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Wedge Operations and Torus Symmetries Il

Suyoung Choi and Hanchul Park

Abstract. A fundamental idea in toric topology is that classes of manifolds with well-behaved torus
actions (simply, toric spaces) are classified by pairs of simplicial complexes and (non-singular) char-
acteristic maps. In a previous paper, the authors provided a new way to find all characteristic maps
on a simplicial complex K (J) obtainable by a sequence of wedgings from K. The main idea was that
characteristic maps on K theoretically determine all possible characteristic maps on a wedge of K.

We further develop our previous work for classification of toric spaces. For a star-shaped sim-
plicial sphere K of dimension n —1 with m vertices, the Picard number Pic(K) of K is m — n. We call
K a seed if K cannot be obtained by wedgings. First, we show that for a fixed positive integer ¢, there
are at most finitely many seeds of Picard number € supporting characteristic maps. As a corollary,
the conjecture proposed by V. V. Batyrev in 1991 is solved affirmatively.

Secondly, we investigate a systematic method to find all characteristic maps on K(J) using com-
binatorial objects called (realizable) puzzles that only depend on a seed K. These two facts lead to a
practical way to classify the toric spaces of fixed Picard number.

1 Introduction

A toric variety of dimension # is a normal algebraic variety with an algebraic action
of torus (C*)" with a dense orbit. A compact smooth toric variety is called a toric
manifold. One of the most important results for toric varieties, known as the funda-
mental theorem for toric geometry, is that there is a bijection between the family of
toric varieties and the family of fans. In particular, each toric manifold corresponds
to a complete non-singular fan. Recall that an (n—1)-dimensional simplicial complex
K is star-shaped if there is a geometric realization of K into R” such that every ray in
R" starting from the origin meets K once and only once. A complete non-singular fan
can be regarded as a pair of a star-shaped simplicial sphere and the data of rays satis-
fying the non-singularity condition. Such a pair is called a fan-giving Z-characteristic
map. Not only toric manifolds, but also the classes of manifolds equipped with well-
behaved torus actions (simply, toric spaces), are also classified by the corresponding
characteristic maps. The family of toric spaces includes toric manifolds and contains
several families such as quasitoric manifolds and topological toric manifolds. Fur-
thermore, there are real analogues of toric spaces, called real toric spaces, which are
classified by Z,-characteristic maps. We refer to [4, Introduction] for the summary
of these classifications. See Definition 2.2 for the definition of characteristic maps.
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Remark 1.1 Inthe sequel, unless otherwise stated, we fix our interests on one of the
following Davis-Januszkiewicz (D-]) classes of characteristic maps:

(1) The Z-characteristic maps.

(2) The positively oriented Z-characteristic maps.
(3) The fan-giving Z-characteristic maps.

(4) The Z,-characteristic maps.

That is, we choose one of (1), (2), (3), or (4) and we understand the terms characteristic
map and D-J class to correspond to the chosen one. Each choice corresponds to the
following toric spaces:

(1') The omnioriented topological toric manifolds.
(2’) The almost complex topological toric manifolds.
(3’) The toric manifolds.

(4") The real topological toric manifolds.

Refer to [4] for the definitions of positive orientedness of characteristic maps. More-
over, one can deal with quasitoric manifolds or small covers by assuming the further
condition that the underlying simplicial complex K is polytopal, not only star-shaped.

It is natural to ask for an explicit classification of characteristic maps of (1), (2),
(3), or (4), although it is very complicated and, to date, only a few cases have been
classified. Because the family of toric spaces is too large to handle, one reasonable
approach would be to restrict our attention to a family of simplicial spheres with few
vertices.

