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SUMMARY
This paper tackles the problem of motion planning and control of a car-like robot in an obstacle-ridden
workspace. A kinematic model of the vehicle, governed by a homogeneous system of first-order
differential equations, is used. A solution to the multi-tasking problem of target convergence, obstacle
avoidance, and posture control is then proposed. The approach of solving the problem is two-fold.
Firstly, a novel velocity algorithm is proposed to drive the car-like robot from its initial position to
the target position. Secondly, a single layer artificial neural network is trained to avoid disc-shaped
obstacles and provide corresponding weights, which are then used to develop a function for the
steering angles. Thus, our method does not need a priori knowledge of the environment except for
the goal position. With the help of the Direct Method of Lyapunov, it is shown that the proposed
forms of the velocity and steering angle ensure point stability. For posture stability, we model the
two parallel boundaries of a row-structured parking bay as continua of disk-shaped obstacles. Thus,
our method is extendable to ensuring posture stability, which gives the desired final orientation.
Computer simulations of the generated path are presented to illustrate the effectiveness of the method.

KEYWORDS: Car-like robot; Neural network; Single-layer perceptron; Motion planning; Posture
control.

1. Introduction
Motion planning and control of autonomous nonholonomic robot has been an active area of research
over the past two decades. Researchers over the years have used various methods such as artificial
potential field (APF) method, graph search technique, and neural networks to tackle the multi-tasking
problem of the autonomous nonholonomic robots.

The work of Khatib in ref. [1] is considered as the landmark result in motion planning and control
of autonomous robot via APF method. Since then the potential method has created a huge interest
among researchers and numerous algorithms based on this method have appeared in the literature.2–6

Researchers have found APF useful due to easier analytic representation of system singularities and
inequalities, better processing speed, its simplicity, and elegance.7 However, this method inherits the
problem of traps or local minima and work on the nonholonomic robots with continuous control laws
have only managed to obtain a Lyapunov stable system,7,8 invariably due to Brockett’s Theorem.9

In the graph search techniques, collision-free trajectories are established by searching for graphs
or maps formed out of straight lines via vertices of obstacles or patches of free space decomposed
into geometrical primitives.10–13 While the algorithms in this technique are elegant, they are
computationally intensive and can suffer from the problem of too close or too far.14 A commonly
used algorithm known as the A∗ algorithm is often employed in the graph search technique for the
avoidance of concave-shaped obstacles.
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936 Solution to the motion planning and control problem

In other developments that are to some extent conceptually similar to ours, the form of the velocity
or the steering angles of moving agents is modeled only after observing a certain process. For instance,
in the work of Fajen et al.,15 the function for the steering angles of a moving point mass is developed
only after observing human walking. In our case, the steering angles are determined only after we
trained a neural network to avoid obstacles and output corresponding values of the weights, which
are used in the formula for the steering angle. Such an approach does not need a priori knowledge
of the environment; hence, it is an on-line based control strategy. In the paper by Fajen et al.,15 the
history behind the development of such strategies is provided.

In recent years, the artificial neural network (ANN) has become a powerful tool for solving the
motion planning and control problem of mobile robots. In literature, task planning, autonomous robot
path planning, and position control can be easily formulated and solved through ANNs. In 1994,
Rivals et al.16 used the neural network technique to control the motion of a four-wheel-drive vehicle.
The path and velocity were modeled via a supervised network, where the initial data were obtained
by manually driving the vehicle. Izumi et al. in ref. [17] used a feedback error learning technique
to control a nonholonomic mobile robot. The authors proposed a neuro interface-like control system
using the concept of internal model control. However, there was no mention of targets or obstacles
in the workspace. Janglova in ref. [18] dealt with a path planning and intelligent control of an
autonomous robot in partially structured environment using two neural networks; one to determine
the free space and the other to find a safe direction. Although the motion was controlled in an
obstacle-ridden workspace, the authors have not considered the target convergence or the velocity of
the robots. Naoui et al. in ref. [19] used nonconventional approaches as ANN in the internal model
control of mobile car-like robot. A constant velocity was applied to the mobile robot and the steering
angle was controlled using the ANN approach. Again, there was no mention of targets or obstacles
in the workspace.

