is denoted by PC

v . If a component C of Γ − st(v) is
composed of a single vertex w, we write Pw

v instead of P{w}v .

Transvections and partial conjugations have infinite order, in contrast to inversions
and graph automorphisms which have finite order. The abelianisation map AΓ → Zn

for n = |V | induces a homomorphism Aut(AΓ)→ GLn(Z), whose restriction on the
subgroup generated by inversions and graph automorphisms is injective; in particular,
this subgroup is finite because its image in GLn(Z) is finite. Let Aut∗(AΓ) be the
subgroup of Aut(AΓ) generated only by transvections and partial conjugations.

LEMMA 2.1. Aut∗(AΓ) is a finite index normal subgroup of Aut(AΓ).

PROOF. The fact that Aut∗(AΓ) is a normal subgroup can be shown by checking that
the conjugate of a transvection or a partial conjugation by an inversion or a graph
automorphism is still a transvection or a partial conjugation. Because the image of
the quotient map Aut(AΓ)→ Aut(AΓ)/Aut∗(AΓ) is generated by the images of graph
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[4] Right-angled Artin groups 105

automorphisms and inversions, its cardinality is smaller than or equal to that of the
subgroup generated by inversions and graph automorphisms, which is finite. We can
thus deduce that Aut∗(AΓ) is of finite index. �

Under the quotient map Aut(AΓ)→ Out(AΓ) := Aut(AΓ)/Inn(AΓ), Out(AΓ) is gen-
erated by the images of graph automorphisms, inversions, transvections and partial
conjugations. (Note that some images of partial conjugations may be trivial in
Out(AΓ).) Similarly, Out∗(AΓ) is defined to be the subgroup generated by the images
of transvections and partial conjugations in Out(AΓ); it can be considered as the image
of Aut∗(AΓ) in Out(AΓ). By the above lemma, Out∗(AΓ) is also a finite index normal
subgroup of Out(AΓ).

2.2. Nonrelative hyperbolicity. We first recall the definition of relative hyperbol-
icity by Bowditch [4]. Let G be a finitely generated group and H a finite collection
of proper finitely generated subgroups of G. Choose a finite generating set S of G
and consider the Cayley graph Λ = Λ(G, S). The coned-off Cayley graphΛ̂(G,H) is
defined as follows: starting with the Cayley graph Λ, for each coset gHi with g ∈ G,
Hi ∈ H , we add a vertex v(gHi) to Λ and connect v(gHi) by an edge to each vertex in
gHi. We then say that G is relatively hyperbolic with respect toH if:

(1) the coned-off Cayley graph Λ̂(G,H) is δ-hyperbolic; and
(2) Λ̂(G,H) is fine (this means that for each integer k, all edges e of Λ̂(G,H) are

contained in finitely many simple cycles of length k).

Whenever Λ̂(G,H) satisfies the first of the above conditions, an element in H is said
to be a parabolic subgroup of G and G is said to be weakly relatively hyperbolic (with
respect to H). If G is not relatively hyperbolic with respect to any choice of a finite
collection of proper finitely generated subgroupsH , then it is said to be not relatively
hyperbolic.

There are two necessary conditions for parabolic subgroups of relatively hyperbolic
groups. Let G be a finitely generated group which is relatively hyperbolic with
respect to a finite collection H = {Hi} of parabolic subgroups. The first is about
virtual malnormality of parabolic subgroups and the second slightly generalises [1,
Lemma 5].

THEOREM 2.2 [11, Theorem 1.4]. For Hi, Hj ∈ H and g1, g2 ∈ G, g1Hig−1
1 ∩ g2Hjg−1

2
is finite if either Hi and Hj are distinct or Hi = Hj and g−1

1 g2 � Hi.

In particular, this implies that parabolic subgroups are almost malnormal.

LEMMA 2.3. Suppose H is a subgroup of G isomorphic to a RAAG AΓ whose defining
graph Γ is connected. Then H is contained in a conjugate of a parabolic subgroup
Hi ∈ H .