Let K be a star-shaped simplicial sphere of dimension n — 1 with m vertices. The
Picard number Pic(K) of K is defined by Pic(K) := m — n. If Pic(K) = 1, then K
is the boundary complex of the n-simplex. The term Picard number is used here
because, if X is a toric manifold whose corresponding fan has the face complex K,
then the Picard number of X is just Pic(K). It is known that CP" is the only toric
space supported by K. If Pic(K) = 2, then K is the join of boundaries of two simplices
(see [7]), and all characteristic maps over K have been classified by Kleinschmidt [8].
The classification of characteristic maps corresponding to toric manifolds over K with
Pic(K) = 3 is attributable to Batyrev [2], who used the fact that every toric manifold
of Picard number 3 is projective in his proof. Since a non-projective toric manifold of
Picard number 4 was constructed by Oda [11], Batyrev’s method is not applicable to
larger Picard numbers.

Our previous research [4] established a new way to classify characteristic maps
as follows. Let K be a star-shaped simplicial sphere with m vertices and fix a vertex
v. Consider a 1-simplex I whose vertices are labeled v; and v, and denote by 9I the
0-skeleton of I. Now let us define a new simplicial complex on m + 1 vertices, called
the (simplicial) wedge (or wedging) of K at v, denoted by wed, (K) as

wed, (K) = (I * Lkg{v})u (aI » (K~ {v})),
where K ~ {v} is the induced subcomplex with m — 1 vertices except v, the Lkx{v} is

the link of v in K, and ~ is the join operation of simplicial complexes. One notes that
the resulting simplicial complex, denoted by K(J), obtained from K by a sequence of
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wedgings is determined by a positive integer tuple J = (ji,..., jm). Details will be
given in Section 2.

Let (K, 1) be a characteristic map of dimension 7 and ¢ a face of K. Then a char-
acteristic map (Lkg o, Proj, 1), referred to as the projected characteristic map, is de-
fined by the following map (Proj, 1)(v) = [A(v)] € Z"[(M(w) | w € 0) = Z"I°l. We
showed in [4] that A on wed, K is uniquely determined by the projections Proj, A and
Proj, A, see Proposition 4.5. In other words, roughly speaking, characteristic maps
on K theoretically determine all possible characteristic maps on a wedge of K. We
note that the wedge operation preserves the Picard number. Using this method, we
succeeded in reproving Batyrev’s classification without using the projectivity of toric
manifolds [4].

However, the following difficulties remain in terms of applying this method to gen-
eral cases.

(1) A star-shaped simplicial sphere is called a seed if it cannot be written as a sim-
plicial wedge. In order to find all characteristic maps over K with a fixed Picard
number, we have to consider all seeds which support characteristic maps. The
number of seeds supporting characteristic maps should be sufficiently small for
the method in [4] to be practical.

(2) Even if we know every characteristic map over K, it is not easy to find all charac-
teristic maps over wed, (K) because there exists a pair (A;, A,) of characteristic
maps over K such that there is no A over wed, (K) such that Proj, A = 1, and
Proj v A = A,. Hence, to achieve our goal, i.e., to classify all characteristic maps
on K(J) for any ], we would have to determine which pair (A;, A,) of character-
istic maps over K produces a characteristic map A over wed, (K), and we would
have to repeat this procedure for every stage in the sequence of wedgings. This
would be very difficult or practically impossible.

The work we present in this paper aims to resolve the above two problems. First,
in Theorem 2.6, we show that for a fixed number ¢, there are at most finitely many
seeds of Picard number ¢ supporting characteristic maps. Secondly, in Remark 5.6, we
investigate a systematic way to find all characteristic maps on K(J) using puzzles that
onlydependonaseed K. ForeachJ = (ji, ..., jm),an R-characteristic map over K(J)
corresponds to a color-preserving graph homomorphism, called a realizable puzzie,
from G(J) to D’(K) satisfying that the image of every square-shaped subgraph of
G(]) is realizable. Here, R is either Z or Z,, G(J) is the 1-skeleton of a product of
simplices [T/, A7"™! with the specific coloring, and D’(K) is the pre-diagram of K
which contains all R-characteristic maps over K and the information of pairs {11, 1, }
having A such that Proj, A = A, and Proj,_ A = ;. The pre-diagram D’(K) for K
equipped with the set of realizable squares is called the diagram of K and is denoted
by D(K). For given K and J, we only need to find realizable puzzles from G(J) to
D’(K) and this would not involve the repetitive tasks in (2). The precise combinatorial
interpretation of realizable puzzles will be given in Section 6. These two facts present
a practical way to classify the toric spaces of fixed Picard number.

