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ABSTRACT. We present measurements with inclinometer/magnetometer probes inserted in glacier ice,
and discuss the underlying mathematical theory to extract velocity-gradient components from these
data. Assumptions concerning the ice flow field must be made to reduce the number of unknowns and
to close the system of equations obtained from the theory. With the incompressibility assumption and
the first-order plane-strain approximation, the evolution equation for the tilt of the main sensor axis can
be solved exactly and the obtained function can be fitted to measured data to obtain optimal shear and
normal strain components. Daily variations superposed on the tilt evolution reflect variations in sliding
and perhaps partial elastic recovery of deformations.

INTRODUCTION
Due to the limited accessibility of the subglacial and
englacial environment, the determination of subsurface ice
velocities and components of the strain rate and stress is
a technically difficult and expensive task. Such information
is of crucial importance for understanding basal processes,
such as variable basal sliding and its consequences for the
near-basal strain field.
A number of methods and techniques, mostly in boreholes,

have been applied to probe the englacial velocity and strain
fields. An often used method is the observation of ice
deformation in an open borehole with inclinometry (Gerrard
and others, 1952; Sharp, 1953; Raymond, 1971; Hooke
and Hanson, 1986; Hooke and others, 1992). This method
was used to determine longitudinal strain in a chain of
boreholes (Shreve and Sharp, 1970), to identify extrusion
flow type velocity profiles (Hooke and others, 1987), to
determine local sliding velocities (Copland and others, 1997)
and to investigate the effect of a cold margin on ice flow
(Moore and others, 2011). Harper and others (1998, 2001)
used arrays of boreholes to determine three-dimensional
flow and strain fields. Various methods were applied to
measure vertical strain rates in open boreholes (Paterson,
1976; Raymond and others, 1994; Gudmundsson, 2002;
Hawley and others, 2002; Sugiyama and Gudmundsson,
2003). Schwerzmann and others (2006) used a combined
inclinometer/caliper probe to measure the velocity profile
together with the closure, cross-sectional deformation and
vertical normal strain of a borehole.
The installation of continuously measuring inclinometers

in boreholes allows us to perform measurements of high
temporal resolution (Gudmundsson and others, 1999;
Amundson and others, 2006). This method continuously
observes the tilt and azimuth of the axes of instruments
that are inserted into the ice. Modeled tilt curves that are
calculated from assumed or modeled flow fields were fitted
to the measured tilt curves to interpret the measurements.
An in situ measurement of the stress–strain-rate relation of

glacier ice can only be performed if all stress components

and strain components are measured simultaneously at the
same location within the ice (Pfeffer and others, 2000;
Marshall and others, 2002) without additional assumptions
on the flow field or numerical modeling. In this work we
propose and discuss a technique that allows us to meet these
requirements for measurements of strain rates. The practical
application of this technique may not be trivial, and in fact,
the analysis was carried out as a result of difficulties in an
experiment on Rhonegletscher, Switzerland. The coupling of
the instruments to the ice in boreholes in temperate ice may
take several months and seems to be unstable even then.
For the evaluation of the inclinometer data we assume

that the instrument behaves as a Lagrangian unit vector
attached to the ice, which leads to a time-evolution equation
for the unit vector. This equation is (to lowest order in the
time-step) identical to the one Gudmundsson and others
(1999) solved by an explicit Euler method. The evolution
equation for the unit vector can be solved analytically
with two restrictive assumptions: (1) the flow field is well
represented with the plane-strain first-order approximation
(Blatter, 1995) and (2) the strain components are constant
over the measurement period.
In the following sections, we give some technical infor-

mation on the inclinometer/magnetometer probes and their
calibration. The mathematical theory of strain measurements
with inclinometer probes is outlined and discussed, and we
present an analysis of time series of zenith and azimuth
angles of probe axes to determine the strain components if
only one sensor is available and show some examples of
time series observed in Alpine glaciers. In the final section
(Conclusions and prospects), we discuss the possibilities
for strain measurements and propose experiments to further
develop the method.

