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Wedge Operations and Torus Symmetries II

Suyoung Choi andHanchul Park

Abstract. A fundamental idea in toric topology is that classes ofmanifolds with well-behaved torus
actions (simply, toric spaces) are classiûed by pairs of simplicial complexes and (non-singular) char-
acteristicmaps. In a previous paper, the authors provided a new way to ûnd all characteristicmaps
on a simplicial complex K(J) obtainable by a sequence of wedgings from K. _emain idea was that
characteristicmaps on K theoretically determine all possible characteristicmaps on a wedge of K.

We further develop our previous work for classiûcation of toric spaces. For a star-shaped sim-
plicial sphere K of dimension n− 1with m vertices, the Picard number Pic(K) of K is m−n. We call
K a seed if K cannot be obtained by wedgings. First, we show that for a ûxed positive integer ℓ, there
are at most ûnitely many seeds of Picard number ℓ supporting characteristic maps. As a corollary,
the conjecture proposed by V. V. Batyrev in 1991 is solved aõrmatively.

Secondly, we investigate a systematicmethod to ûnd all characteristicmaps on K(J) using com-
binatorial objects called (realizable) puzzles that only depend on a seed K. _ese two facts lead to a
practical way to classify the toric spaces of ûxed Picard number.

1 Introduction

A toric variety of dimension n is a normal algebraic variety with an algebraic action
of torus (C∗)n with a dense orbit. A compact smooth toric variety is called a toric
manifold. One of the most important results for toric varieties, known as the funda-
mental theorem for toric geometry, is that there is a bijection between the family of
toric varieties and the family of fans. In particular, each toric manifold corresponds
to a complete non-singular fan. Recall that an (n−1)-dimensional simplicial complex
K is star-shaped if there is a geometric realization of K into Rn such that every ray in
Rn starting from the originmeets K once and only once. A complete non-singular fan
can be regarded as a pair of a star-shaped simplicial sphere and the data of rays satis-
fying the non-singularity condition. Such a pair is called a fan-giving Z-characteristic
map. Not only toricmanifolds, but also the classes ofmanifolds equipped with well-
behaved torus actions (simply, toric spaces), are also classiûed by the corresponding
characteristicmaps. _e family of toric spaces includes toricmanifolds and contains
several families such as quasitoric manifolds and topological toric manifolds. Fur-
thermore, there are real analogues of toric spaces, called real toric spaces, which are
classiûed by Z2-characteristic maps. We refer to [4, Introduction] for the summary
of these classiûcations. See Deûnition 2.2 for the deûnition of characteristicmaps.
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Remark 1.1 In the sequel, unless otherwise stated,we ûx our interests on one of the
following Davis–Januszkiewicz (D-J) classes of characteristicmaps:
(1) _e Z-characteristicmaps.
(2) _e positively oriented Z-characteristicmaps.
(3) _e fan-giving Z-characteristicmaps.
(4) _e Z2-characteristicmaps.
_at is,we choose one of (1), (2), (3), or (4) andwe understand the terms characteristic
map and D-J class to correspond to the chosen one. Each choice corresponds to the
following toric spaces:

(1′) _e omnioriented topological toricmanifolds.
(2′) _e almost complex topological toricmanifolds.
(3′) _e toricmanifolds.
(4′) _e real topological toricmanifolds.

Refer to [4] for the deûnitions of positive orientedness of characteristicmaps. More-
over, one can deal with quasitoricmanifolds or small covers by assuming the further
condition that the underlying simplicial complex K is polytopal, not only star-shaped.

It is natural to ask for an explicit classiûcation of characteristic maps of (1), (2),
(3), or (4), although it is very complicated and, to date, only a few cases have been
classiûed. Because the family of toric spaces is too large to handle, one reasonable
approach would be to restrict our attention to a family of simplicial spheres with few
vertices.

Let K be a star-shaped simplicial sphere of dimension n − 1 with m vertices. _e
Picard number Pic(K) of K is deûned by Pic(K) ∶= m − n. If Pic(K) = 1, then K
is the boundary complex of the n-simplex. _e term Picard number is used here
because, if X is a toric manifold whose corresponding fan has the face complex K,
then the Picard number of X is just Pic(K). It is known that CPn is the only toric
space supported by K. If Pic(K) = 2, then K is the join of boundaries of two simplices
(see [7]), and all characteristicmaps over K have been classiûed by Kleinschmidt [8].
_e classiûcation of characteristicmaps corresponding to toricmanifolds over K with
Pic(K) = 3 is attributable to Batyrev [2], who used the fact that every toricmanifold
of Picard number 3 is projective in his proof. Since a non-projective toricmanifold of
Picard number 4 was constructed by Oda [11], Batyrev’s method is not applicable to
larger Picard numbers.

Our previous research [4] established a new way to classify characteristic maps
as follows. Let K be a star-shaped simplicial sphere with m vertices and ûx a vertex
v. Consider a 1-simplex I whose vertices are labeled v1 and v2 and denote by ∂I the
0-skeleton of I. Now let us deûne a new simplicial complex on m + 1 vertices, called
the (simplicial) wedge (or wedging) of K at v, denoted by wedv(K) as

wedv(K) = (I ⋆ LkK{v}) ∪ (∂I ⋆ (K ∖ {v})),

where K ∖ {v} is the induced subcomplex with m − 1 vertices except v, the LkK{v} is
the link of v in K, and ⋆ is the join operation of simplicial complexes. One notes that
the resulting simplicial complex, denoted by K(J), obtained from K by a sequence of
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wedgings is determined by a positive integer tuple J = ( j1 , . . . , jm). Details will be
given in Section 2.

Let (K , λ) be a characteristicmap of dimension n and σ a face of K. _en a char-
acteristic map (LkK σ ,Projσ λ), referred to as the projected characteristic map, is de-
ûned by the following map (Projσ λ)(v) = [λ(v)] ∈ Zn/⟨λ(w) ∣ w ∈ σ⟩ ≅ Zn−∣σ ∣. We
showed in [4] that λ onwedv K is uniquely determined by the projections Projv1

λ and
Projv2 λ, see Proposition 4.5. In other words, roughly speaking, characteristic maps
on K theoretically determine all possible characteristic maps on a wedge of K. We
note that the wedge operation preserves the Picard number. Using this method, we
succeeded in reproving Batyrev’s classiûcation without using the projectivity of toric
manifolds [4].

However, the following diõculties remain in terms of applying thismethod to gen-
eral cases.
(1) A star-shaped simplicial sphere is called a seed if it cannot be written as a sim-

plicial wedge. In order to ûnd all characteristic maps over K with a ûxed Picard
number, we have to consider all seeds which support characteristic maps. _e
number of seeds supporting characteristic maps should be suõciently small for
themethod in [4] to be practical.

(2) Even if we know every characteristicmap over K, it is not easy to ûnd all charac-
teristic maps over wedv(K) because there exists a pair (λ1 , λ2) of characteristic
maps over K such that there is no λ over wedv(K) such that Projv1

λ = λ1 and
Projv2 λ = λ2. Hence, to achieve our goal, i.e., to classify all characteristic maps
on K(J) for any J, we would have to determine which pair (λ1 , λ2) of character-
isticmaps over K produces a characteristicmap λ over wedv(K), and we would
have to repeat this procedure for every stage in the sequence of wedgings. _is
would be very diõcult or practically impossible.