In addition, it is worth remarking that Theorem 2.6 easily implies the main con-
jecture proposed by Batyrev [2] whose proof can be found in Corollary 2.7. Let £ be
a complete fan and let G(2) be the set of all generators of rays of .
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Definition 1.2 A nonempty subset P = {x1, ..., x;} ¢ G(X) is called a primitive col-
lection if for each generator x; € P the elements of P \ {x;} generate a (k — 1)-dimen-
sional cone in X, while P itself does not generate any k-dimensional cone in X.

Conjecture 1.3 ([2, Conjecture 7.1]) For any n-dimensional complete non-singular
fan T with Picard number ¢, there exists a constant N (€) depending only on € such that
the number of primitive collections in G(X) is always not more than N(¢).

In his paper, Batyrev needed the projectivity condition for the classification of toric
manifolds of Picard number 3. But his conjecture is for general case, as we did in this

paper.
2 Wedge Operation and Seed

First let us recall some notions about simplicial complexes. We note that every sim-
plicial complex in this article is an abstract simplicial complex. Recall that for a face
o of a simplicial complex K, the link of ¢ in K is the subcomplex

Lkxo:={reK|outeK,ont=0}
and the simplicial join of two disjoint simplicial complexes K; and K is defined by
Ki~K; = {O'1U0'2 | 01 € Ky, 0, €K2}.

Let K be a simplicial complex with vertex set [m] = {1,2,..., m} and fix a vertex v in
K. Consider a 1-simplex I whose vertices are v; and v, and denote by oI = {v;, v, } the
0-skeleton of I. Now let us define a new simplicial complex on m + 1 vertices, called
the (simplicial) wedge of K at v, denoted by wed, K, by

wed, K = (I » Lkg{v}) u (aI » (K~ {v})),

where K \ {v} is the induced subcomplex with m — 1 vertices except v, see Figure 1.

4 3
5 { 2
5 2
Iy
K Wedl K

Figure I: Tllustration of a wedge of K

The operation itself is called the simplicial wedge operation or (simplicial) wedging.
Another description of simplicial wedging can be given using minimal non-faces. A
subset o of the vertex set of K is called a minimal non-face of K if o ¢ K, but every
proper subset of ¢ is a face of K. Note that every simplicial complex is determined
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by its minimal non-faces. Let J = (ji, ..., jm) € Z be a vector of positive integers.
Denote by K(J) the simplicial complex on vertices

{11,12,...,1]'1,21,22,...,2j2,...,m1,...,THjm}

with minimal non-faces

()1 er ()0 (2D r (i) e os ()1 (i), )

for each minimal non-face {ij,...,ix} of K. It is an easy fact that wed; K = K(J)
where J = (1,...,1,2,1,...,1) is the m-tuple with 2 as the i-th entry. It should be
noted that K(J) can also be obtained from K by a sequence of wedgings. See [1] or
[4] for details.

We present a useful lemma here. For a simplicial complex K, we denote by V(K)
the set of vertices of K.

Lemma 2.1 We have the identity

(wedv Kl) * Kz, lfV € V(Kl),

4y (Ky * Ky) =
wed, (K~ Kz) {Kl*(wedez), ifveV(Ky).

Proof This lemma in fact holds for general K(J). The proof is obvious once one
observes that a minimal non-face of K; * K} is either that of K; or that of K. [ |

Let Rbe thering Z or Z, = Z/27.. Henceforth, let us assume that K isan (n — 1)-di-
mensional star-shaped simplicial sphere whose vertex set is [m]. In this paper, we call
a finite set of vectors B = {vy,...,v,} ¢ R" an R-basis or simply a basis of R" if either
R =Z and B is unimodular in Z”, or R = Z, and B is linearly independent in Z7.