INCLINOMETER PROBE
The inclinometer probe consists of a cylindrical aluminum
casing of 46mm diameter and 63mm length. A two-
axis inclinometer of type SCA100T-D01 (VTI Technologies,
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http://www.vti.fi/en/products/inclinometers) with a nominal
resolution of 0.044mrad, and a three-axis magnetometer
of type MicroMag3 (PNI Corporation, http://www.pnicorp.
com/products/products) with a nominal resolution of
0.015μT allow us to measure the absolute direction of
the probe axis in space and, furthermore, to determine the
absolute orientation of an orthogonal set of vectors that
are fixed with respect to the casing. The limiting factor for
the accuracy is given by the magnetometers and the large
uncertainty in the orientation of the Earth’s magnetic field at
depth in the ice.

Calibration and processing of data
The combined inclinometer/magnetometer probes provide
the strength of the magnetic field along three axes and the
strength of the gravity field along two axes,

Si = ai Ri + bi , i = 1, . . . , 5 (1)

where Ri are the magnetic and gravity field strengths, Si are
the readings of the sensor output, ai are the slopes of linear
functions and bi are the offsets at zero field strength. The ten
unknown parameters, ai and bi , must be determined by a
calibration procedure.
Ideally, the calibration should be performed under lab-

oratory conditions. If, however, the absolute value and
the orientation of the magnetic field at the site of the
measurement is not known, the problem can still be treated
with the same number of unknown parameters. In this
case, we simply assume the Ri to be normalized fields, and
the parameters depend on the absolute field strengths. For
the magnetic field this means that the calibration has to
be repeated on site, as the geomagnetic field there may be
different from that in the laboratory.
Given a parameterization of the pure rotations in three

dimensions, three parameters completely describe the orien-
tation of the instrument with respect to a fixed coordinate
system at a given measurement. For N measurements, there
are 3N unknown orientation parameters, i.e. a total of
10+3N unknowns (including instrument parameters). Every
measurement results in five measured values of magnetic and
gravity components along the corresponding axes. Thus, for
N measurements, we obtain 5N readings. For N = 5 the
problem is closed, for N > 5 measurements, the problem
is overdetermined, and the solution can be optimized by
a least-squares optimization procedure, yielding both ten
instrument parameters and 3N orientation parameters of best
fit. In detail, we need to minimize the sum

N∑
j=1

5∑
i=1

(
Si − ai Ri (φj )− bi

)2
, (2)

where φj is the set of orientation parameters at measurement
j, and Ri (φj ) are the normalized fields projected to the
instrument’s coordinate system. The minimization with
respect to φj , ai and bi is best done using the Gauss–Newton
algorithm (e.g. Björk, 1996).
The calibration was done in several steps. First, a

laboratory calibration measurement was used to determine
the four gravimeter parameters. Once the instrument was
at the field site, measurements close to the borehole were
carried out to calibrate the magnetic sensors. The data
processing of the sensors in the boreholes can be done using
the same optimization procedure as for the calibration with
the instrument parameters from the calibration kept constant

and optimizing only the orientation parameters. This allows
us to calculate for every measurement an orthogonal matrix,
Q , that describes the orientation of the instrument with
respect to a reference frame fixed in space, given by the
gravity and geomagnetic fields. Q contains as rows three
unit vectors each describing the orientation of one of three
axes of the instrument with respect to the external reference
frame. The angles θ and φ, that are used in the next sections,
are the zenith (i.e. tilt from vertical) and azimuth angles of
the row of Q which corresponds to the longitudinal axis of
the instrument. It would be desirable to do a similar time-
series analysis for the whole orthogonal system; however, it
is not yet clear how similar theoretical evolution curves for
the whole system can be obtained. Details of the underlying
mathematics are given in Appendix A.