PROOF. This is a direct consequence of Theorems 4.16 and 4.19 in [11], stating that
a free abelian subgroup of rank 2 has to be contained in a conjugate of Hi ∈ H .
Because the subgroup generated by the end points of each edge of Γ is a free abelian
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subgroup of rank two, we can deduce that H is contained in a conjugate of a parabolic
subgroup. �

From these necessary conditions for parabolic subgroups, a simple criterion for
detecting nonrelative hyperbolicity is developed as in [1]. Let G be a group and S
be a (possibly infinite) generating set consisting only of infinite order elements. The
commutativity graph K(G, S) of G with respect to S is the simplicial graph with vertex
set S in which two distinct vertices s and s′ are connected by an edge if there exist
integers ns and ns′ such that 〈sns , (s′)ns′ 〉 is abelian. The main theorem of [1] is then the
following result.

THEOREM 2.4 [1]. Let G be a finitely generated group and S be a (possibly infinite)
generating set of G which consists of infinite order elements and contains at least two
elements. Suppose that K(G, S) is connected and that there are at least two vertices
s and s′ in K(G, S) such that 〈sns , (s′)ns′ 〉 is a rank two free abelian group for some
integers ns and ns′ . Then, G is not relatively hyperbolic.

Finally, owing to the result of Druţu, to know whether a finitely generated group G
is relatively hyperbolic or not, we may look at other groups quasi-isometric to G (for
example, finite index subgroups).

THEOREM 2.5 [8]. In the class of finitely generated groups, being relatively hyperbolic
is a quasi-isometry invariant.

3. Automorphism group

The goal of this section is to prove that Aut(AΓ) is in general not relatively
hyperbolic. To use Theorem 2.4, we work with Aut∗(AΓ) instead of Aut(AΓ). Indeed,
Aut∗(AΓ) is generated by infinite order elements and is a finite index subgroup, by
Lemma 2.1. By Theorem 2.5, it is then enough to show that Aut∗(AΓ) is not relatively
hyperbolic.

THEOREM 3.1. Let Γ be a graph which has at least three vertices and S the set of
all transvections and partial conjugations in Aut(AΓ). Then the commutativity graph
K(Aut∗(AΓ), S) is connected. Hence, Aut(AΓ) is not relatively hyperbolic.

PROOF. The proof is divided into three steps. First, we show that, as long as they exist,
any two transvections are joined by a path in K = K(Aut∗(AΓ), S). Then, we show that
the same holds for any two partial conjugations. Finally, we show that any partial
conjugation and transvection are joined by a path, as long as they exist.

Claim 1. If there are at least two distinct transvections, then any two transvections are
joined by a path in K.

Let a and b be vertices in Γ such that a ≤ b. If a and b are adjacent, then Rab = Lab.
Otherwise, Rab and Lab are distinct but [Rab, Lab] = 1, that is, Rab and Lab are joined by
an edge in K. (In both cases, [Rab, Lab] = 1.) Thus, to prove the claim, we only need to
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show that there is a path in K from Rab to either Rcd or Lcd for any two vertices c, d ∈ Γ
with c ≤ d. There are five cases to handle.

Case 1. If c = a, then Rab and Lad are joined by an edge because [Rab, Lad] = 1.

Case 2. If c � a, b and d � a, then Rab and Rcd are joined by an edge because
[Rab, Rcd] = 1.

Case 3. If c � a, b and d = a, then Rab and Lca are joined by a path. Indeed, c ≤ d =
a ≤ b and thus, c ≤ b. This means that there is a transvection Rcb. Then there is a path
joining Rab and Lca because [Rab, Rcb] = [Rcb, Lca] = 1.

Case 4. If c = b and d � a, b, then Rab and Rbd are joined by a path. Indeed, a ≤ b ≤ d
and thus, a ≤ d so that there is a transvection Lad. Then there is a path joining Rab and
Rbd because [Rab, Lad] = [Lad, Rbd] = 1.

Case 5. If c = b and d = a, then a ∼ b. There are two subcases.

Subcase 5-1: a and b are adjacent, that is, st(a) = st(b). In this case, we show that
Rab and Rba are joined by a path. If st(a) does not cover the whole graph Γ, choose
v ∈ Γ − st(a) and let Γ0 be the component of Γ − st(a) containing v. Note that Γ0 does
not contain a and b. Then

[Rab, PΓ0
b ] = [PΓ0

b , PΓ0
a ] = [PΓ0

a , Rba] = 1.

Otherwise, st(a) covers the whole graph so that w ≤ a ∼ b for any vertex w � a, b in Γ.
Then

[Rab, Rwb] = [Rwb, Lwa] = [Lwa, Rwa] = [Rwa, Rba] = 1.