Definition 2.2 A map A:[m] — R” is a (non-singular) R-characteristic map over
K, or simply a characteristic map, if the following holds:
() if {i;,...,in} € K, then A(i}), ..., A(i,) forms an R-basis.
The condition (*) is known as the non-singularity condition.

Every Z-characteristic map A: [m] — Z" induces a Z,-characteristic map given by
the composition [m] - Z" — Z4, where the map Z" — 7Z} is the natural modulo
map. This new characteristic map is frequently called the mod 2 reduction of A.

According to [3, Corollary 7.33, Proposition 7.34], one concludes with the following
theorem.

Theorem 2.3  The following are equivalent.

(i) K admits an R-characteristic map.
(i) There exists a map ¢:[m] — R™™" such that

{p(i)|1<i<m,i#irforl<k<n}

is an R-basis for every maximal face {i1,...,i,} € K.
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Let us write Pic(K) := m — n and call it the Picard number of K. Further, we
fix a positive integer £ and assume that Pic(K) = £. We additionally assume that K
admits a Z,-characteristic map A. If m > 2, the map ¢ of Theorem 2.3 (ii) cannot be
one-to-one. Suppose that v, w € [m] and ¢(v) = ¢(w). Then every facet of K should
contain either v or w. We need the following lemma at this point.

Lemma 2.4 Letv and w be distinct vertices of K. If every facet of K contains either v
or w, then K is isomorphic to L x I or wed,, L for some simplicial complex L.

Proof Let o be a subset of the vertex set of K, v ¢ 0 and w ¢ o. Then we claim that
ceKesou{vieKeou{w}eKk.

To prove the claim, suppose that o € K. Then we have a facet Tof K such thato ¢ 7. If 7
contains both v and w, it is done. Otherwise, without loss of generality, we can assume
that v € 7. Then 7 U {w} \ {v} is also a facet of K since K is a pseudomanifold and
there are exactly two facets of K which are supersets of the (n — 2)-simplex 7 \ {v}.
Therefore the claim is proved. Considering the minimal non-faces of K, one easily
concludes that K is a suspension if {v, w} ¢ K, or K is a wedge otherwise. [ |

Definition 2.5 A star-shaped simplicial sphere is called a seed if it cannot be written
as a simplicial wedge.

There are certainly many seeds in the family of star-shaped simplicial spheres: for
example, a flag simplicial complex cannot be a wedge. In spite of this, the following
theorem says that “good” seeds are very rare in a sense of toric topology.

Theorem 2.6  Let us fix a positive integer € and let K be a seed of Picard number € other
than dI or 0 x 01, where 01 is the boundary of the 1-simplex. If K admits a characteristic
map, then m < 2¢ — 1, where m is the number of vertices of K. As a corollary, there are
only finitely many seeds with Picard number € which admit a characteristic map.

Proof It is enough to prove the theorem for R = Z,. If K admits a Z-characteristic
map, then its mod 2 reduction will work. We shall use an induction on ¢. The assertion
holds for £ = 3 as can seen in Table 1. Assume that the theorem holds for a seed of
Picard number € — 1, i.e., a seed of Picard number ¢ — 1 has at most 26! — 1 vertices.
Suppose m > 2°. Since K is a seed, by Lemma 2.4, K = L  9I for some simplicial
complex L. We note that L is also a seed because of Lemma 2.1. The number of vertices

Pic(K) K
1 ol
2 ol « oI
3 oI « oI = 91, dPs, aC*(7)

Table 1: List of all seeds admitting characteristic maps for small Picard numbers. Here,
Ps is the pentagon and C*(7) is the cyclic 4-polytope with 7 vertices.
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of Lis m — 2, and Pic(L) = Pic(K) —1 = € — 1. We have two inequalities m — 2 <
2¢71 — 1 by induction hypothesis, and m > 2¢ as we supposed before, which cause a
contradiction. ]

In Table 1, the classification of simplicial spheres of Picard number 1 and 2 is well
known. For Picard number 3, see [6,10]. For toric manifolds, see [9]. We remark that
oI x 9 x 91 and 9P5 do support toric and quasitoric manifolds, and dC*(7) supports
quasitoric manifolds but not toric manifolds.