MATHEMATICAL THEORY
A thin cylindrical probe inserted in the ice is assumed to
move in the same way as a unit vector given by the direction
of the image of a Lagrangian coordinate increment with
respect to deformation. Using the notation of Hutter (1983),
we denote by dXA a vector increment in the reference
(Lagrangian) configuration, and by dxi (XA) the corresponding
vector in the present (Eulerian) configuration. Using the
Einstein summation convention, we define the unit vector
through its components, ei , as

ei =
dxi√
dxjdxj

, (3)

so it points in the direction of the vectorial quantity dx. The
temporal evolution of the unit vector is given by

ėi = Lijej − ei
(
ejLjk ek

)
, (4)

where

Lij =
∂vi
∂xj

(5)

denotes the components of the velocity gradient. That is,
the evolution of ei is given by the projection of Lijej on a
plane perpendicular to the vector ei . A detailed derivation of
Eqn (4) is given in Appendix B.
For practical purposes, we assume Cartesian coordinates

with the base unit vectors n1, n2 and n3, such that the
unit vector e = e1 n1 + e2 n2 + e3 n3. Furthermore, we use
spherical coordinates with 0 ≤ θ < π, 0 ≤ φ < 2π such
that

e =

⎛
⎝ sin θ cosφ

sin θ sinφ
cos θ

⎞
⎠ . (6)

Thus, the time derivative of the unit vector, ė, has the form

ė = θ̇ a + φ̇ b, (7)

where the vectors

a =
∂e
∂θ

, b =
∂e
∂φ
, (8)

are orthogonal to vector e and orthogonal to each other,

a · e = b · e = a · b = 0 , a · a = 1 , b · b = sin2 θ. (9)

Scalar multiplication of Eqn (4) with a and b, respectively,
yields

aiLijej = θ̇ (10)
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Fig. 1. Examples of possible tilt evolutions according to Eqn (15).
Solid curve: L13 = 3L33, θ0 = 0. Dashed curve: L13 = 2L33,
θ0 = 0.2, φ0 = π/2.

and

biLij ej = φ̇ sin2 θ . (11)

The second part on the right-hand side of Eqn (4),
ei

(
ejLjkek

)
, does not have any influence on θ̇ and φ̇, as it is

colinear with e, and thus orthogonal to both vectors a and b.
Equations (10) and (11) are two linear equations for the nine
components Lij of the velocity gradient.
The analytical solution can be used for a regression with

the measured time series of zenith angles. Interestingly, the
azimuth angle does not occur in the solution for θ, except for
its initial value, φ0, which can be used as a fitting parameter
in the regression.
In principle it is possible to give an analytical solution

including L12 �= 0 as well but this is much more complicated
than Eqn (16), which makes it much less useful for purposes
of field data analysis.

ANALYSIS OF TIME SERIES
One absolute mono-axial (linear) inclinometer/magnet-
ometer yields one value for θ̇ and φ̇ at one time, and
thus only two equations for the nine unknowns, Lij . Three
linear independent unit vectors, ek , k = 1, 2, 3 with
measured angles θk and φk yield six equations. One
additional spherical inclinometer/magnetometer, tracking
the rigid rotation of the velocity field, would yield three more
equations, and would thus allow one to close the system
of equations.
However, in many situations interesting for glaciologists,

fewer than nine components Lij are of interest. A suite of
assumptions and approximations may reduce the number
of unknowns. Some assumptions may not be trivial,
though, and require careful testing to estimate the possibly
imposed errors.
For a typical channel-like valley glacier it is reasonable to

assume that in a coordinate system with x1-direction along
the flow and x3 vertically (parallel to gravity), the transversal
velocity component and its derivatives are comparably
small, thus

L21 = L22 = L23 ≈ 0. (12)