_e work we present in this paper aims to resolve the above two problems. First,
in _eorem 2.6, we show that for a ûxed number ℓ, there are at most ûnitely many
seeds ofPicard number ℓ supporting characteristicmaps. Secondly, inRemark 5.6,we
investigate a systematic way to ûnd all characteristicmaps on K(J) using puzzles that
onlydepend on a seedK. For each J = ( j1 , . . . , jm), anR-characteristicmapoverK(J)
corresponds to a color-preserving graph homomorphism, called a realizable puzzle,
from G(J) to D′(K) satisfying that the image of every square-shaped subgraph of
G(J) is realizable. Here, R is either Z or Z2, G(J) is the 1-skeleton of a product of
simplices ∏m

i=1 ∆ j i−1 with the speciûc coloring, and D′(K) is the pre-diagram of K
which contains all R-characteristicmaps over K and the information of pairs {λ1 , λ2}

having λ such that Projv1
λ = λ1 and Projv2 λ = λ2. _e pre-diagram D′(K) for K

equipped with the set of realizable squares is called the diagram of K and is denoted
by D(K). For given K and J, we only need to ûnd realizable puzzles from G(J) to
D′(K) and thiswouldnot involve the repetitive tasks in (2). _eprecise combinatorial
interpretation of realizable puzzles will be given in Section 6. _ese two facts present
a practical way to classify the toric spaces of ûxed Picard number.

In addition, it is worth remarking that _eorem 2.6 easily implies the main con-
jecture proposed by Batyrev [2] whose proof can be found in Corollary 2.7. Let Σ be
a complete fan and let G(Σ) be the set of all generators of rays of Σ.
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Deûnition 1.2 A nonempty subsetP = {x1 , . . . , xk} ⊂ G(Σ) is called a primitive col-
lection if for each generator x i ∈ P the elements ofP∖{x i} generate a (k − 1)-dimen-
sional cone in Σ, while P itself does not generate any k-dimensional cone in Σ.

Conjecture 1.3 ([2, Conjecture 7.1]) For any n-dimensional complete non-singular
fan Σ with Picard number ℓ, there exists a constant N(ℓ) depending only on ℓ such that
the number of primitive collections in G(Σ) is always not more than N(ℓ).

In his paper, Batyrev needed the projectivity condition for the classiûcation of toric
manifolds of Picard number 3. But his conjecture is for general case, as we did in this
paper.

2 Wedge Operation and Seed

First let us recall some notions about simplicial complexes. We note that every sim-
plicial complex in this article is an abstract simplicial complex. Recall that for a face
σ of a simplicial complex K, the link of σ in K is the subcomplex

LkK σ ∶= {τ ∈ K ∣ σ ∪ τ ∈ K , σ ∩ τ = ∅}

and the simplicial join of two disjoint simplicial complexes K1 and K2 is deûned by
K1 ⋆ K2 = {σ1 ∪ σ2 ∣ σ1 ∈ K1 , σ2 ∈ K2}.

Let K be a simplicial complex with vertex set [m] = {1, 2, . . . ,m} and ûx a vertex v in
K. Consider a 1-simplex I whose vertices are v1 and v2 and denote by ∂I = {v1 , v2} the
0-skeleton of I. Now let us deûne a new simplicial complex on m + 1 vertices, called
the (simplicial) wedge of K at v, denoted by wedv K, by

wedv K = (I ⋆ LkK{v}) ∪ (∂I ⋆ (K ∖ {v})),
where K ∖ {v} is the induced subcomplex with m − 1 vertices except v, see Figure 1.

1

2

34

5 Ð→

11

12 2

34

5

K wed1 K

Figure 1: Illustration of a wedge of K

_e operation itself is called the simplicial wedge operation or (simplicial) wedging.
Another description of simplicial wedging can be given using minimal non-faces. A
subset σ of the vertex set of K is called a minimal non-face of K if σ ∉ K, but every
proper subset of σ is a face of K. Note that every simplicial complex is determined
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by its minimal non-faces. Let J = ( j1 , . . . , jm) ∈ Zm
+
be a vector of positive integers.

Denote by K(J) the simplicial complex on vertices

{11 , 12 , . . . , 1 j1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, 21 , 22 , . . . , 2 j2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . ,m1 , . . . ,m jm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

}

with minimal non-faces

{(i1)1 , . . . , (i1) j i1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, (i2)1 , . . . , (i2) j i2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . , (ik)1 , . . . , (ik) j ik
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

}

for each minimal non-face {i1 , . . . , ik} of K. It is an easy fact that wedi K = K(J)
where J = (1, . . . , 1, 2, 1, . . . , 1) is the m-tuple with 2 as the i-th entry. It should be
noted that K(J) can also be obtained from K by a sequence of wedgings. See [1] or
[4] for details.

We present a useful lemma here. For a simplicial complex K, we denote by V(K)

the set of vertices of K.

Lemma 2.1 We have the identity

wedv(K1 ⋆ K2) =

⎧⎪⎪
⎨
⎪⎪⎩

(wedv K1) ⋆ K2 , if v ∈ V(K1),
K1 ⋆ (wedv K2), if v ∈ V(K2).

Proof _is lemma in fact holds for general K(J). _e proof is obvious once one
observes that aminimal non-face of K1 ⋆ K2 is either that of K1 or that of K2.

Let R be the ringZ orZ2 = Z/2Z. Henceforth, let us assume thatK is an (n − 1)-di-
mensional star-shaped simplicial spherewhose vertex set is [m]. In this paper,we call
a ûnite set of vectors B = {v1 , . . . , vn} ⊂ Rn an R-basis or simply a basis of Rn if either
R = Z and B is unimodular in Zn , or R = Z2 and B is linearly independent in Zn

2 .

Deûnition 2.2 A map λ∶ [m] → Rn is a (non-singular) R-characteristic map over
K, or simply a characteristicmap, if the following holds:

(∗) if {i1 , . . . , in} ∈ K, then λ(i1), . . . , λ(in) forms an R-basis.

_e condition (∗) is known as the non-singularity condition.

EveryZ-characteristicmap λ∶ [m]→ Zn induces aZ2-characteristicmap given by
the composition [m] → Zn → Zn

2 , where the map Zn → Zn
2 is the natural modulo

map. _is new characteristicmap is frequently called themod 2 reduction of λ.
According to [3, Corollary 7.33, Proposition 7.34], one concludeswith the following

theorem.

_eorem 2.3 _e following are equivalent.
(i) K admits an R-characteristicmap.
(ii) _ere exists amap ϕ∶ [m]→ Rm−n such that

{ϕ(i) ∣ 1 ≤ i ≤ m, i /= ik for 1 ≤ k ≤ n}

is an R-basis for every maximal face {i1 , . . . , in} ∈ K.
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Let us write Pic(K) ∶= m − n and call it the Picard number of K. Further, we
ûx a positive integer ℓ and assume that Pic(K) = ℓ. We additionally assume that K
admits a Z2-characteristicmap λ. If m ≥ 2ℓ , themap ϕ of_eorem 2.3 (ii) cannot be
one-to-one. Suppose that v ,w ∈ [m] and ϕ(v) = ϕ(w). _en every facet of K should
contain either v or w. We need the following lemma at this point.

Lemma 2.4 Let v and w be distinct vertices of K. If every facet of K contains either v
or w, then K is isomorphic to L ⋆ ∂I or wedv L for some simplicial complex L.

Proof Let σ be a subset of the vertex set of K, v ∉ σ and w ∉ σ . _en we claim that

σ ∈ K ⇔ σ ∪ {v} ∈ K ⇔ σ ∪ {w} ∈ K .