Theorem 2.6 easily gives an affirmative solution to Conjecture 1.3 originally pro-
posed by Batyrev [2].

Corollary 2.7  For any n-dimensional complete non-singular fan X with Picard num-
ber ¢, there exists a constant N (£) depending only on € such that the number of primitive
collections in G(Z) is always not more than N(?).

Proof Observe that the primitive collections of a complete simplicial fan X corre-
spond one-to-one to the minimal non-faces of the underlying simplicial complex of
. Furthermore, the wedge operation does not change the number of minimal non-
faces, recalling the definition of K(J). By Theorem 2.6, we have only finitely many
seeds whose minimal non-faces need to be counted. Thus an upper bound exists for
given Picard number ¢. ]

3 Puzzle and Classification of Toric Spaces

We have studied classification of toric spaces over wedges of star-shaped simplicial
spheres (see [4, §4]). In this section, we further improve Corollary 4.5 of [4] and try
to provide a combinatorial and systematic way to classify toric spaces over K(J).

A characteristic map A: [m] — R" can be represented by an (n x m)-matrix

(A A@) - A(m)),

where A(1), ..., A(m) are column vectors. This matrix is called a characteristic matrix
and also frequently denoted by A.

Definition 3.1 Two characteristic maps Ay, A,:[m] — R” are said to be Davis-
Januszkiewicz equivalent or D-] equivalent if they are the same up to change of basis of
R". That is, A; and A, are D-J equivalent if one of their corresponding characteristic
matrices can be changed to the other by finite applications of any of the following
(called row operations):

(1) Multiply a row by 1.

(2) Add a multiple of one row to another row.

The equivalence classes are called Davis-Januszkiewicz classes or D-] classes.

Remark 3.2 When R = Z or R = Z,, the above definition corresponds to a D-]
equivalence of omnioriented topological toric manifolds or real topological toric man-
ifolds, respectively. If R = Z,, then the row operation (1) is redundant.
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Definition 3.3 Let us fix a face 0 € K. Let A: V(K) — R" be a map such that the
vectors {A(v) }ye¢; are unimodular. Then we define a map called the projection of A
with respect to o by the following:

(Proj, A)(w) = [A(w)] € Z"/(A(v) | v € 0) = 2"

for w € V(Lkg o). The map Proj, A: Lkg ¢ — Z"719 is defined up to a basis change
of Z"71°l. When (K, 1) is a characteristic map, then (Lkg @, Proj, 1) is also a charac-
teristic map, also called a projected characteristic map. When o = {v} is a vertex, one
can simply write Proj_ A = Proj, A.

Remark 3.4 Fix a vertex 1 of K at which to be wedged. To study toric spaces over
K(J), it is worth describing the projected characteristic map using matrices. The ver-
tex set of its wedge wed; K can be written as {1,1,,2, ..., m}. Let A be a characteris-
tic map over wed; K. After row operations, one can assume that A(1;) is a coordinate
vector. In other words, the matrix A can be written as

1la - am
(3.1) a=|f )
0 (n+1)x(m+1)
where the columns are labeled as 1;,15,2, ..., m. Then the characteristic matrix for

Proj, A is the matrix A, since the link Lkyeq, x {11 } is naturally isomorphic to K.

Recall that a pseudograph is a non-simple graph possibly with loops and/or multi-
ple edges.

Definition 3.5 The pre-diagram of K, written as D’(K), is an edge-colored pseu-
dograph (V, E) satisfying

¢ the vertex set V whose elements are the D-J classes over K,

* the edge set E is defined as follows: E is the collection of the sets {A;, A5, v} where
A, Ay € Vand v € V(K) such that there exists a characteristic map over wed, K
whose two projections onto K are A; and A,. The element {1, 1,,v} is called an
edge colored v whose endpoints are 1; and A,.