Along a central flowline, where the transverse velocity
vanishes and the along-flow velocity reaches its transversal
maximum, the derivatives with respect to x2 become
small. Thus, the first-order plane-strain approximation for

incompressible ice, L33 = −L11, with the only non-vanishing
components L13 and L33 reduces Eqns (10) and (11) to

θ̇ = −L33
(
1 + cos2 φ

)
cos θ sin θ + L13 cosφ cos

2 θ, (13)

φ̇ = L33 cosφ sinφ− L13 cot θ sinφ. (14)

In principle, Eqns (13) and (14) are linear equations for
L13 and L33, and thus could be used to calculate the tem-
poral evolution of the velocity-gradient components. The
analysis depends on the calculation of time derivatives of the
measured angles, θ and φ. Depending on how noisy the data
are, this procedure is more or less unstable and requires a
smoothing of the data. Even then, the evaluation of Eqns (13)
and (14) resulted in temporally drifting values for L13 and L33,
that should result in a temporal drift of the surface velocity,
which could not be observed. Apart from that, L13 and L33
depend explicitly on the evolution of φ. The measurement
of this angle requires the use of magnetometers, which
are much more susceptible to environmental perturbations
and thus are less accurate than gravity-based inclinometry.
Furthermore, Eqns (13) and (14) are only valid in a coordinate
systemwith the x1-axis oriented parallel to the flow direction.
The azimuth angle measured by an instrument fixed to the
ice is difficult to orient absolutely in space, and thus to align
with respect to the ice flow direction.
With the assumption that L13 and L33 are constant over

the period considered, Eqns (13) and (14) can be solved
analytically for the time evolution of the zenith angle, θ =
θ(t ),

θ(t ) = arctan
√

ζ(t ), (15)

with

ζ = e−2tL33
(
L13
L33

tan θ0 cosφ0 − L132

2L332
+ tan2 θ0 sin

2 φ0

)

+e−4tL33
(
tan θ0 cosφ0 − L13

2L33

)2
+
L132

4L332
. (16)

A detailed derivation of Eqns (15) and (16) is given
in Appendix C. A numerical evaluation of this equation
reproduces the same curves as the Euler scheme used by
Gudmundsson and others (1999) to a high accuracy (not
shown here in detail).
In Figure 1, two examples for possible tilt curves according

to solution Eqn (15) are given. There are always two
asymptotic values, π/2 for L33t < 0, and

θ∞ = arctan
(
L13
2L33

)
(17)

on the half-axis with L33t > 0. Thus, if the motion is
dominated by shear, L13 � L13, both asymptotes are close
to π/2, whereas for L13 ≈ L33 significantly lower asymptotes
are possible. If φ0 = 0 or φ0 = π (depending on the sign of
L33) or θ0 = 0, the tilt reaches a minimum of θ = 0 and has
a kink at the minimum (solid line in Fig. 1). In all other cases
the minimum is greater than zero and is passed smoothly; in
these cases e never reaches a vertical position.

RESULTS
Field observations
Here we demonstrate the application of Eqns (15) and (16)
to fit tilt data from field experiments. We consider field data
from Rhonegletscher and Gornergletscher, both situated in
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Fig. 2. Evolution of tilt angle, θ, on Rhonegletscher and Gorner-
gletscher. The thin lines are the fitted curves according to Eqns (15)
and (16). (a) Rhonegletscher, sensor B, L13 = 5.55 × 10−9 s−1,
L33 = 3.40 × 10−9 s−1. (b) Rhonegletscher, sensor C, L13 =
2.73 × 10−9 s−1, L33 = 8.18 × 10−10 s−1. (c) Rhonegletscher,
sensor D, L13 = 1.39 × 10−8 s−1, L33 = 1.10 × 10−7 s−1.
(d) Gornergletscher, sensor G1, L13 = 2.69 × 10−9 s−1, L33 =
1.86× 10−9 s−1.