To prove the claim, suppose that σ ∈ K. _enwehave a facet τ ofK such that σ ⊆ τ. If τ
contains both v andw, it is done. Otherwise,without loss of generality,we can assume
that v ∈ τ. _en τ ∪ {w} ∖ {v} is also a facet of K since K is a pseudomanifold and
there are exactly two facets of K which are supersets of the (n − 2)-simplex τ ∖ {v}.
_erefore the claim is proved. Considering the minimal non-faces of K, one easily
concludes that K is a suspension if {v ,w} /∈ K, or K is a wedge otherwise.

Deûnition 2.5 A star-shaped simplicial sphere is called a seed if it cannot bewritten
as a simplicial wedge.

_ere are certainly many seeds in the family of star-shaped simplicial spheres: for
example, a �ag simplicial complex cannot be a wedge. In spite of this, the following
theorem says that “good” seeds are very rare in a sense of toric topology.

_eorem 2.6 Let us ûx a positive integer ℓ and letK be a seed ofPicard number ℓ other
than ∂I or ∂I⋆∂I,where ∂I is the boundary of the 1-simplex. If K admits a characteristic
map, then m ≤ 2ℓ − 1, where m is the number of vertices of K. As a corollary, there are
only ûnitely many seeds with Picard number ℓ which admit a characteristicmap.

Proof It is enough to prove the theorem for R = Z2. If K admits a Z-characteristic
map, then itsmod 2 reductionwillwork. We shall use an induction on ℓ. _e assertion
holds for ℓ = 3 as can seen in Table 1. Assume that the theorem holds for a seed of
Picard number ℓ − 1, i.e., a seed of Picard number ℓ − 1 has at most 2ℓ−1 − 1 vertices.
Suppose m ≥ 2ℓ . Since K is a seed, by Lemma 2.4, K = L ⋆ ∂I for some simplicial
complex L. We note that L is also a seed because of Lemma 2.1. _e number of vertices

Pic(K) K
1 ∂I
2 ∂I ⋆ ∂I
3 ∂I ⋆ ∂I ⋆ ∂I, ∂P5, ∂C4(7)

Table 1: List of all seeds admitting characteristicmaps for small Picard numbers. Here,
P5 is the pentagon and C4(7) is the cyclic 4-polytope with 7 vertices.
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of L is m − 2, and Pic(L) = Pic(K) − 1 = ℓ − 1. We have two inequalities m − 2 ≤

2ℓ−1 − 1 by induction hypothesis, and m ≥ 2ℓ as we supposed before, which cause a
contradiction.

In Table 1, the classiûcation of simplicial spheres of Picard number 1 and 2 is well
known. For Picard number 3, see [6, 10]. For toricmanifolds, see [9]. We remark that
∂I ⋆ ∂I ⋆ ∂I and ∂P5 do support toric and quasitoricmanifolds, and ∂C4(7) supports
quasitoricmanifolds but not toricmanifolds.

_eorem 2.6 easily gives an aõrmative solution to Conjecture 1.3 originally pro-
posed by Batyrev [2].

Corollary 2.7 For any n-dimensional complete non-singular fan Σ with Picard num-
ber ℓ, there exists a constantN(ℓ) depending only on ℓ such that the number of primitive
collections in G(Σ) is always not more than N(ℓ).

Proof Observe that the primitive collections of a complete simplicial fan Σ corre-
spond one-to-one to the minimal non-faces of the underlying simplicial complex of
Σ. Furthermore, the wedge operation does not change the number of minimal non-
faces, recalling the deûnition of K(J). By _eorem 2.6, we have only ûnitely many
seeds whoseminimal non-faces need to be counted. _us an upper bound exists for
given Picard number ℓ.

3 Puzzle and Classification of Toric Spaces

We have studied classiûcation of toric spaces over wedges of star-shaped simplicial
spheres (see [4, §4]). In this section, we further improve Corollary 4.5 of [4] and try
to provide a combinatorial and systematic way to classify toric spaces over K(J).
A characteristicmap λ∶ [m]→ Rn can be represented by an (n ×m)-matrix

(λ(1) λ(2) ⋅ ⋅ ⋅ λ(m)) ,

where λ(1), . . . , λ(m) are column vectors. _ismatrix is called a characteristicmatrix
and also frequently denoted by λ.

Deûnition 3.1 Two characteristic maps λ1 , λ2∶ [m] → Rn are said to be Davis–
Januszkiewicz equivalent orD-J equivalent if they are the same up to change of basis of
Rn . _at is, λ1 and λ2 are D-J equivalent if one of their corresponding characteristic
matrices can be changed to the other by ûnite applications of any of the following
(called row operations):
(1) Multiply a row by −1.
(2) Add amultiple of one row to another row.
_e equivalence classes are called Davis–Januszkiewicz classes or D-J classes.

Remark 3.2 When R = Z or R = Z2, the above deûnition corresponds to a D-J
equivalenceofomnioriented topological toricmanifoldsor real topological toricman-
ifolds, respectively. If R = Z2, then the row operation (1) is redundant.
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Deûnition 3.3 Let us ûx a face σ ∈ K. Let λ∶V(K) → Rn be a map such that the
vectors {λ(v)}v∈σ are unimodular. _en we deûne a map called the projection of λ
with respect to σ by the following:

(Projσ λ)(w) = [λ(w)] ∈ Zn
/⟨λ(v) ∣ v ∈ σ⟩ ≅ Zn−∣σ ∣

for w ∈ V(LkK σ). _e map Projσ λ∶LkK σ → Zn−∣σ ∣ is deûned up to a basis change
of Zn−∣σ ∣. When (K , λ) is a characteristicmap, then (LkK σ ,Projσ λ) is also a charac-
teristicmap, also called a projected characteristicmap. When σ = {v} is a vertex, one
can simply write Projσ λ = Projv λ.

Remark 3.4 Fix a vertex 1 of K at which to be wedged. To study toric spaces over
K(J), it is worth describing the projected characteristicmap using matrices. _e ver-
tex set of its wedge wed1 K can be written as {11 , 12 , 2, . . . ,m}. Let Λ be a characteris-
ticmap over wed1 K. A�er row operations, one can assume that Λ(11) is a coordinate
vector. In other words, thematrix Λ can be written as

(3.1) Λ =

⎛
⎜
⎜
⎜
⎝

1 a1 ⋅ ⋅ ⋅ am
0
⋮ λ
0

⎞
⎟
⎟
⎟
⎠
(n+1)×(m+1)

where the columns are labeled as 11 , 12 , 2, . . . ,m. _en the characteristic matrix for
Proj11 Λ is thematrix λ, since the link Lkwed1 K{11} is naturally isomorphic to K.

Recall that a pseudograph is a non-simple graph possibly with loops and/or multi-
ple edges.

Deûnition 3.5 _e pre-diagram of K, written as D′(K), is an edge-colored pseu-
dograph (V , E) satisfying
● the vertex set V whose elements are the D-J classes over K,
● the edge set E is deûned as follows: E is the collection of the sets {λ1 , λ2 , v} where

λ1 , λ2 ∈ V and v ∈ V(K) such that there exists a characteristic map over wedv K
whose two projections onto K are λ1 and λ2. _e element {λ1 , λ2 , v} is called an
edge colored v whose endpoints are λ1 and λ2.

Remark 3.6 For every D-J class λ over K and a vertex v of K, there is a loop of
D′(K) starting at λ and colored v because every loop indicates a canonical extension
(see [4, 4.2]). Hence the loops are usually omittedwhen a drawing of the pre-diagram
is made.