Subcase 5-2: a and b are not adjacent, that is, lk(a) = lk(b). In this case, we show that
Rab and Lba are joined by a path. If the link lk(a) is empty, then a ∼ b ≤ w for any
vertex w � a, b in Γ. Then

[Rab, Law] = [Law, Rbw] = [Rbw, Lba] = 1.

Otherwise, choose w ∈ lk(a). If st(w) does not cover the whole graph, then

[Rab, Pa
b] = [Pa

b, PΓ
′

w ] = [PΓ
′

w , Pb
a] = [Pb

a, Lba] = 1,

where Γ′ is a component of Γ − st(w). If st(w) = Γ, then a ∼ b ≤ w, and so

[Rab, Law] = [Law, Rbw] = [Rbw, Lba] = 1.

By these five cases, any two transvections (if they exist) are joined by a path in K.
If Γ is a complete graph, then there is no partial conjugation so that the theorem

holds by the above claim. From now on, therefore, we assume that Γ is not complete.
In particular, there are at least two partial conjugations.

Claim 2. Any two partial conjugations PC
a and PD

b are joined by a path in K for any
choices of a, b, C, D.
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Note that [PC1
a , PC2

a ] = 1 whenever the partial conjugations are defined. Therefore,
to see whether two partial conjugations PC

a and PD
b are joined by a path for any two

distinct vertices a and b, it is enough to check only one particular choice of C and D.
Suppose Γ is connected. If there is no vertex in Γwhose star is the whole graph, then

Γ − st(a) = Γ1 
 · · · 
 Γm and Γ − st(b) = Γ′1 
 · · · 
 Γ
′
n for any two vertices a, b ∈ Γ,

where each Γi and Γ′j are components of Γ − st(a) and Γ − st(b), respectively. If

[a, b] = 1, this implies that [PΓi
a , P

Γ′j
b ] = 1 for any i and j so that the claim holds by

the connectivity of Γ.
If Γ = st(b) for some vertex b ∈ Γ, then one can easily see that PC

a and Rab commute
for any a ∈ lk(b) the complement of whose star has a nonempty component C. By
Claim 1, we can deduce that any two partial conjugations are joined by a path.

Now, suppose Γ has at least two components Γ1 and Γ2, and there are two
conjugations PC

a and PD
b for a ∈ Γ1 and b ∈ Γ2. We only need to show that there are

some components C and D of Γ − st(a) and Γ − st(b), respectively, such that PC
a and

PD
b are joined by a path in K. There are two cases depending on the number of vertices

in Γ2.

Case 1. Suppose Γ2 has at least two vertices. There are three subcases.

Subcase 1-1: st(b) � Γ2. Then [PΓ2
a , PD

b ] = 1, where D is a component of Γ2 − st(b),
because

PΓ2
a (PD

b (s)) = PΓ2
a (bsb−1) = aba−1 · asa−1 · ab−1a−1 = absb−1a−1,

and

PD
b (PΓ2

a (s)) = PD
b (asa−1) = absb−1a−1

for any vertex s ∈ D.

Subcase 1-2: st(b) = Γ2 but Γ2 is not a complete graph. There is a vertex b1 ∈ Γ2 and a
component D1 of Γ2 − st(b1). Because b and b1 are adjacent,

[PΓ1
b , PD

b1
] = [PD

b1
, PΓ2

a ] = 1.

Subcase 1-3: Γ2 is a complete graph. Then

[PΓ1
b , Rb1b] = [Rb1b, PΓ2

a ] = 1

for any vertex b1 � b in Γ2 because b1 ≤ b.

Case 2. Suppose Γ2 has only one vertex b. There are two subcases.

Subcase 2-1: Γ1 is not a complete graph. Let a1 be a vertex in Γ1 such that st(a1) � Γ1.
If a = a1, then the claim holds because [PC

a , PΓ1
b ] = 1, where C is a component of

https://doi.org/10.1017/S0004972721001258 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721001258


[8] Right-angled Artin groups 109

Γ1 − st(a). If a � a1 but st(a) = Γ1, then we additionally have [PC
a1

, PΓ2
a ] = 1 so the

claim holds.

Subcase 2-2: Γ1 is a complete graph. We must divide into two cases again. If Γ1 has at
least two vertices, then for any vertex a1 � a in Γ1, a1 ≤ a so that

Ra1a(PΓ1
b (a1)) = Ra1a(ba1b−1) = ba1ab−1,

and

PΓ1
b (Ra1a(a1)) = PΓ1

b (a1a) = ba1b−1 · bab−1 = ba1ab−1.