the Swiss Alps. The Rhonegletscher data stem from a chain
of five inclinometer/magnetometer probes that was installed
in a borehole in summer 2009. The data were read every
5min, except duringwinter 2010/11, when themeasurement
interval was extended to 8 hours in order to cope with power
supply problems. The instruments are labeled A, B, C, D and
E, with corresponding approximate positions of 4, 23, 40, 58
and 75m above the glacier bed (ice thickness 119m). The
borehole is situated in temperate ice, and was permanently
water-filled during the experiment. The data measured by
sensor E are extremely noisy, probably due to bad coupling
of the sensor to the ice. Due to large shear rates, sensor A ran
out of the measurement range of the instrument within 1 year.
For comparison, we also show measurements obtained with
the same type of instrument installed in summer 2006 in a
borehole in Gornergletscher. Instrument G1 is located 127m
above the bed (ice thickness 271m) in cold ice of −1◦C
above a basal temperate layer of ∼70m thickness, and can
be assumed to be coupled tightly to the ice. Instrument G2
was inserted at 38m above the bed in the temperate ice. In
Figure 2 the measured tilt evolutions are displayed together
with least-square fits obtained with Eqns (15) and (16).

Daily variations
At some times, the long-term evolution of the zenith
angles is modulated by daily variations. These short-term
variations cannot be captured by analytical tilt curves that are
optimized for long periods of measurements with constant
strain rates. The lowest (sensor A) and the second lowest
(sensor B) instruments (Fig. 3a and b) show variations in
shear strain in phase, whereas for the next highest instrument
(sensor C) they are in antiphase (Fig. 3c). Interestingly, the
shear rates change sign during one cycle. These variations
may be caused by variations in basal sliding; however, due
to possibly insufficient coupling of the instruments to the ice
in the open and partially water-filled borehole, an influence
of the daily variation in the water flux through the borehole
cannot be excluded. Further interpretation of these patterns
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Fig. 3. Diurnal variations of tilt angles, θ, on Rhonegletscher and
Gornergletscher. The scatter of the single points indicates the an-
gular resolution of the sensor around 0.1mrad. (a) Rhonegletscher,
sensor A. (b) Rhonegletscher, sensor B. (c) Rhonegletscher, sensor
C. (d) Gornergletscher, sensor G2.

lies beyond the scope of this paper. Figure 3d demonstrates
an example for diurnal variations in the tilt evolution inside
a temperate basal layer in Gornergletscher.

CONCLUSIONS AND PROSPECTS
The analysis of the tilt evolution observed with the inclin-
ometer/magnetometer probes is based on the assumption
that a thin cylindrical probe inserted into glacier ice follows
the same movement as a unit vector, which is given as the
direction of the image of a Lagrangian coordinate increment
with respect to deformation. The time-evolution equation
for this unit vector is defined by the flow field, or more
precisely, by its spatial derivatives. For simple flow fields
(simple shear with some vertical and horizontal stretching),
explicit analytical solutions to the evolution equations in
polar coordinates were used to fit field data.
The above findings allow us to calculate theoretical

tilt curves, which should be recorded by an instrument
sensitive to inclination that is fixed within the material, and
can therefore be helpful for calibration/validation purposes
or for the reconstruction of a local flow field from tilt
measurements. Of course, one could try to avoid the
mathematical difficulties of solving the evolution equations
analytically and just rely on a numerical integration of
the coupled system. The analytical solution has, however,
the great advantage that we can write down the evolution
of the tilt angle, θ, without simultaneously solving the
equation for the azimuth angle; instead, the evolution of θ is
parameterized by the initial azimuth angle, φ0.
The explicit time evolution, θ(t ), has been used to fit

data from inclinometer tilt experiments on Rhonegletscher
and Gornergletscher, showing its ability to reproduce the
measured curves. With the assumption of incompressible ice
flow and the first-order plane-strain approximation, strain-
rate measurements can be performed with much simpler
instruments, only measuring the zenith angle of the probe
axis.
Tilt measurements with high temporal resolution show