Remark 3.7 One should take care that the deûnition of the pre-diagram depends
on the choice of Remark 1.1. _e same goes for Deûnition 5.5.

_e pre-diagram is easily computable. Let λ∶ [m] → Rn be a characteristic map
and ûx a number 1 ≤ v ≤ m. _en we obtain amatrix Pr(λ, v) such as in Remark 3.4.
To be more precise, a�er applying suitable row operations to λ, we can assume that
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the v-th column is a coordinate vector. _en

λ =
⎛
⎜
⎜
⎜
⎝

1 a2 ⋅ ⋅ ⋅ am
0
⋮ A
0

⎞
⎟
⎟
⎟
⎠

n×m

(when v = 1, for example). _en we deûne Pr(λ, v) = A. Note that Pr(λ, v) is deûned
up to row operations.

Lemma 3.8 For two D-J classes over K and a vertex v of K, the set {λ1 , λ2 , v} is an
edge of D′(K) if and only if Pr(λ1 , v) and Pr(λ2 , v) are the same a�er row operations.

Proof In (3.1), one can further assume thatΛ(12) is a coordinate vector, since {11 , 12}
is a face of wed1 K and thus {Λ(11),Λ(12)} is a unimodular set. _erefore, a�er row
operations, one obtains

Λ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 a2 ⋅ ⋅ ⋅ am
0 1 b2 ⋅ ⋅ ⋅ bm
0 0
⋮ ⋮ A
0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠
(n+1)×(m+1)

and Pr(λ1 , v) = Pr(λ2 , v) = A. _e converse is similar.

Example 3.9 (see [5, Example 2.8]) In this example, we compute D′(∂P4) where
P4 is a quadranglewith four vertices 1, 2, 3, and 4 and four edges 12, 23, 34, and 41. We
deal with the family of toric manifolds and fan-giving Z-characteristic maps. Up to
D-J equivalence, every fan-giving characteristicmap over P4 has the form either

(
1 0 −1 d
0 1 0 −1) or (

1 0 −1 0
0 1 d −1)

for d ∈ Z, which we call αd and βd , respectively. _ey are all distinct, except α0 = β0.
For example, we present the computation of Pr(αd , 4). We perform a row operation

αd = (
1 0 −1 d
0 1 0 −1) ∼ (

1 d −1 0
0 1 0 −1)

and delete the fourth column and the second row to get

Pr(αd , 4) = (1 d −1) .
Similarly, we obtain all Pr(λ, v) as follows:

Pr(αd , 1) = (1 0 −1) Pr(βd , 1) = (1 d −1)

Pr(αd , 2) = (1 −1 d) Pr(βd , 2) = (1 −1 0)

Pr(αd , 3) = (0 1 −1) Pr(βd , 3) = (d 1 −1)

Pr(αd , 4) = (1 d −1) Pr(βd , 4) = (1 0 −1) .
_en by Lemma 3.8, we conclude that the edge set E is

E = {{αd , αe , 1}, {αd , αe , 3}, {βd , βe , 2}, {βd , βe , 4} ∣ d , e ∈ Z}.
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⋮

2,4

β1

2,4

⋅ ⋅ ⋅ α−2
1,3 α−1

1,3 α0 = β0
2,4

1,3 α1
1,3 α2 ⋅ ⋅ ⋅

β
−1

2,4

⋮

Figure 2: Some edges of D′(∂P4).

Figure 2 shows some of the edges of D′(∂P4).

Let J = ( j1 , . . . , jm) ∈ Zm
+
be an m-tuple of positive integers. We consider a colored

graph G(J) with m colors constructed as follows: G = G(J) is the graph determined
by the 1-skeleton of the simple polytope ∆ j1−1 × ∆ j2−1 × ⋅ ⋅ ⋅ × ∆ jm−1, where ∆ j is the
j-dimensional simplex. One remarks that each edge e ofG can be uniquely written as

p1 × p2 × ⋅ ⋅ ⋅ × pv−1 × ev × pv+1 × ⋅ ⋅ ⋅ × pm ,

where p i is a vertex of ∆ j i−1, 1 ≤ i ≤ m, i /= v, and ev is an edge of ∆ jv−1. _enwe color
v ∈ [m] on the edge e.

Deûnition 3.10 A graph homomorphism p∶G(J)→ D′(K) that preserves the edge
coloring is called a puzzle of the pair (K , J). An edge e = {α, α′} of G(J) is called
trivial in a puzzle p if p(α) = p(α′). A puzzle is said to be reducible if it contains a
trivial edge, or irreducible otherwise.

Deûnition 3.11 Let p∶G(J) → D′(K) be a puzzle. If a subgraph G′ of G(J) corre-
sponds to a face of ∆ j1−1 × ∆ j2−1 × ⋅ ⋅ ⋅ × ∆ jm−1, the graph homomorphism p∣G′ ∶G′ →

D′(K) is called a subpuzzle of p. If G′ is the 1-skeleton of a hypercube (∆1)d , then
the corresponding subpuzzle is called a subcube. In particular, when d = 2, it is also
called a subsquare. We remark that a subpuzzle can be regarded as a puzzle so that
G′ ≅ G(J′) for some m-tuple J′.

For J = ( j1 , . . . , jm) ∈ Zm
+
, let us denote by I(J) the index set

I(J) = {α = (α1 , . . . , αm) ∈ Zm
+

∣ 1 ≤ α i ≤ j i for 1 ≤ i ≤ m}.
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For an index α = (α1 , . . . , αm) ∈ I(J), we consider a face of the simplicial complex
K(J)

(3.2) σ(α) ∶= V(K(J)) ∖ {1α1 , 2α2 , . . . ,mαm}.

Observe that σ(α) is indeed a face since it does not contain anyminimal non-faces of
K(J): see the deûnition of K(J) in Section 2. Furthermore, the complex LkK(J) σ(α)
is naturally isomorphic to K. Denote by V(G(J)) the vertex set of the graph G(J).
_en there is an obvious identiûcation I(J) → V(G(J)) by labeling the vertices of
∆ j i−1 by i1 , . . . , i j i , 1 ≤ j ≤ m. Using this identiûcation, for any characteristic map Λ
over K(J), we obtain a puzzle of (K , J) by assigning to the vertex α the characteristic
map Projσ(α) Λ. Puzzles constructed in this way are said to be realizable.

Remark 3.12 It is easy to verify that a realizable puzzle is indeed a puzzle. More
precisely, let p∶G(J)→ D′(K) be a realizable puzzle deûned by λ. _en it is necessary
to show that every edge of G(J) maps to an edge of D′(K). For any subgraph G′

corresponding to a face of ∆ j1−1 × ∆ j2−1 × ⋅ ⋅ ⋅ × ∆ jm−1, it can be shown that the map
p∣G′ ∶G′ → D′(K) is a realizable puzzle deûned by a projection of λ. In particular,
when G′ is an edge of G(J), this argument guarantees that the image of an edge of
G(J) is indeed an edge of D′(K), thereby completing the proof.

For example, when J = (2, 3, 1, . . . , 1), then a realizable puzzle p∶G(J) → D′(K)

will look like
λ(1,1)

2

2

1

λ(1,2)

1

2

λ(1,3)

1

λ(2,1)
2

2

λ(2,2)

2

λ(2,3)

where λα = Projσ(α) Λ with the subscripts α abbreviated so that

(α1 , α2) = (α1 , α2 , 1, 1, . . . , 1).