While neural network-based approach of controlling the motion of nonholonomic robots is
commonly found in literature, the following aspects (to the author’s knowledge) are lacking:
(a) a rigorous stability analysis of a system that depends on an ANN to provide the necessary

parameters;
(b) the inclusion of a target when designing the velocity algorithm;
(c) an analysis of posture control of the nonholonomic robots; and
(d) an explicit formula of the steering obtained via an ANN.

It is only recent that the authors in ref. [20] deployed a neural network approach to control the
motion of a point mass robot in an obstacle-ridden workspace and proved asymptotic stability of the
system. In the paper, the authors designed a velocity algorithm that could drive the robot from its
initial position to the target position and used a multi-layer perceptron (MLP) to control the direction
of a point mass robot in the obstacle region. However, it was still not possible to obtain an explicit
formula of the controllers.

In this paper, we extend the work carried out in ref. [20] by solving the multi-tasking problem of
target convergence, obstacle avoidance, and attaining a desired final orientation of a car-like robot.
While the velocity algorithm is adopted from ref. [20], we will model the steering angle of the
car-like robot in the obstacle-ridden workspace using a single-layer perceptron (SLP) and derive an
explicit formula of the steering angle in terms of specific inputs. In addition, this paper achieves a
predetermined final orientation of the vehicle. This is done by constructing a virtual parking bay that
surrounds the target, and boundary lines of the bay is avoided by treating them as artificial obstacles.
Furthermore, the control laws proposed in this paper are continuous everywhere along the trajectory
of the system and the resultant path is safest, smoothest, and the shortest one. This paper provides
four major contributions:

(1) Obstacle avoidance scheme: We continuously consider all the obstacles in the workspace. This
will give the motion planner a global view of the workspace and thus picking out the shortest and
safest path among the obstacles.

(2) Single-layer perceptron (SLP): While the velocity algorithm adopted from ref. [20] is sufficient
to drive the robot to its target, the inclusion of obstacles garners the need to control the steering
angle.

(3) Training data: The training data for the neural network are obtained using computer simulations
where the initial path is traced by the user. The data are not obtained from real-life experiments,
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Fig. 1. (Colour online) A rear wheel driven vehicle with front wheel steering and steering angle φ (adopted from
ref. [7]).

such as physically driving or maneuvering a real robot. Hence, the procedure in this research
provides data in a more simplified and controlled way.

(4) Derive an explicit formula of the steering angle: The use of a SLP to model the motion of the
car-like robot enables us to derive an explicit formula of the steering angle as a function of specific
inputs.

The remainder of the chapter is organized as follows. Section 2 considers the definition of the car-like
robot and looks at its kinematic model. Section 3 considers the main objective followed by the motion
planning and control of the car-like robot in the absence of obstacles in Section 4. The stability
issues in the absence of obstacles are also addressed in this section. In Section 5, the motion of the
car-like robot is controlled in the presence of fixed circular obstacles of random size and positions.
Section 6 considers the problem of parking maneuverability and proposes a feasible solution using
the minimum distance technique. Finally, in Section 7, the paper closes with a discussion on its
contributions.

2. Vehicle Model
The rear wheel driven car-like vehicle model and the associated terminologies and notations are
adopted from ref. [7]. Referring to Fig. 1, (x, y) denotes the center of mass (CoM) of the car, θ gives
the car’s orientation with respect to the z1-axis, and φ gives the steering wheel’s angle with respect
to car’s longitudinal axis. The configuration of the car is given by (x, y, θ, φ) ∈ R4, and its position
is given as the point (x, y) ∈ R2. The role of the clearance parameters ε1 and ε2 will be highlighted
in Section 5.

If L is the distance between the two axles and l the length of each axle, then the kinematic model
of the car-like vehicle adopted from ref. [7] is

ẋ = v cos θ − v
2 tan φ sin θ,

ẏ = v sin θ + v
2 tan φ cos θ,

θ̇ = v
L

tan φ,

x0 := x(0), y0 := y(0), θ0 := θ(0),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1)
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938 Solution to the motion planning and control problem

where v is the translational velocity. Hereafter, we shall use the vector notation x(t) = (x, y) ∈ R2

to describe the position variables in Eq. (1). Moreover, v and φ are treated as controllers that will be
designed in later sections.