examples of diurnal variations of strain rates. This phenom-
enon has been observed in different glaciers, such as the
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entirely temperate Rhonegletscher, the polythermal Gorner-
gletscher and in the polythermal region of Jakobhavns Isbræ,
Greenland ice sheet (Lüthi and others, 2002). Amundson
and others (2006) measured similar features on Black Rapids
Glacier, a large surge-type glacier in the central Alaska
Range, USA. In these examples, the patterns in variations
are similar in shape and magnitude. The mechanism causing
these variations and the temporal coincidence with diurnal
variations in englacial water pressure suggest that variations
in sliding may explain the variations in the strain field. The
partial reversibility of deformations perhaps indicates diurnal
variations of normal strain (Gudmundsson, 2002) or elastic
reactions of the ice base to variable basal water pressure
(Sugiyama and others, 2007).
An unsolved question concerns the time evolution of an

orthogonal system of unit vectors fixed to a rigid body inside
the material. If all unit vectors evolve as described above, the
orthonormality condition may be violated in the presence
of a shear motion. One therefore has to define a way to
couple the rigid body to the deforming material such that
orthonormality of the coordinate system fixed to it is kept.
This problem can probably be addressed by modeling the
motion of a rigid or hard elastic body in a deforming viscous
fluid, which, however, lies beyond the scope of this paper.
One suggestion that can be drawn from the above

considerations is a possible in situ measurement of the local
viscosity of glacier ice. A system of three thin cylindrical
inclinometer/magnetometer probes with independent orient-
ations and the same type probe with spherical shape
to measure the rigid rotation components, allows us to
close the system of equations for the nine velocity-gradient
components. Combinedwith a probe with adequate pressure
sensors to measure the stress components as suggested
by Pfeffer and others (2000), this yields, in principle, the
complete information to compute the ice viscosity.
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APPENDIX A: PARAMETERIZATION OF SO(3)
To describe the orientation of three linearly independent
orthogonal vectors fixed to the probe with respect to a
given coordinate system, a parameterization of the group
of pure rotations in three dimensions, called the special
orthogonal group in three dimensions, SO(3), can be applied.
Although there is no global parameterization of this group
(Stuelpnagel, 1964), parameterizations of the whole group
up to a finite number of singular points can be found, which
is sufficient for our purpose. There are various ways to do
this, such as with Euler angles. We use a matrix exponential
representation of the group of special unitary transformations
in two dimensions, SU(2), with Pauli matrices as generators,
together with a homomorphism mapping SU(2) onto SO(3).
This turned out to be computationally more convenient than
using Euler angles. Independent of the parameterization,
there are always three independent parameters describing
the orientation of the instrument, reflecting the dimension of
the group SO(3).
For every set of group parameters, we generate a unitary

matrix, U ∈ SU(2), by the usual exponential representation
with Pauli matrices as generators. Then, we calculate the
corresponding orthogonal matrix, O ∈ SO(3), by

Oij[U] =
1
2
Tr

[
τ iUτ kU†

]
, (A1)

where τ i , i ∈ {1, 2, 3} are Pauli matrices and U† denotes the
Hermitian adjoint of U . Using the Fierz identity (Borodulin
and others, 1995),

τ iAB τ iCD = 2δAD δBC − δAB δCD , (A2)

both the orthogonality of O ,

OikOjk = δij , (A3)

and the homomorphism property

Oik [U]Okj[V ] = Oij[UV ] ∀ U ,V ∈ SU(2) (A4)

can be proved.