Conversely, every realizable puzzle of (K , J) determines a unique characteristicmap
over K(J) up to Davis–Januszkiewicz equivalence. To prove this, assume that (K , λ)
is a characteristicmap and observe that

(3.3) Proj f∐g λ = Proj f (Projg λ)

for any face f and g in K such that f ∩ g = ∅ and f ∪ g ∈ K, by Deûnition 3.3. Let
J = ( j1 , . . . , jm). _e proof is by induction on ∣J∣ ∶= j1 + ⋅ ⋅ ⋅ + jm − m. When ∣J∣ = 0,
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it is trivial. Now suppose that there are two characteristicmaps Λ and Λ′ over K(J).
Without loss of generality, we can assume that j1 ≥ 2. Consider the two characteristic
maps Proj11 Λ and Proj11 Λ

′. Put α = (α1 , . . . , αm) ∈ I(J) so that α1 /= 1. Let us
compute the realizable puzzle of Proj11 Λ. To avoid confusion with (3.2), we use the
notation σ ′(α) which is a face of the underlying complex of Proj11 Λ:

σ ′(α) ∶= V(K(J)) ∖ {11 , 1α1 , 2α2 , . . . ,mαm}.

By (3.3), Projσ ′(α)(Proj11 Λ) = Projσ ′(α)∪{11} Λ = Projσ(α) Λ = λα , where λα is the
characteristicmap assigned at the vertex α of G(J). _e same calculation shows that
Projσ ′(α)(Proj11 Λ

′) = λα . In other words, Proj11 Λ and Proj11 Λ
′ have the same real-

izable puzzle. By induction hypothesis, they are D-J equivalent. _e same holds for
Proj12 Λ andProj12 Λ

′. _en, by the uniqueness of the characteristicmaps overwedges
(see Proposition 4.5), Λ and Λ′ are D-J equivalent.

In conclusion, we have a bijection

{D-J classes over K(J)}→ {realizable puzzles of (K , J)}.
Λ ↦ p(Λ).

_erefore, for the classiûcation of toric spaces over K(J), the main challenge is to
determine whether a given puzzle is realizable or not. For example, the puzzle

λ1
v

w

λ1

w

λ1
v λ2

is not realizable whenever λ1 /= λ2 (see Proposition 4.3).

4 Criterion on the Realizability of Puzzles

To determine whether a given puzzle p is realizable or not, let us ûrst consider sub-
cubes of p.

_eorem 4.1 A puzzle G(J) → D′(K) is realizable if and only if all of its subcubes
are realizable.

Before proving the above theorem, we ûrst start from an edge. Let

λ1
v λ2

be an edge e of the pre-diagram D′(K). _is edge can be regarded as a realizable
puzzle corresponding to λ over wedv K whose two projections are λ1 and λ2.

Lemma 4.2 In the setting above, assume that the characteristicmatrix for λ1 is

λ1 = (a1 a2 ⋅ ⋅ ⋅ am)
n×m ,
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where ai denotes the i-th column vector of λ1. _en the D-J class λ can be expressed by
amatrix of the form

(4.1) λ =
⎛
⎜
⎝

1 ⋅ ⋅ ⋅ v − 1 v1 v2 v + 1 ⋅ ⋅ ⋅ m
a1 ⋅ ⋅ ⋅ av−1 av 0 av+1 ⋅ ⋅ ⋅ am
e1 ⋅ ⋅ ⋅ ev−1 −1 1 ev+1 ⋅ ⋅ ⋅ em

⎞
⎟
⎠
(n+1)×(m+1)

,

for appropriate integers e i for i /= v. _e numbers above the horizontal line are indicators
for vertices of simplicial complexes. If every e i is zero, then the characteristic map is a
canonical extension.

Proof _e proof is easy once the basis of Zn+1 is appropriately selected. More pre-
cisely, we select λ(v2) such that it is a coordinate vector. Since Projv2 λ = λ1, λ must
be of the form

λ = (
a1 ⋅ ⋅ ⋅ av−1 av 0 av+1 ⋅ ⋅ ⋅ am
∗ ⋅ ⋅ ⋅ ∗ x 1 ∗ ⋅ ⋅ ⋅ ∗

)
(n+1)×(m+1)

,

recalling that Projv2 λ is obtained from λ by deleting the column v2 and the (n+ 1)-th
row. As av is a primitive vector, by adding to the last row a suitable linear combination
of the ûrst n rows, it can be assumed that x = −1.

_e matrix (4.1) is called a standard form for the edge e centered at λ1. If every
e i is zero, then λ1 = λ2 and λ is simply a canonical extension of λ1. In this case, the
edge e is a loop in D′(K). Note that two standard forms (of the same center) for the
same edge can be changed to each other by using row operations. _e standard form
is unique in this sense.

Let p∶G(J) → D′(K) be a puzzle. Recall that the vertex set V(G(J)) is identiûed
with the index set I(J) and thus p(α) is a D-J class over K for all α = (α1 , . . . , αm) ∈

I(J). We ûx an element 1 = (1, 1, . . . , 1) ∈ I(J) and let p(1) be the characteristicmatrix
p(1) = (a1 ⋅ ⋅ ⋅ am). In the graph G(J), suppose that 1 and α are connected by an
edge colored v. _en α i = 1 for i /= v. We label the edge connecting 1 and α as eαvv .
For each edge eαvv , we ûx a standard form of eαvv centered at p(1) like the following:

⎛
⎜
⎝

1 ⋅ ⋅ ⋅ v − 1 v1 v2 v + 1 ⋅ ⋅ ⋅ m
a1 ⋅ ⋅ ⋅ av−1 av 0 av+1 ⋅ ⋅ ⋅ am
eαvv ,1 ⋅ ⋅ ⋅ eαvv ,v−1 −1 1 eαvv ,v+1 ⋅ ⋅ ⋅ eαvv ,m

⎞
⎟
⎠
(n+1)×(m+1)

.

For convenience of notation of block matrices, we use the following notations:
A i = (ai 0 ⋅ ⋅ ⋅ 0)

n× j i
,

S i =
⎛
⎜
⎝

−1 1 0
⋮ ⋮ ⋱

−1 0 1

⎞
⎟
⎠
( j i−1)× j i

,

and

ek , i =

⎛
⎜
⎜
⎜
⎜
⎝

e2k , i 0 ⋅ ⋅ ⋅ 0
e3k , i 0 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮

e jk
k , i 0 ⋅ ⋅ ⋅ 0

⎞
⎟
⎟
⎟
⎟
⎠
( jk−1)× j i

.
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Proposition 4.3 If the puzzle p∶G(J)→ D′(K) is realizable, the following matrix

(4.2) Λ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1 A2 A3 ⋅ ⋅ ⋅ Am
S1 e1,2 e1,3 ⋅ ⋅ ⋅ e1,m
e2,1 S2 e2,3 ⋅ ⋅ ⋅ e2,m

⋮ ⋮ ⋱ ⋮

em−1,1 ⋅ ⋅ ⋅ Sm−1 em−1,m
em ,1 ⋅ ⋅ ⋅ em ,m−1 Sm

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

becomes a characteristicmatrix over K(J) where the columns are labeled as

11 , . . . , 1 j1 , 21 , . . . , 2 j2 , . . . ,m1 , . . . ,m jm

from le� to right. Furthermore, the realizable puzzle p is uniquely determined by p(1)
and p(α) for vertices α adjacent to 1.

We call (4.2) a standard form of the characteristicmatrix Λ centered at 1.

