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AN EXAMPLE IN THE THEORY OF BILINEAR MAPS 

BY 

N. J. KALTON ( 1 ) 

ABSTRACT. We give an example of a p-convex quasi-Banach 
space E with 0 < p < 1 such that every bilinear map B :ExE-^F 
into a p-convex quasi-Banach space F is identically zero. This 
resolves a question of Waelbroeck. 

An admissible topology on the tensor product E ® F of two topological 
vector spaces E and F is any vector topology such that the natural bilinear 
form ExF-> E®F is continuous. The question, raised by Waelbroeck (cf. [4], 
[5] and [6]), of whether there is a Hausdorff admissible vector topology on 
E®F for any pair of spaces E and F has recently been answered in the 
affirmative by Turpin ([1] and [2]). If E and F are p-convex quasi-Banach 
spaces, Turpin [2] shows that E®F may be given an r-convex quasi-norm 
topology where r = max(^p, p2). In this note we show that it is not in general 
possible to give E<8)F a p-convex quasi-norm topology, thus answering a 
question raised by Waelbroeck [4] and Turpin [2]. In fact we produce a 
p-convex quasi-Banach space E such that every bilinear form B.ExE^F 
into a p-convex quasi-Banach space is identically zero. 

For the example, let T be the unit circle in the complex plane and denote by 
m normalized Haar measure on the circle, i.e. dm = (27r)-1 dd. We shall 
consider the space LP(T, m) (where 0 < p < l ) of complex-valued m-
measurable functions on T such that 

||/| |= (|_ | / N m ) 1 / P < œ . 

Suppose F is any p-convex quasi-Banach space; we may assume the quasi-
norm on F p-subadditive i.e. 

lk + ̂ 2||P^lkllP+IMP xl9x2eF. 

Let JB : Lp (T) x Lp (T) - ^ F b e any continuous bilinear map ; for some K<^ 

\\B(f,g)\\^K 11/11 ||g|| f^eL, 
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In [3] Vogt identifies the tensor product Lp(g)pLp with Lp(TxT, m x m); in our 
setting this implies that there is a continuous linear operator T : L p ( T x r , m x 
m ) ^ F with | |T | |<K and 

T(/<8>g) = B(/ ,g) / , g e L p ( D 

where 

/ ® g(w, Z) = /(W)g(z) W, Z G r . 

Denote by Hp the usual Hardy subspace of Lp, i.e. the closure in LP(T, m) of 
the polynomials. 

PROPOSITION. Suppose 0 < p < 1 and E = Lp/Hp. Let F be any p-convex quasi-
Banach space. If B :ExE-> F is a continuous bilinear form, then B is identi­
cally zero. 

Proof. Let TT : Lp —» E be the quotient map and consider B 0 : LP(T) x LP(T) —» 
F defined by B0(/, g) = B(7rf, irg). As above there is a continuous linear 
operator T : L p(r x T) -> F with T ( /® g) = B0(/, g). For fe G Z let ek(z) - z \ z 6 
T. Then ek® en 6 L p ( rxT) and ek®en(w, z') = wkzn, w, Z G T . The collection 
(ek<8>en;k,neZ) has dense linear span in L p (Txr ) . We shall show T(ek(8> 
en) = 0 for all fc, n. If either k or n is non-negative then 

T(ek®en) = B(Trek,7ren) = 0. 

Otherwise suppose k < 0 and n < 0 and choose / so large that / + k > 0 and 
Z + n > 0 . As LP has trivial dual for p < l , given e > 0 we can find N and 
(q : - N < j < N") such that c0 = 1 and 

It is immediate that 

dm(w) dm(z )<g p 

and hence multiplying through by wkzn inside the absolute value signs 

Now if k + / Z < 0 and n-jl<0 we have n/l<j<-k/l i.e. ; = 0. Hence 
T(6k+iI®cri_ iI) = 0 for /T^O and so as c0=l, 

l|T(ek(8)en)||<||T||8. 

As e > 0 is arbitrary, T(ek(g)en) = 0 and we conclude that T = 0 and B=0. 

QW^Z" 
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