Thus,

[PΓ2
a , Ra1a] = [Ra1a, PΓ1

b ] = 1.

If Γ1 has only one vertex a, then

[PΓ2
a , Rba] = [Rab, PΓ1

b ] = 1.

Because Γ has at least 3 vertices, there is a vertex c such that a ∼ b ≤ c. Since there is
a path between Rab and Rba by Claim 1, PΓ2

a and PΓ1
b are joined by a path in K.

Claim 3. Any transvection is adjacent to a partial conjugation in K.
Suppose a and b are vertices in Γ such that a ≤ b.

Case 1. If st(b) � Γ, then [Rab, PC
b ] = 1 for any component C of Γ − st(b).

Case 2. Suppose st(b) = Γ. Because Γ is not complete, there is a vertex c of Γ
such that st(c) � Γ (c may be equal to a). For any component C of Γ − st(c), we
have [Rab, PC

c ] = 1. Therefore, there is an edge joining a transvection and a partial
conjugation if they exist.

In summary, if Γ is complete, by Claim 1, K is connected. Otherwise, Aut∗(AΓ)
contains at least two partial conjugations. If it has no transvections, by Claim 2, K is
connected. If it has a transvection, by combining the three claims, we can show that K
is connected. �

The only cases not covered by Theorem 3.1 are for RAAG’s whose defining graphs
have one or two vertices. If AΓ is Z, then Aut(AΓ) = Z2 is finite. In the two remaining
cases, AΓ is either Z2 or F2 so that Aut(AΓ) is either GL2(Z) or Aut(F2), respectively,
and GL2(Z) is hyperbolic because it is virtually free. For Aut(F2), consider the
subgroup Aut+(F2) which is the preimage of the special linear subgroup SL2(Z) ⊂
GL2(Z) under the homomorphism Aut(F2)→ GL2(Z) induced from the abelianisation
map F2 → Z2. Then Aut+(F2) is a finite index subgroup of Aut(F2) and can be shown
to be isomorphic to the pure mapping class group of a twice punctured torus, which is
not relatively hyperbolic by (the proof of) Theorem 8.1 in [2].

We conclude this section with a remark that was pointed out to us by Anthony
Genevois. If Γ is connected, there is a shorter argument to prove that Aut(AΓ) is
not relatively hyperbolic. Suppose that Aut(AΓ) is relatively hyperbolic with respect
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to a finite collection H = {Hi} of parabolic subgroups. If there is a vertex v ∈ Γ
which is adjacent to all other vertices, then the subgroup of Aut(AΓ) generated by
all transvections induced by this central vertex v is an infinite normal free abelian
subgroup contained in some Hi ∈ H by Lemma 2.3. Otherwise, Inn(AΓ) is isomorphic
to AΓ and it is thus an infinite normal subgroup, contained in some Hi ∈ H by
Lemma 2.3. In both cases, we find an infinite normal subgroup contained in an almost
malnormal subgroup Hi. By Theorem 2.2, this implies that Hi = Aut(AΓ), which is a
contradiction.

4. Outer automorphism group

In this section, we look at the relative hyperbolicity of Out(AΓ). In the same spirit
as the proof of relative hyperbolicity of Aut(AΓ), we work with the subgroup Out∗(AΓ)
instead of the whole group Out(AΓ). Let S be the set of all transvections and partial
conjugations as before and S′ the set of all the (nontrivial) images of elements of S in
Out(AΓ). We want to investigate the connectivity of K(Out∗(AΓ), S′). Unfortunately, the
proof of the connectivity of K(Aut∗(AΓ), S) does not directly imply that K(Out∗(AΓ), S′)
is connected because some partial conjugations in Aut(AΓ) are sent to the identity
element in Out(AΓ). For the rest of this section, when we refer to a transvection or a
partial conjugation, we mean its image in Out(AΓ).

THEOREM 4.1. Suppose Γ contains at least two vertices. If Out(AΓ) is not finite,
virtually Z nor virtually GL2(Z), then Out(AΓ) is not relatively hyperbolic.

PROOF. Clearly, if Out∗(AΓ) is finite or isomorphic to Z, then Out(AΓ) is hyper-
bolic. In particular, it is relatively hyperbolic. Now we examine the commutativity
graph K = K(Out∗(AΓ), S′) for the case that S′ has at least two distinct elements of
Out∗(AΓ).