Proof Since the puzzle p is realizable, there already exists a unique corresponding
characteristic matrix Λ′ over K(J) up to row operations. _e only thing to show is
that Λ′ is equivalent to Λ of (4.2) up to row operations. Consider the face

σ(1) = V(K(J)) ∖ {11 , 21 , . . . ,m1} = {12 , . . . , 1 j1} ∪ ⋅ ⋅ ⋅ ∪ {m2 , . . . ,m jm}.

A�er row operations, we can assume that every column of Λ′ belonging to σ(1) is a
coordinate vector. _erefore, a�er exchanging some rows, Λ′ should have the follow-
ing form:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1 0 ⋅ ⋅ ⋅ 0 b2 0 ⋅ ⋅ ⋅ 0 b3 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅

∗ 1 ∗ ∗

⋮ ⋱ ⋮ O ⋮ O ⋅ ⋅ ⋅

∗ 1 ∗ ∗

∗ ∗ 1 ∗

⋮ O ⋮ ⋱ ⋮ O ⋅ ⋅ ⋅

∗ ∗ 1 ∗

∗ ∗ ∗ 1
⋮ O ⋮ O ⋮ ⋱ ⋅ ⋅ ⋅

∗ ∗ ∗ 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where bi is a column vector of n entries. Furthermore recall that the projection
Projσ(1) Λ

′ is given by the matrix minor (b1 ⋯ bm) , and Projσ(1) Λ
′ = p(1) is

given by the matrix (a1 ⋯ am) . _us the two matrices above are equivalent up
to row operations, and hence we can replace bi by ai for all i a�er row operations
concerning only ûrst n rows of Λ′.

Next,we pick a vertex v j of K(J) so that 2 ≤ j ≤ jv , or equivalently,we pick a vertex

α = (1, . . . , 1, . . . , αv = j, . . . , 1, . . . , 1) ∈ I(J)
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of G(J) connected to 1 by an edge. Now Λ′ should look like the following:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 0 ⋅ ⋅ ⋅ 0 a2 0 ⋅ ⋅ ⋅ 0 a3 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅

f 21,1 1 f 22,1 f 23,1
⋮ ⋱ ⋮ O ⋮ O ⋅ ⋅ ⋅

f j1
1,1 1 f j1

2,1 f j1
3,1

f 21,2 f 22,2 1 f 23,2
⋮ O ⋮ ⋱ ⋮ O ⋅ ⋅ ⋅

f j2
1,2 f j2

2,2 1 f j2
3,2

f 21,3 f 22,3 f 23,3 1
⋮ O ⋮ O ⋮ ⋱ ⋅ ⋅ ⋅

f j3
1,3 f j3

2,3 f j3
3,3 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where f ∗
∗,∗ are integers. Observe that theminor of Λ′ corresponding to the projection

with respect to the face σ(1) ∖ {v j} is

(
a1 ⋅ ⋅ ⋅ av−1 av 0 av+1 ⋅ ⋅ ⋅ am
f j
v ,1 ⋅ ⋅ ⋅ f j

v ,v−1 f j
v ,v−1 1 f j

v ,v+1 ⋅ ⋅ ⋅ f j
v ,m

) ,

and it is equivalent to the standard form of the edge e j
v

(
a1 ⋅ ⋅ ⋅ av−1 av 0 av+1 ⋅ ⋅ ⋅ am
e j
v ,1 ⋅ ⋅ ⋅ e j

v ,v−1 −1 1 e j
v ,v+1 ⋅ ⋅ ⋅ e j

v ,m
)

by a sequence of row operations. Observe that there is the corresponding sequence
of row operations in Λ′, which results in an addition to the i-th row, i > n, of a linear
combination of the ûrst n rows. In conclusion, a�er all possible choices of v j and the
corresponding row operations, we can assume that

f j
v , i =

⎧⎪⎪
⎨
⎪⎪⎩

−1, if v = i ,
e j
v , i , otherwise,

which completes the proof.

Two edges

e = p1 ×⋯ × pv−1 × ev × pv+1 ×⋯ × pm ,
e′ = p′1 ×⋯ × p′v−1 × e

′

v × p′v+1 ×⋯ × p′m
of G(J) that are colored v are said to be parallel if ev = e′v .

Corollary 4.4 A realizable puzzle corresponds to a canonical extension if and only if
the puzzle is reducible. Furthermore, if an edge e of a realizable puzzle is trivial, then
the edges parallel to e are also trivial.

Proof If a trivial edge e exists, wemay assume that e is colored v and its endpoints
are 1 and α = (α1 , . . . , αm) so that p(α) = p(1). _en we have observed that the
edge corresponds to a canonical extension and every e i is zero in the standard form
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Λ in (4.1) for the edge. _at means there is a row of the matrix of (4.2) such that
its v1-th entry is −1, vαv -th entry is 1, and the remaining entries are zero (eαvv , i = 0
for all i). _erefore, by Lemma 4.2, it immediately follows that Λ also represents a
canonical extension such that Projv1

Λ = Projvαv Λ. Let e′ be an edge parallel to e
whose endpoints are β and β′. _en there is a face σ of K(J) such that σ ∪ {v1} and
σ ∪ {v2} are also faces of K(J) and p(β) = Projσ∪{v1}

Λ and p(β′) = Projσ∪{v2} Λ.
_erefore they are equal.

For later use, we state a version of a result in [4].

Proposition 4.5 ([4, Proposition 4.4]) Let λ∶V(wedv K)→ Rn+1 be amap which is
not necessarily a characteristicmap. Label the two new vertices as v1 and v2. Moreover,
assume that the set {λ(v1), λ(v2)} is unimodular. _en λ is a characteristicmap if and
only if Projv1

λ and Projv2 λ are characteristicmaps over K.

Now we are ready to prove_eorem 4.1.

Proof of_eorem 4.1 One direction is straightforward by Remark 3.12. To prove
the converse, assume that every subcube of p∶G(J)→ D′(K) is realizable and assume
that jv ≥ 2 for all v (if not, some canonical extensions may be used). At this time
we are not sure whether p is realizable, but we can still follow the construction of
Proposition 4.3 and obtain thematrixΛ in (4.2). We recursively apply Proposition 4.5
to show that Λ is non-singular. Observe that in (4.2), {Λ(v2),Λ(v3), . . . ,Λ(v jv )} is
a unimodular set for any v such that 1 ≤ v ≤ m because all vectors are coordinate
vectors. Apply Proposition 4.5 to two vertices va and vb of K(J) other than v1. By
recalling that the projection simply involves the deletion of a column and a row, we
obtain two “smaller” standard forms. Continuing this process, we reach matrices of
the following form:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a1 0 a2 0 a3 ⋅ ⋅ ⋅ am 0
−1 1 ∗ 0 ∗ ∗ 0
∗ 0 −1 1 ∗ ⋮ 0
⋮ ⋮ ⋱

∗ 0 ∗ 0 −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Here we terminate our process since the available pair of coordinate vectors is not
found. However, thismatrix is simply a standard formof a subcube,which is realizable
by assumption. In particular, it is non-singular. Finally, a recursive application of
Proposition 4.5 shows that Λ is non-singular, proving that the puzzle p is realizable.