Remark 3.6 For every D-J class A over K and a vertex v of K, there is a loop of
D’(K) starting at A and colored v because every loop indicates a canonical extension
(see [4,4.2]). Hence the loops are usually omitted when a drawing of the pre-diagram
is made.

Remark 3.7 One should take care that the definition of the pre-diagram depends
on the choice of Remark 1.1. The same goes for Definition 5.5.

The pre-diagram is easily computable. Let A:[m] — R" be a characteristic map
and fix a number 1 < v < m. Then we obtain a matrix Pr(A, v) such as in Remark 3.4.
To be more precise, after applying suitable row operations to A, we can assume that
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the v-th column is a coordinate vector. Then
1 ‘ a, e am
0

A= A

0
nxm

(when v = 1, for example). Then we define Pr(A,v) = A. Note that Pr(A, v) is defined
up to row operations.

Lemma 3.8  For two D-] classes over K and a vertex v of K, the set {A, A,,v} is an
edge of D' (K) if and only if Pr(A1,v) and Pr(A,,v) are the same after row operations.

Proof In(3.1), one can further assume that A(1,) is a coordinate vector, since {1;,1, }
is a face of wed; K and thus {A(1;), A(1,)} is a unimodular set. Therefore, after row
operations, one obtains

1 0|a, - ap
0 1|by - by
A=] 0 0
R A
00 (n+1)x(m+1)
and Pr(A;,v) = Pr(A,,v) = A. The converse is similar. [ |

Example 3.9 (see [5, Example 2.8]) In this example, we compute D'(dP,) where
P, is a quadrangle with four vertices 1, 2, 3, and 4 and four edges 12, 23, 34, and 41. We
deal with the family of toric manifolds and fan-giving Z-characteristic maps. Up to
D-] equivalence, every fan-giving characteristic map over P4 has the form either

10 -1 d 10 -1 0
01 0 -1)%\lo 1 a4 4

for d € Z, which we call a4 and B, respectively. They are all distinct, except & = .
For example, we present the computation of Pr(a , 4). We perform a row operation

(10 -1 d) (1 d 1 0
““fo 1 0 -1)7lo 1 0o
and delete the fourth column and the second row to get

Pr(ag,4)=(1 d -1).

Similarly, we obtain all Pr(A,v) as follows:

Pr(ag,1)=(1 0 -1) Pr(B,,1)=(1 d -1)
Pr(ag,2)=(1 -1 d) Pr(B;,2)=(1 -1 0)
Pr(ag,3)=(0 1 -1) Pr(B;,3)=(d 1 -1)
Pr(ag,4)=(1 d -1) Pr(B4)=(1 0 -1).

Then by Lemma 3.8, we conclude that the edge set E is

E = {{ag a1}, {a0, @03}, By B2} (BBt} | dre € Z).
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2,4
B,
2,4
1,3 1,3 1,3 1,3
Xy oa_ &y = ﬂO 441 1)
2,4
B,
2,4
Figure 2: Some edges of D' (9Py).
Figure 2 shows some of the edges of D’(9P,).
Let] = (j1,- .-, jm) € Z" be an m-tuple of positive integers. We consider a colored

graph G(J) with m colors constructed as follows: G = G(]) is the graph determined
by the 1-skeleton of the simple polytope A/t~ x AJ271 x ... x AJm~1 where A/ is the
j-dimensional simplex. One remarks that each edge e of G can be uniquely written as

Pl><P2><"'><Pv—1><ev><Pv+1><"'><Pm>

where p; is avertex of A/}, 1< i < m, i # v,and e, is an edge of A’*"!. Then we color
v € [m] on the edge e.

Definition 3.10 A graph homomorphism p: G(J) - D’(K) that preserves the edge
coloring is called a puzzle of the pair (K,J). An edge e = {&, a’} of G(]) is called
trivial in a puzzle p if p(«) = p(a’). A puzzle is said to be reducible if it contains a
trivial edge, or irreducible otherwise.