3. Main Objective: Problem Statement
Let A be a car-like mobile robot, as shown in Fig. 1, moving in a constrained workspace WS on the
z1z2 plane. Let FO1, FO2, . . . , FOq are stationary obstacles randomly placed in WS. Assume that
both the geometry and the location of A and FO1, FO2, . . . , FOq is a priori known. The problem
statement is:

Given any initial position and orientation of A in WS, design the controllers v and φ so that A can converge
to a goal position and orientation while satisfying all the nonholonomic constraints and avoiding collisions
with FOl for l = 1, 2, . . . , q.

4. Motion Control in the Absence of Obstacles
In our motion planning problem, we have a designated target that is a disk of center (p1, p2) and
radiusrT . The target can be described as

T = {
(z1, z2) ∈ R2 : (z1 − p1)2 + (z2 − p2)2 ≤ r2

T

}
.

We want the car-like mobile robot to start from an initial configuration, move towards its target,
and converge at the center of the target.

4.1. Velocity algorithm
We first look at the controller v, which should drive A from its initial position to the target position and
vanish once the robot reaches the target. Velocity algorithms in literature include mostly constant18

(either maximum or optimal) velocities that truncate at the goal configuration. However, a sudden
switch or truncation of the velocity to force the robot to stop will require infinite accelerations and in
turn infinite torques and can also cause physical damage to the robot.20 Thus, we adopt the velocity
algorithm from ref. [20] where the authors developed a more practical algorithm that depend on the
initial and final positions of the robot:

v(t) = |v0| ‖x(t) − xe‖
‖x(0) − xe‖ , (2)

where v0 is the initial velocity of the robot at t = 0 and xe = (p1, p2) �= x(0) is an equilibrium point
of system (1). Note that v given by Eq. (2) is defined, continuous, and positive over the domain

D= {x(t) ∈ R2 : x(0) �= xe}.

We also note here that as t → ∞, v(t) → 0 since x(t) → xe.

4.2. Design of the steering angle
First we let

ξ (t) =
{

atan2(p2 − y(t), p1 − x(t)) if x(t) �= xe

ξ (t − 1) if x(t) = xe

be the angular position of the target with respect to the current position of the car-like robot at time
t. Before we design φ, we stipulate the following definition of heading:

Definition 1: When θ(t) = ξ (t), we say that the car-like robot is heading towards its designated
target.

We now look at two simple scenarios in the absence of obstacles:

Scenario 1: When initially the car is heading towards its target.
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Scenario 2: When initially the car is not heading towards its target.

Scenario 1: When θ(t) = ξ (t). In this scenario, when the car is heading towards its target, it is
important that no turning occurs so that we can get an overall shortest path from the initial to the goal
position. Thus, we define the steering angle as

φ = 0. (3)

In this case, we come up with the following claim.

Claim 1: When θ(t) = ξ (t) and the velocity given by Eq. (2) is applied to the car-like robot, the
robot will move straight towards its target with its speed slowing down and will converge to the target
position.

Proof. Note that if θ(t) = ξ (t), then φ(t) = 0. We first show that under the given condition, the
robot will move towards its target. Let d =

√
(p1 − x(t))2 + (p2 − y(t))2 be the distance between

the target and the robot position at any time t. Then

ḋ = −1

d
[(p1 − x(t))ẋ(t) + (p2 − y(t))ẏ(t)]

= −1

d
[(p1 − x(t))v cos θ + (p2 − y(t))v sin θ ]

= −v

d

[
(p1 − x(t))2

d
+ (p2 − y(t))2

d

]

= −v

d2

[
(p1 − x(t))2 + (p2 − y(t))2

]
= −v

d2
d2 = −v < 0,

which means that as the robot moves, d decreases; thus, the robot is moving towards the target.
Secondly, to show that the motion of the robot gradually slows down, we note that

v̇ = |v0| ḋ
‖x(0) − xe‖ = − |v0| v

‖x(0) − xe‖ < 0,

which means that v decreases as the robot moves towards the target. Finally, to show that the robot
converges to the target position, we see that at the center of the target,

v = |v0| ‖xe − xe‖
‖x(0) − xe‖ = 0.