5 Squares to Cubes

Deûnition 5.1 Let R = Z orZ2. Amarked row vector in Rm is a pair (r, v)where 1 ≤
v ≤ m and r = (r1 , . . . , rm) ∈ Rm is a row vector. _e number v is called the marking
of the marked row vector. When there is no danger of confusion, the markings can
simply be omitted to write (r, v) = r. When rv = 0, the marked row vector is called
reduced.
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Let us ûx a characteristic map Λ over K and let (r, v) and (r′ , v) be two marked
row vectors in Zm with the same markings. We write r ∼Λ r′ if r − r′ is a linear
combination of row vectors of Λ. Assume that r = (r1 , . . . , rm) and

Λ = (a1 ⋅ ⋅ ⋅ am)
n×m .

Let us use the notation

(
Λ

(r, v)) ∶=
⎛
⎜
⎝

1 ⋅ ⋅ ⋅ v − 1 v1 v2 v + 1 ⋅ ⋅ ⋅ m
a1 ⋅ ⋅ ⋅ av−1 av 0 av+1 ⋅ ⋅ ⋅ am
r1 ⋅ ⋅ ⋅ rv−1 −1 + rv 1 rv+1 ⋅ ⋅ ⋅ rm

⎞
⎟
⎠
(n+1)×(m+1)

.

Note that if the matrix ( Λ
r ) deûnes a characteristic map for wedv K, it is simply a

standard form if r is reduced. Observe that ( Λ
(r,v) ) are D-J equivalent to (

Λ
(r′ ,v) ) if

and only if r ∼Λ r′.
Consider its twoprojectionsoverK. _eprojectionProjv2(

Λ
r ) is simplyΛ,whereas

the other projection is denoted by Λr ∶= Projv1
( Λ

r ).
Let us calculate Λr explicitly. Without loss of generality, we assume that themark-

ing of r is 1. _en by deûnition,

(
Λ
r) = (

a1 0 a2 a3 ⋅ ⋅ ⋅ am
−1 + r1 1 r2 r3 ⋅ ⋅ ⋅ rm

) .

In fact, one may further assume that r is reduced, that is, r1 = 0 (see the proof of
Lemma 4.2). A�er suitable row operations, it becomes

(
0 a1 a2 + r2a1 a3 + r3a1 ⋅ ⋅ ⋅ am + rma1
−1 1 r2 r3 ⋅ ⋅ ⋅ rm

) .

Deleting the 11-th column and the last row, we obtain the projection

(5.1) Λr
= (a1 a2 + r2a1 a3 + r3a1 ⋅ ⋅ ⋅ am + rma1) .

_e notation ( Λ
r ) can be extended in an obvious way. Let r1 , . . . , rk be marked

row vectors with mutually distinct markings. By relabeling the vertices of K, wemay
assume that rv = (rv , v) has marking v for v = 1, . . . , k. _en we deûne

⎛
⎜
⎜
⎜
⎝

Λ
r1
⋮

rk

⎞
⎟
⎟
⎟
⎠

∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a1 0 a2 0 ⋅ ⋅ ⋅ ak 0 ak+1 ⋅ ⋅ ⋅ am
−1 + r11 1 r12 0 ⋅ ⋅ ⋅ r1k 0 r1k+1 ⋅ ⋅ ⋅ r1m

r21 0 −1 + r22 1 ⋅ ⋅ ⋅ r2k 0 r2k+1 ⋅ ⋅ ⋅ r2m
⋮ ⋱ ⋮ ⋮ ⋱

rk1 0 rk2 0 ⋅ ⋅ ⋅ −1 + rkk 1 rkk+1 ⋅ ⋅ ⋅ rkm

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Again, if the above matrix deûnes a characteristic map over K(J), where the ûrst k
coordinates of J = (2, . . . , 2, 1, . . . , 1) are 2 and the remaining coordinates are 1, the
matrix is a standard form if r1 , . . . , rk are reduced.

Lemma 5.2 In the above settings, we have the following identity:

Projk1

⎛
⎜
⎜
⎜
⎝

Λ
r1
⋮

rk

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

Λrk

(r1)rk

⋮

(rk−1)rk

⎞
⎟
⎟
⎟
⎟
⎠

,
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where rs = (r, v)(s,w) is amarked row vector in which marking v has the deûning prop-
erty

Projw1

⎛
⎜
⎝

Λ
r
s

⎞
⎟
⎠
= (

Λs

rs ) .

To prove the lemma, it is necessary to show that rs is well deûned up to the equiv-
alence relation ∼Λ . In thematrix

⎛
⎜
⎝

Λ
r
s

⎞
⎟
⎠
,

one can assume that r = (r, 1) and s = (s, 2) and that r and s are reduced as before.
_en

⎛
⎜
⎝

Λ
r
s

⎞
⎟
⎠
=
⎛
⎜
⎝

a1 0 a2 0 a3 ⋅ ⋅ ⋅ am
−1 1 r2 0 r3 ⋅ ⋅ ⋅ rm
s1 0 −1 1 s3 ⋅ ⋅ ⋅ sm

⎞
⎟
⎠
.

A�er a series of row operations, thematrix becomes

⎛
⎜
⎝

a1 + s1a2 0 0 a2 a3 + s3a2 ⋅ ⋅ ⋅ am + sma2
−1 + s1r2 1 0 r2 r3 + s3r2 ⋅ ⋅ ⋅ rm + smr2

s1 0 −1 1 s3 ⋅ ⋅ ⋅ sm

⎞
⎟
⎠
,

a�er which the 21-th column and the last row are deleted to obtain

Proj21

⎛
⎜
⎝

Λ
r
s

⎞
⎟
⎠
= (

a1 + s1a2 0 a2 a3 + s3a2 ⋅ ⋅ ⋅ am + sma2
−1 + s1r2 1 r2 r3 + s3r2 ⋅ ⋅ ⋅ rm + smr2

) .

From (5.1) and the above formula, one concludes that
rs = (s1r2 r2 r3 + s3r2 r4 + s4r2 ⋅ ⋅ ⋅ rm + smr2) .

Care should be taken that rs itself isnot reduced if s1r2 /= 0. Ifwewant rs to be reduced,
then we can select a row vector r′ such that r′ ∼Λ rs .

Proof of Lemma 5.2 _e proof is a straightforward calculation once one assumes
that r1 , . . . , rk are reduced.

Now we are ready to prove the following.

Lemma 5.3 A cube is realizable if and only if all of its subsquares are realizable.

Proof In this proof, we assume that J = (2, . . . , 2, 1, . . . , 1) has k twos in its coor-
dinates. _e set I(J) of vertices of the corresponding cube is the same as {1, 2}k . To
simplify the notation,we omit the last (m−k) ones of α = (α1 , . . . , αk , 1, . . . , 1) ∈ I(J)
and write α = (α1 , . . . , αk).
For the “only if ” part, we have a stronger fact that every subpuzzle of a realizable

puzzle is again realizable (see Remark 3.12). For the “if ” part,we use induction on the
dimension k of the cube. When k = 2, it is a square and thus we are done. For v =

1, . . . , k, let us denote hv = (1, . . . , 1, 2, 1, . . . , 1) ∈ I(J) the vertex of the k-dimensional
cube whose v-th coordinate is 2. _ere are exactly k edges connected to the center
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vertex 1. Recall that every edge of a puzzle produces a characteristicmap over awedge
of K. _erefore if p(1) = Λ, then one can assume that the edge connecting 1 and hv
corresponds to the standard form ( Λ

rv ),where rv is a reducedmarked row vectorwith
marking v for v = 1, . . . , k. By uniqueness of standard forms, the proof is complete if
it is shown that thematrix

ϕ ∶=
⎛
⎜
⎜
⎜
⎝

Λ
r1
⋮

rk

⎞
⎟
⎟
⎟
⎠

provides a realization of the cube, i.e., it represents a characteristic map. By induc-
tion hypothesis, the facet p1 determined by 1, h1 , . . . , hk−1 and its opposite facet p2
are realizable. Let us denote by hv ,k the fourth vertex of the square determined by
1, hv , hk . _en p2 is the cube determined by hk , h1,k , h2,k , . . . , hk−1,k . We study the
edges connecting hk and hv ,k . _e square determined by 1, hv , hk , hv ,k is realizable
by the hypothesis and its characteristicmap is

ϕv ∶=
⎛
⎜
⎝

Λ
rv
rk

⎞
⎟
⎠
.