Definition 3.11 Let p: G(J) — D'(K) be a puzzle. If a subgraph G’ of G(J) corre-
sponds to a face of A71™! x AJ27! x ... x AJm~1, the graph homomorphism p|:: G’ —
D'(K) is called a subpuzzle of p. If G’ is the l-skeleton of a hypercube (A!)9, then
the corresponding subpuzzle is called a subcube. In particular, when d = 2, it is also
called a subsquare. We remark that a subpuzzle can be regarded as a puzzle so that
G’ = G(J') for some m-tuple J'.

For J = (ji,...»jm) € Z, let us denote by I(]) the index set

I()={a=(ar,...,am) €Z] |1<a; <jifor1<i<m}.
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For an index & = (ay,..., &) € I(J), we consider a face of the simplicial complex
K(J)
(3.2) o(a):=V(K(J)) N {la> 20,5 - -» Mg, -

Observe that o (&) is indeed a face since it does not contain any minimal non-faces of
K(J): see the definition of K(J) in Section 2. Furthermore, the complex Lkg ;) o(e)
is naturally isomorphic to K. Denote by V(G(])) the vertex set of the graph G(J).
Then there is an obvious identification I(J) — V(G(])) by labeling the vertices of
A7t by iy,..., 1,1 < j < m. Using this identification, for any characteristic map A
over K(J), we obtain a puzzle of (K, J) by assigning to the vertex « the characteristic
map Proj ) A. Puzzles constructed in this way are said to be realizable.

Remark 3.12 It is easy to verify that a realizable puzzle is indeed a puzzle. More
precisely, let p: G(J) — D’(K) be a realizable puzzle defined by A. Then it is necessary
to show that every edge of G(J) maps to an edge of D’'(K). For any subgraph G’
corresponding to a face of A/"™! x AJ271 x ... x AJn~1 it can be shown that the map
ple:G" — D'(K) is a realizable puzzle defined by a projection of A. In particular,
when G’ is an edge of G(J), this argument guarantees that the image of an edge of
G(J) is indeed an edge of D’(K), thereby completing the proof.

For example, when J = (2,3,1,...,1), then a realizable puzzle p: G(J) - D'(K)

will look like
A : A2
2
2
Aas)
1 1
1
A : Az2)
2
2

A3
where Ay = Proj, ) A with the subscripts & abbreviated so that
(a1, 02) = (1, 02,1,1,...,1).

Conversely, every realizable puzzle of (K, J) determines a unique characteristic map
over K(J) up to Davis-Januszkiewicz equivalence. To prove this, assume that (K, 1)
is a characteristic map and observe that

(3.3) Proj;,, A = Proj(Proj, 1)

for any face f and g in K such that f N g = @ and f U g € K, by Definition 3.3. Let
J = (j1>--->jm). The proof is by induction on |J| := j; + -+ + j,, — m. When |J| = 0,
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it is trivial. Now suppose that there are two characteristic maps A and A’ over K(J).
Without loss of generality, we can assume that j; > 2. Consider the two characteristic
maps Proj, A and Proj, A". Puta = (ai,...,a;,) € I(J) so that a; # 1. Let us
compute the realizable puzzle of Proj, A. To avoid confusion with (3.2), we use the
notation ¢’ (a) which is a face of the underlying complex of Proj, A:

o' (a):=V(K()) N {111, 20,5 - - o> Mg, )

By (3.3), Proj,.(4(Proj,, A) = Proj,, gy 0,3 A = Proj, ) A = Aa, where A4 is the
characteristic map assigned at the vertex a of G(J). The same calculation shows that
Pr0j, (4 (Projj A’) = Aq. In other words, Proj, A and Proj, A" have the same real-
izable puzzle. By induction hypothesis, they are D-] equivalent. The same holds for
Proj, A and Proj,  A’. Then, by the uniqueness of the characteristic maps over wedges
(see Proposition 4.5), A and A’ are D-J equivalent.