Simulation 1: Figure 2 shows a simulation with defined initial and final positions of the car-like
robot. Given that the car is initially pointing towards the target, with any initial position, the robot
moves straight towards its designated target.

Theorem 1: Let the controllers v and φ be as defined in Eqs. (2) and (3), respectively. If the car-like
robot governed by system (1) is initially heading towards its target, then xe is the only equilibrium
point of system (1) and is globally asymptotically stable.

Proof. We first show that xe is the only equilibrium point of system (1). To see that note that when
we solve the system

(ẋ, ẏ, θ̇) = (0, 0, 0),

we get only one solution v = 0, which implies that x = xe. Next, to prove global asymptotic stability,
consider the Lyapunov function

L(x) = 1
2 ‖x(t) − xe‖2 ,
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Fig. 2. (Colour online) Trajectory of the car-like robot with initial position (6, 6) and the target placed at
(45, 45).

which is defined, continuous, positive, and radially unbounded over the domain D = {x(t) ∈ R2 :
x(0) �= xe}. Clearly, L(x) has continuous first partial derivatives in the neighborhood Dof the
equilibrium point xe of system (1). Moreover, in the region D, we see that L(xe) = 0 and L(x) > 0
for all x �= xe. Now, the time-derivative of L(x) along a trajectory of system (1) is given by

L(x) = −v(t) ‖x(t) − xe‖ ,

where v(t) is governed by Eq. (2). Again, it is clear that in the region D, L̇(xe) = 0 and L̇(x) < 0
for all x �= xe. Hence, it can be concluded that the point xe is a global asymptotic stable equilibrium
point of system (1).

Scenario 2: When θ(t) �= ξ (t): In a practical sense, θ(t) may not be the same as ξ (t). To overcome
this we propose a formula for calculating φ(t) in terms of ξ (t) and θ(t). We also note here that the
steering angle of the front wheel is bounded.7 This leads to the following assumption:

Assumption 1: The steering angle, φ(t), satisfies the inequality

−70◦ < φ(t) < 70◦.

Since we want to express φ(t) in terms of ξ (t) and θ(t), we need to enact the following rules:

Rule 1: If θ(t) < ξ (t), then a negative steering angle φ(t) should be applied, which in turn should
increase until ξ (t) and φ(t) become the same.

Rule 2: If θ(t) > ξ (t), then a positive steering angle φ(t) should be applied, which in turn should
decrease until ξ (t) and θ(t)become the same.

Taking Assumption 1 and the above rules into account, we propose the following formula for
calculating φ(t):

φ(t) = 7
9 tan−1 (ξ (t) − θ(t)) . (4)

We make the following claim from our proposed formula:

Claim 2: The proposed formula for φ(t) satisfies the inequality −70◦ < φ(t) < 70◦.

Proof. Note that −90◦ < tan−1 (ξ (t) − θ(t)) < 90◦. Multiplying through 7/9, we get −70◦ <

φ(t) < 70◦.

Claim 3: The controller φ(t) given by Eq. (4) will eventually reduce to Eq. (3).
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Fig. 3. (Colour online) Trajectory of the car-like robot with initial position (6, 6) and the target placed at
(45, 45).

Proof. We need to show that φ(t) → 0 as t → +∞, or equivalently, we can show that 0 ∈ φ(t)and
φ2(t) is a decreasing function. Firstly, note that when θ(t) = ξ (t), we see that φ(t) = 0, which implies
that 0 ∈ φ(t). Secondly, to show that φ2(t) is a deceasing function, we consider two simple cases:

Case 1: When θ(t) < ξ (t). Then θ(t)< 0 and in light of Rule 1, θ̇ (t)> 0, so d
dt

(φ2(t)) = 2φ(t)φ̇(t) <

0.

Case 2: When θ(t) > ξ (t). In this case θ(t)> 0 and in light of Rule 2, θ̇(t)< 0. Thus, d
dt

(
φ2(t)

) =
2φ(t)φ̇(t) < 0.

The discussion so far leads to the following theorem:

Theorem 2: The equilibrium point xe of system (1) is asymptotically stable provided the controllers
v and φ are as defined in (2) and (4), respectively.

Proof. From Claim 3, we see that φ(t) given in Eq. (4) eventually reduces to Eq. (3). Thus, Theorem
1 will hold and therefore we can conclude that the equilibrium point xe of system (1) is asymptotically
stable.