APPENDIX B: TIME DERIVATIVE OF UNIT VECTOR
The mapping of Lagrangian onto Eulerian coordinates (i.e.
the time evolution of the material) yields

ei =
FiAdXA√

FjBFjCdXBdXC
, (B1)

where

FiA =
∂xi
∂XA

(B2)

is the deformation gradient. The time evolution of e is given
by

ėi =
ḞiAdXA
‖dx‖ − FiAdXA

(
ḞjBFkC + FjB ḞkC

)
dXBdXC

2‖dx‖3 . (B3)

With the identity ḞiA = LijFjA (Hutter, 1983), where

Lij =
∂vi
∂xj

(B4)

denotes the velocity gradient, we obtain

ėi = Lijej − ei
(
Ljk FkBFjC + FjBLjk FkC

)
dXBdXC

2‖dx‖2
= Lijej − ei

(
ejLjk ek

)
. (B5)

APPENDIX C: TEMPORAL EVOLUTION OF ZENITH
ANGLE
Depending on the initial conditions, solving Eqns (13) and
(14) may require a number of case distinctions. In order to
avoid most of them we will restrict our considerations to the
case that is of interest for our application: initial conditions
close to vertical, i.e. 0 ≤ θ0 < π/2. Now, we only have to
take care if θ = 0, as this is a singular point of the spherical
coordinates (Eqn (6)) where the angle φ is not well defined.
This can be the case either initially, θ0 = 0, or if φ0 ∈ {0,π};
we consider these cases separately below and assume at first
initial values 0 < θ0 < π/2 and φ0 �∈ {0,π}. As θ �= 0, we
can use the bi-unique substitutions

ζ = tan2 θ, ω = tan θ cosφ (C1)

in Eqns (13) and (14), yielding

ω̇ = −2L33ω + L13, (C2)

ζ̇ = −2L33ζ − 2L33ω2 + 2L13ω. (C3)

The transformation partly decouples the system. The solution
for ω is

ω(t ) = C1e
−2L33 t +

L13
2L33

, (C4)

where C1 is an integration constant. Substituting this solution
in Eqn (C3) yields

ζ̇ = −2L33ζ − 2L33C 21 e−4L33t + L132

2L33
, (C5)

with the solution

ζ(t ) = C 21 e
−4L33t +

L13
2

4L332
+ C2e

−2L33 t , (C6)

and a second integration constant, C2. The two integration
constants can be determined from the initial conditions

ω(0) = tan θ0 cosφ0 = α, (C7)

ζ(0) = tan2 θ0 = β, (C8)

and for ω(t ) and ζ(t ) we obtain

ω(t ) =
(
α− L13

2L33

)
e−2L33t +

L13
2L33

, (C9)

ζ(t ) =
(
α− L13

2L33

)2
e−4L33 t +

L13
2

4L332

+
(
β − α2 + α

L13
L33

− L13
2

2L332

)
e−2L33 t . (C10)

Finally, the solution for the zenith angle, θ, as a function of
time is given in Eqns (15) and (16).
In the critical cases mentioned above, a critical situation

only arises at the time when θ = 0 is reached (before this
moment, Eqns (C9) and (C10) remain valid). As the evolution
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equations are of first order, we can simply assume that this is
the case initially, and set θ0 = 0. In consequence, at t = 0 we
may use neither the angle φ nor the substitutions (Eqn (C1)).
However, at t = 0 the vector e is simply e = (0, 0, 1), and
Eqn (4) yields

ė = (L13, 0, 0) , (C11)

i.e. after a small time increment, Δt , we arrive at

e =
(
L13Δt , 0, 1

)
+O(Δt )2. (C12)

This corresponds (to lowest order in Δt ) to θ = L13Δt and
φ = 0 or φ = π (depending on the sign of L13), and from
t = Δt onwards we may again use Eqns (C9) and (C10) with
these initial conditions. As, furthermore, in the limit Δt → 0
we arrive at θ(0) = 0 = θ0, we may extend the validity of
Eqns (C9) and (C10) to the critical case θ0 = 0 if we use
the convention to set the initial condition for the (initially
undefined) azimuth angle to φ0 = 0 or φ0 = π (depending
on the sign of L13).
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