_en

Projk1
ϕv =

⎛

⎝

Λrk

(rv)rk
⎞

⎠

deûnes the characteristic map corresponding to the edge connecting hk and hv ,k .
_us the standard form for p2 is

⎛
⎜
⎜
⎜
⎜
⎝

Λrk

(r1)rk

⋮

(rk−1)rk

⎞
⎟
⎟
⎟
⎟
⎠

,

which is exactly Projk1
ϕ by Lemma 5.2. As we already know, the standard form for

p1 is
⎛
⎜
⎜
⎜
⎝

Λ
r1
⋮

rk−1

⎞
⎟
⎟
⎟
⎠

and it is exactly Projk2 ϕ. Because the set of column vectors {ϕ(k1), ϕ(k2)} is uni-
modular, we can apply Proposition 4.5 to show that ϕ is non-singular.

By combining _eorem 4.1 and Lemma 5.3, we obtain themain result.

_eorem 5.4 A puzzle is realizable if and only if all of its subsquares are realizable.

Deûnition 5.5 A subgraph of D′(K) that is the image of a realizable subsquare is
called a realizable square of D′(K). _e diagram for K, denoted by D(K), is the triple
(V , E , S) where V and E are the set of vertices and edges of D′(K), respectively, and
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S is the set of realizable squares of D′(K). As in Deûnition 3.5, a diagram D(K)

depends on the choice of Remark 1.1.

Remark 5.6 _e diagram D(K) provides a complete classiûcation of toric spaces
of the choice of Remark 1.1 over K(J) for any J.

Remark 5.7 Note that the square of the form

λ1
v

w

λ2

w

λ1
v λ2

is always realizable, because it corresponds to a canonical extension of the edge

λ1
v λ2 .

In general, a reducible puzzle is realizable if and only if
● every edge parallel to a trivial edge is trivial
● and amaximal irreducible subpuzzle is realizable.

6 Combinatorics of Puzzles

In this section, we discuss the combinatorial interpretation of realizable puzzles and
provide a few examples. Let K be a star-shaped simplicial sphere on [m] and J =

( j1 , . . . , jm) ∈ Zm
+
an m-tuple of positive integers. A realizable puzzle p∶G(J) →

D′(K) can be interpreted as away to ûll a boardwith stones by obeying the following
rules:
● Stones: all characteristicmaps λ1 , . . . , λℓ up to D-J classes over K.
● Board G(J): a stone is placed on each vertex of G(J).
● Rules D(K): a diagram D(K) is a pre-diagram D′(K) equipped with the list of

realizable squares.
– Two stones λ i and λ j can be connected on G(J) by an edge colored v only when

λ i and λ j are connected in D′(K) by an edge colored v.
– Any square on G(J) of form

λ1
v

w

λ2

w

λ3
v λ4

is realizable.
Now let us provide a few examples of puzzles for R = Z2 which correspond to real

topological toricmanifolds over K. _e reader can ûnd other cases in [5].

Example 6.1 Let K be the boundary complex of a cyclic 4-polytopewith 7 vertices.
It is easy to see that K is a seed. Fixing an order of vertices, it is known that there are
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two Z2-characteristicmaps up to D-J equivalence

λ1 =

⎛
⎜
⎜
⎜
⎝

1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞
⎟
⎟
⎟
⎠

and λ2 =

⎛
⎜
⎜
⎜
⎝

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

⎞
⎟
⎟
⎟
⎠

.

It is clear that there is no λ on a wedge of K whose two projections are λ1 and λ2,
respectively, so its pre-diagram D′(K) is a discrete graph with two vertices. Since it
has no edge, for any J ∈ Z7

+
, each puzzle only contains stones of one particular kind.

In conclusion, there are only two puzzles for any J.

Example 6.2 Let K = {1, 2, 3, 4, 5, 6, 12, 23, 34, 45, 56, 61} be the boundary complex
of a hexagon on [6] = {1, . . . , 6}. _en, there are eleven Z2-characteristicmaps, and
they can be separated into four types up to their rotational symmetries.

● TYPE 1: ababab type

λ1 = (
1 0 1 0 1 0
0 1 0 1 0 1)

● TYPE 2: abcbcb type

λ2,1 = (
1 0 1 0 1 0
0 1 1 1 1 1) λ2,2 = (

1 0 1 1 1 1
0 1 0 1 0 1)

λ2,3 = (
1 0 1 0 1 0
0 1 1 1 0 1) λ2,4 = (

1 0 1 1 1 0
0 1 0 1 0 1)

λ2,5 = (
1 0 1 0 1 0
0 1 0 1 1 1) λ2,6 = (

1 0 1 0 1 1
0 1 0 1 0 1)

● TYPE 3: abcacb type

λ3,1 = (
1 0 1 1 1 0
0 1 1 0 1 1) λ3,2 = (

1 0 1 1 0 1
0 1 0 1 1 1)

λ3,3 = (
1 0 1 0 1 1
0 1 1 1 0 1)

● TYPE 4 abcabc type

λ4 = (
1 0 1 1 0 1
0 1 1 0 1 1)

By Lemma 3.8, one can obtain the following pre-diagram D′(K)
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λ3,2

λ3,1

λ3,3

λ4

λ2,1

λ2,5

λ2,3

λ2,4

λ2,2

λ2,6

λ1

3,5

2,6

4,6

1,3

1,5

2,4

1,4

2,5

3,6

where

● a thick edge represents triple edges each ofwhich is colored 2,4, and 6, respectively;
● a dashed edge represents triple edges each of which is colored 1,3, and 5, respec-

tively;
● an edgewith {i , j} represents double edges each ofwhich is colored i and j, respec-

tively.

One can check that the all possible irreducible rectangles in D′(K) are realizable.
_e following are some examples:

λ1 λ2,5

λ2,1λ2,3

4

6 6

4

λ1 λ2,3

λ3,3λ2,6

2

1 1

2

λ2,1 λ3,1

λ3,1 .λ2,1

3

5 5

3

_e following is an example of realizable puzzles on G(2, 3, 1, 1, 1, 1).

λ2,6
2

2

1

λ2,6

1

2

λ3,3

1

λ1
2

2

λ1

2

λ2,3
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Indeed, the puzzle has two irreducible squares and one reducible square. Since all irre-
ducible squares are on the list of realizable squares and a reducible square is automat-
ically realizable by Remark 5.7, the above puzzle is a realizable puzzle by_eorem 5.4.
Furthermore, one can check that there are 119 realizable puzzles on G(2, 3, 1, 1, 1, 1).
We leave it as an exercise.

We remark that there are ûnitelymany realizable puzzles for given K when R = Z2;
therefore, it would be interesting to enumerate the number of realizable puzzles over
K(J).

Question 6.3 Count the realizable puzzles over K(J) where R = Z2 and K is an
n-gonal simplicial complex.
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