Simulation 2: To illustrate the effectiveness of the proposed formulas, we have generated the
trajectory of the car-like robot from an initial position and orientation to the target position. In Fig. 3,
the initial orientation of the car is 90◦. With the steering angle given by Eq. (4), we see that the
car-like robot converges nicely to the target.

5. Motion Control in the Presence of Fixed Obstacles
Let us fix q > 0 obstacles within the boundaries of the workspace. We assume that the lth obstacle is
circular with center given as (ol1, ol2) and radius rol . We define the lth obstacle as

FOl = {
(z1, z2) ∈ R2 : (z1 − ol1)2 + (z2 − ol2)2 ≤ ro2

l

}
,

for l = 1, 2, . . . , q.
To ensure that the entire vehicle safely steers pass any obstacle, we enclose the robot by the

smallest circle, possible, of radius rV =
√

(2ε1 + L)2 + (2ε2 + l)2/2) as illustrated in Fig. 1, where
ε1 and ε2 are the clearance parameters adopted from ref. [7].

Assumption 2: There is sufficient free-space between any two stationary obstacles for the vehicle
to steer through if warranted.
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Fig. 4. (Colour online) Architecture of a standard feed-forward single layer ANN.

Remark. Assumption 2 is inline with the work of Sharma et al. in ref. [7]. This is to ensure that the
vehicle could fit into the free-space between two obstacles, in case one desires to steer the robot in
between the two obstacles.

5.1. An SLP-based model
Our method in the construction of a collision-free path for moving robot among obstacles is based
on a feed-forward SLP. Figure 4 shows its general architecture.

A single layer ANN is made up of an input and an output layer. The input layer receives data from
outside the network; the output layer sends data out of the network. The internal activity of a neuron
is given as

n∑
i=1

wixi,

where wi is called the weight associated with the input xi .
We will use a supervised feed-forward SLP to model the steering angle φ so that the vehicle

can avoid fixed obstacles that it may encounter within its path. Before we proceed, let’s look at the
following definition.

Definition 2. Let dmax > 0 be a predefined scalar. All the points that lie in the open annulus
rol < (

√
z1 − ol1)2 + (z1 − ol2)2 < rol + dmax is said to be in the sensing zone. The sensing zone is

precisely defined as

S =
q⋃

l=1

{
(z1, z2) ∈ R2 : ro2

l < (z1 − ol1)2 + (z2 − ol2)2 < (rol + dmax)2
}
.

Assumption 3: The target position of the robot does not intersect with the sensing zone. This is,
xe /∈ S for all t ≥ 0.

Remark: We shall see later that Assumption 3 will help us to construct an asymptotically stable
system that will lead the robot from its initial position to a target position and remain there forever.
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Fig. 5. (Colour online) The single-layer ANN used to model the steering angle φ(t).

Let Rl =
√

(x − ol1)2 + (y − ol2)2 − (rol + rV ) be the distance from the robot to the
circumference of the lth stationary obstacle. We make the following assumption:

Assumption 4: The steering angle φ is inversely proportional to Rl .

Remark. Assumption 4 is justified since when the vehicle comes close to FOl , the distance Rlwill
decrease. Thus, an increase in |φ| will enable the vehicle to effectively avoid FOl .

To model the motion of the car-like robot using the single-layer ANN, we enact the following
rules:

Rule 1: In order to avoid collision with the stationary obstacles, Rl should be positive.

Rule 2: If the vehicle is approaching a stationary obstacle, it should change its direction when it
enters the sensing zone.

Rule 3: When the vehicle enters the sensing zone, it should turn right or left whichever direction
ensures shortest trajectory of the vehicle to its target.

Note that the size of the sensing zone is determined by dmax. If dmax is large, then the robot will
avoid the fixed obstacles from a greater distance. Likewise, if dmax is small, then the robot will avoid
the fixed obstacles from a smaller distance. Thus, dmax is regarded as a control parameter in this paper.

Also keeping in mind, the main aim of the paper, i.e., the control laws must be continuous
and should produce safe and shortest trajectory for the vehicle to follow and that φ is inversely
proportional to Rl , we consider the inputs of the ANN as x0 = ξ (t) − θ(t), x1 = α1/R1, x2 = α2/

R2, . . . , xq = αq/Rq , where

αl =
{

0, if Rl ≥ dmax

dmax − Rl, if Rl < dmax
.