Claim 1. If there are at least two nontrivial partial conjugations, then they are joined
by a path in K.

Let PC
a and PC′

b be two such partial conjugations. If a and b commute (a may be
equal to b), then so do PC

a and PC′
b , so we can assume that a and b do not commute.

Because neither PC
a nor PC′

b is trivial, it means that Γ − st(a) and Γ − st(b) both consist
of at least two components. Because a and b are not adjacent, there is a component D of
Γ − st(a) and a component D′ of Γ − st(b) which are disjoint. However, then [PC

a , PD
a ] =

[PD
a , PD′

b ] = [PD′
b , PC′

b ] = 1 and this defines a path in K from PC
a to PC′

b .

Claim 2. As long as they exist, any nontrivial partial conjugation and any transvection
are joined by a path in K.

Let Rab be a transvection and suppose that there is a nontrivial partial conjugation
PC

c . To show the existence of a path joining Rab and PC
c , we consider three cases

according to the choice of the vertex c.

Case 1. If c = b, then [Rab, PC
b ] = 1 for any component C.
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FIGURE 1. Typical examples of Γ with Out(AΓ) relatively hyperbolic.

Case 2. Suppose c = a. If PD
b represents a nontrivial element in Out(AΓ) for some

connected component D of Γ − st(b), then by Claim 1, there is a path from PC
a to PD

b
and the claim follows from the fact that PD

b and Rab commute. If no such PD
b exists, then

Γ − st(b) has at most one connected component. Let Γ1, . . . , Γn be the components of
Γ − st(a). Note that n ≥ 2. Because a ≤ b, we have Γ − st(b) ⊂ Γ − lk(a). This means
that Γ − st(b) is either empty or contains only a or is entirely contained in some Γi. In
all cases, there is a j such that Γj ⊂ st(b). Let w be any vertex in Γj. Because lk(w) ⊂
Γj ∪ lk(a), we have lk(w) ⊂ st(b) and thus w ≤ b. Choose w0 ∈ Γj. Then [Rab, Rw0b] =
[Rw0b, PΓk

a ] = 1 for any k � j. Hence, PΓk
a and Rab are joined by a path.

Case 3. Suppose that c is neither a nor b. If a or b is contained in lk(c), then PC
c and

Rab can be joined by a path. If a and b are in the same component C of Γ − st(c), then

PC
c (Rab(a)) = PC

c (ab) = cac−1 · cbc−1 = cabc−1

and

Rab(PC
c (a)) = Rab(cac−1) = cabc−1.

If instead a and b are contained in different components of Γ − st(c), then a ≤ c
because a ≤ b. We have already checked that PC

c and Rac can be joined by a path
for any component C of Γ − st(c). Because [Rab, Lac] = [Lac, Rac] = 1, PC

c and Rab also
can be joined by a path.

By these two claims, as long as |S′| > 1 and there is at least one nontrivial partial
conjugation, K is connected. The last remaining case is where S′ only consists of
transvections. By examining the paths between transvections in K(Aut∗(AΓ), S), there
may exist a path in K(Out∗(AΓ), S′) between two transvections, except possibly between
Rab and Rba (the paths joining them in K(Aut∗(AΓ), S) may use partial conjugations
which have trivial images in Out(AΓ)). So the only case still to be examined is the case
with only four transvections Rab, Rba, Lab and Lba. In this case, we see that Rab and
Lab are equal in Out(AΓ) and so are Rba and Lba. Therefore, Out∗(AΓ) is isomorphic to
Out∗(F2) and Out(AΓ) is virtually isomorphic to GL2(Z). �

We finish by giving some examples of RAAGs whose outer automorphism groups
are relatively hyperbolic. If the graph Γ is a cycle with n vertices and n edges, then
Out(AΓ) is a finite group, as long as n ≥ 5. If Γ is the graph on the left in Figure 1, then
there are no transvections, and the central vertex induces the unique partial conjugation
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in Out(AΓ), which is thus virtually cyclic. If Γ is the graph on the right in Figure 1, then
there is no partial conjugation in Out(AΓ) and the two equivalent vertices on the top and
the bottom induce two transvections in Out(AΓ). By the argument in the last paragraph
of the proof of Theorem 4.1, Out(AΓ) is virtually isomorphic to GL2(Z).
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