The output is φ, which determines the steering angle.

Remark. The function αl serves two purposes here. Firstly, it ensures that the input is continuous
everywhere (including on the boundaries of the sensing zone) and secondly it ensures that the turning
is initiated once the vehicle enters the sensing zone.

From the single-layer ANN shown in Fig. 5, we see that the output is given by

φ(t) = �

(
w0 (ξ − θ ) +

q∑
l=1

wlαl

Rl

)
,

where �(·) is called the activation function and wl is called the weight corresponding to the lth input.
The value of wl will be found by training the network. This will be illustrated in the next section.
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Fig. 6. (Colour online) Training environment.

5.2. Training the network
We have used supervised SLPs where the network will be trained using some known past data. The
training will be done in two steps: (i) collecting the training data, and (ii) finding a set of weights that
best fits the collected data satisfying the internal activities of the neurons.

Collecting the training data. The training data, which is a set of inputs and the corresponding
outputs, were obtained using Matlab. The velocity algorithm given in Eq. (2) was applied to a car-like
robot and its motion was manually controlled in the environment shown in Fig. 6.

We used the slider (bottom right of Fig. 6) to control the motion of the robot and guide it to its
designated target. When the slider is kept at the center, the value of φ is zero so the robot moves
straight (without turning) to the target. Moving the slider to the right will increase the value of φ and
thus turning the robot to the right. Moving the slider to the left will decrease the value of φ so that
robot turns to the left. Data from several scenarios were recorded; in each case the size and position
of obstacle and the initial and target positions of the robot were chosen randomly.

Finding the best set of weights. Let us represent the collected set of data in a matrix form. Let A
be an m × n matrix containing the input data. Here n is the number of inputs and m is the number
of sets of collected data. Also let Y be the matrix containing the m sets of output data. Furthermore,
if we let W be a matrix containing the weights, then our training problem simplifies to minimizing
the quantity ‖AW − �−1(Y )‖2, where � is the activation function, which is the arctan activation
function �(X) = 7

9 tan−1(X) in this paper.
The reasons for choosing this activation function are:

(1) �(X) = 7
9 tan−1(X) is a continuous and differentiable function on the interval

(− 7π
9 , 7π

9

)
. Thus,

the output, the steering angle, will be continuous.
(2) The output of the network is the steering angle, φ. In nature, φ is restricted, say, between −70◦

(minimum turning angle) and 70◦ (minimum turning angle). Now since −90◦ < tan−1(X) < 90◦,
it follows that −70◦ < φ < 70◦.

Hence, our training problem further simplifies to minimizing

∥∥AW − 9
7 tan(Y )

∥∥2
.
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One convenient way of solving this problem is by using the method of least squares where the solution
can be obtained by solving the system of linear equation

(AT A)W = 9

7
AT tan(Y ).

Main result: Let wl be the weight from the lth input neuron to the output neuron. Using the least
squares method described above, it was found out that the weights follow the following pattern:

w0 = 1;

wl ≈

⎧⎪⎨
⎪⎩

1 when the vehicle avoids the lth obstacle
from the left;

−1 when the vehicle avoids the lth obstacle
from the right.

Now consider a straight line passing through (ol1, ol2) and (p1, p2) whose equation in the z1z2

plane is given by (z2 − ol2)(ol1 − p1) − (z1 − ol1)(ol2 − p2) = 0. With the help of this equation, we
define a function fl , which is dependent on the obstacle’s center and the robot’s current and target
position as:

fl=(y − ol2)(ol1 − p1) − (x − ol1)(ol2 − p2).

We note here that when the vehicle avoids the lth obstacle from right, the value of fl will be zero or
positive. Similarly, when the vehicle avoids the lth obstacle from left, the value of fl will be negative.
We can therefore generalize the weights as follows:

w0 = 1;

wl =
{

1 iffl < 0
−1 iffl ≥ 0 .

With these information, we have the following definition:

Definition 3: The steering angle φ(t) used in system (1) is depended on ξ, θ , Rl , fl , and dmax

according to the rule

φ(t) = 7

9
tan−1

(
ξ − θ +

q∑
l=1

wlαl

Rl

)
,

where

αl =
{

0, if Rl ≥ dmax

dmax − Rl, if Rl < dmax

and wl =
{

1 if fl < 0
−1 if fl ≥ 0 . While the steering angle φ(t) is capable of deviating the motion of the

vehicle away from the fixed obstacle to avoid collisions, safety of the robot is also dependent on
the velocity. Commonly seen in literature, the planar robot should slow down on approach to a fixed
obstacle.6–8 Thus, we redefine the velocity as

v(t) = |v0| ‖x(t) − xe‖
‖x(0) − xe‖

q∏
l=1

(
1 − αl

dmax

)
.

The inclusion of the factor
∏q

l=1 (1 − αl

dmax
) is to ensure that the robot would slow down as soon as it

enters the sensing zone. We can conclude that the mobile car-like robot A whose motion is governed
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Fig. 7. (Colour online) Trajectory of the car-like robot with initial position (6, 6) and the target placed at
(45, 45).

by the system (1) would move from an initial position to the target while avoiding collisions with
fixed obstacles along its path if the controllers v and φ are defined as

v(t) = |v0| ‖x(t)−xe‖
‖x(0)−xe‖

q∏
l=1

(
1 − αl

dmax

)
,

φ(t) = 7
9 tan−1

(
ξ − θ +

q∑
l=1

wlαl

Rl

)
.

⎫⎪⎪⎬
⎪⎪⎭ (5)

We further note that the controllers are bounded and continuous at every point over the domain

D = {x(t) ∈ R2 : x(0) �= xe ∩ Rl > 0 for l = 1, 2, . . . , q}.

Simulation 3: To illustrate the effectiveness of the proposed formulas, we have generated the
trajectory of the car-like robot from an initial position to the target position in the presence of
stationary circular obstacle(s).

Firstly, Fig. 7 shows the convergence of the car-like robot to its designated target in the presence
of one obstacle.

Figure 8 shows explicitly the time evolution of the relevant nonlinear controllers (v and φ) along
the trajectory of system (1). One can clearly notice the asymptotic convergence of these controllers
at the final configuration implying the effectiveness of the new controllers.

Secondly, in Fig. 9, we have placed multiple stationary obstacles of random sizes and positions in
the workspace. Again the car-like robot converges nicely to the target while avoiding the obstacles
along its path.

Figure 10 shows the time evolution of the nonlinear controllers, v and φ. Looking at the velocity
graph, we see that the planar robot slowed down on approach to the fixed obstacles. After it avoids
collision with the fixed obstacles, it gained speed rapidly and then slowed down on approach to the
target. Eventually, at the center of the target the velocity and the steering angle became zero.
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Fig. 8. (Colour online) Evolution of the controllers.

Fig. 9. (Colour online) Trajectory of the car-like robot with initial position (6, 6) and the target placed at
(45, 45).

5.3. Stability analysis in the presence of obstacles

Theorem 3: The equilibrium point xe of system (1) is asymptotically stable provided the controllers,
v and φ, are as defined in Eq. (5).

Proof. With the injection of Assumption 2, we see that the robot will never be trapped in between
two obstacles. Next, Assumption 3 ensures us that before the robot converges to its target, the
controllers given by Eq. (5) will reduce to that given in Eqs. (2) and (4). Thus, Theorem 2 will hold
and we can therefore conclude that system (1) will be asymptotically stable.
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Fig. 10. (Colour online) Evolution of the controllers.

Fig. 11. (Colour online) Row-structured parking bay with length a and width b, adopted from ref. [7].

6. Posture Control
This section achieves a predetermined final orientation of the vehicle. This is done by constructing
a virtual parking bay that surrounds the target and forcing the vehicle to park directly parallel to the
boundary line of the virtual bay, hence forcing the desired final postures. Figure 11 shows the virtual
parking bay with length a and width b.

In order to park the vehicle parallel to the boundary lines of the virtual parking bay, the vehicle
needs to avoid the lines at all time t > 0.7 For the vehicle to avoid any boundary line of the parking
bay, we utilize the idea inspired by the work carried by Sharma in ref. [7] where the author designed
the minimum distance technique in which the minimum distance from a robot to a line segment was
calculated and the resultant closest point avoided. Avoidance of the closest point on a line segment
simply affirms that the mobile robot avoids the whole line segment.

According to Sharma,7 if the kth line segment in the z1z2 plane has initial coordinates (ak1, bk1)
and final coordinate (ak2, bk2), then the point (x∗

k , y
∗
k ) on the kth line segment closest to the center of
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the vehicle is given by

(x∗
k , y

∗
k ) = (ak1 + λk(ak2 − ak1), bk1 + λk(bk2 − bk1)),

where

λk = (x − ak1)(ak2 − ak1) + (y − bk1)(bk2 − bk1)

(ak2 − ak1)2 + (bk2 − bk1)2
.

If λk ≥ 1, then we let λk = 1, in which case and if λk ≤ 0, then we let λk = 0. Otherwise we
accept the value of λk between 0 and 1.

Since avoidance of the whole line segment is equivalent to avoiding the point (x∗
k , y

∗
k ), we would

consider (x∗
k , y

∗
k ) as a point obstacle and hence avoid it using the technique discussed in Section 5.

As such, we let

Dk =
√

(x − x∗
k )2 + (y − y∗

k )2 − rv

gk = (y − y∗
k )(x∗

k − p1) − (x − x∗
k )(y∗

k − p2)

γk =
{

0, if Dk ≥ dmax

dmax − Dk, if Dk < dmax

δk =
{

1 ifgk < 0
−1 ifgk ≥ 0 .

For the vehicle to avoid the circular fixed obstacles and the point obstacles on the boundary lines
of the parking bay, we modify the controllers v and φ from Section 5 as

v(t) = |v0| ‖x(t)−xe‖
‖x(0)−xe‖

q∏
l=1

(
1 − αl

dmax

) 2∏
k=1

(
1 − γk

dmax

)
,

φ(t) = 7

9
tan−1

(
ξ − θ +

q∑
l=1

wlαl

Rl

+
2∑

k=1

γkδk

Dk

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

Simulation 4: To illustrate the effectiveness of the proposed formulas, we have generated a trajectory
of the car-like robot from some initial position to the target position as shown in Figs. 12 and 13. On
the one hand, the car-like robot avoided all fixed obstacles along its path while on the other hand, the
car parked correctly inside the virtual parking bay. In both the cases, the desired final orientations are
0 radians.

Figure 14 shows explicitly the time evolution of the relevant nonlinear controllers (v and φ)
corresponding to the trajectories for Fig. 13. One can clearly notice the asymptotic convergence of
these controllers at the final configuration implying the effectiveness of the control laws.

7. Concluding Remarks
This paper proposes a solution to the motion planning and control problem of a car-like robot. The
multi-tasking problem of target convergence, obstacle avoidance, and parking maneuverability is
successfully tackled in this paper. Moreover, mechanical singularities tagged to the system and the
bounds on steering angle are carefully incorporated and reflected into the proposed formulas. Our
method in the construction of a collision-free path in a workspace fixed with randomized multiple
obstacles, of arbitrary sizes, is based on learning via the SLP. The SLP is used to determine the
steering angle of the vehicle in the obstacle-ridden workspace.

The training data for the neural networks are obtained using computer simulations where the initial
paths are traced by the user. The user plays the role of the supervisor to train the neural network.
Several sets of data were obtained; in each case the size and position of obstacles and the initial and

https://doi.org/10.1017/S0263574713000982 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000982


950 Solution to the motion planning and control problem

Fig. 12. (Colour online) Trajectory of the car-like robot from initial position (4, 17.5) to the target position
(47, 37).

Fig. 13. (Colour online) Trajectory of the car-like robot with initial position (4, 46.9) and the target placed at
(47, 9).

target positions were chosen randomly. The network was trained using these data by the least squares
method and a new explicit formula for the steering angle in terms of the input was derived.

With the help of the proposed nonlinear controllers, we have achieved the point stabilization of
the system. However, the posture stability is only achieved by forcing the vehicle to park correctly
inside a virtual parking bay, thus giving the desired orientation at the target.

Finally, computer simulations of the generated path are presented to illustrate the effectiveness of
our proposed method.
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Fig. 14. (Colour online) Evolution of the controllers.
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