In conclusion, we have a bijection

{D-] classes over K(J)} — {realizable puzzles of (K, ])}.
A > p(A).

Therefore, for the classification of toric spaces over K(J), the main challenge is to
determine whether a given puzzle is realizable or not. For example, the puzzle

A — N
h——

is not realizable whenever A; # 1, (see Proposition 4.3).

4 Criterion on the Realizability of Puzzles

To determine whether a given puzzle p is realizable or not, let us first consider sub-
cubes of p.

Theorem 4.1 A puzzle G(J) — D'(K) is realizable if and only if all of its subcubes
are realizable.

Before proving the above theorem, we first start from an edge. Let
h—r—

be an edge e of the pre-diagram D’(K). This edge can be regarded as a realizable
puzzle corresponding to A over wed, K whose two projections are A; and A,.

Lemma 4.2  In the setting above, assume that the characteristic matrix for A, is

)tlz(al a am)nxm’
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where a; denotes the i-th column vector of A,. Then the D-] class A can be expressed by
a matrix of the form

1 - v=1 v v v+l - m)
(4.1) A= km Ay a, 0 ayy e am) ,
e e Lol ea e em) ()

for appropriate integers e; for i # v. The numbers above the horizontal line are indicators
for vertices of simplicial complexes. If every e; is zero, then the characteristic map is a
canonical extension.

Proof The proof is easy once the basis of Z"*! is appropriately selected. More pre-
cisely, we select A(v,) such that it is a coordinate vector. Since Proj, A = A;, A must
be of the form

A:(al ayg a, 0 ay am)
o X L e e (me)

recalling that Proj, A is obtained from A by deleting the column v, and the (n+1)-th
row. As a, is a primitive vector, by adding to the last row a suitable linear combination
of the first n rows, it can be assumed that x = —1. [ |

The matrix (4.1) is called a standard form for the edge e centered at A;. If every
e; is zero, then A; = A, and A is simply a canonical extension of A;. In this case, the
edge e is a loop in D’(K). Note that two standard forms (of the same center) for the
same edge can be changed to each other by using row operations. The standard form
is unique in this sense.

Let p: G(J) = D'(K) be a puzzle. Recall that the vertex set V(G(])) is identified
with the index set I(J) and thus p(a) is a D-J class over K forall @ = (a;,...,0m) €
I(J). Wefixanelement1= (1,1,...,1) € I(J) and let p(1) be the characteristic matrix
p(1) = (a1 +++ a,). In the graph G(J), suppose that 1 and « are connected by an
edge colored v. Then a; = 1for i # v. We label the edge connecting 1 and & as e’".
For each edge ef”, we fix a standard form of e centered at p(1) like the following:

(1 - v=1 v vy v+l - m\
k a o ao oa, 0 au o ay )
a, a, _ oy . o
ev,l eV,V—l 1 1 eV:V+1 e"»vm (n+1)x(m+1)

For convenience of notation of block matrices, we use the following notations:

Ai = (aj 0 O)Hin >

-1 1 0

Si=|: o~ >
-0 1 (ji=1)%ji

and .
e,g,i 0 0
e.. O 0
ei=| %

Jk
i 0 97 ety
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Proposition 4.3  If the puzzle p: G(J) - D'(K) is realizable, the following matrix

A Ay As e Am
N €1,2 €13 e €1,m
€21 Sy ez3 e €2,m
(4.2) A=
€m-1,1 " Sm-1 €m—1,m
€m,1 e €m,m-1 Sm

becomes a characteristic matrix over K(J) where the columns are labeled as

11,...,1]'1,21,...,2j2,...,m1,...,m]'

m

from left to right. Furthermore, the realizable puzzle p is uniquely determined by p(1)
and p(a) for vertices & adjacent to 1.

We call (4.2) a standard form of the characteristic matrix A centered at 1.

Proof Since the puzzle p is realizable, there already exists a unique corresponding
characteristic matrix A’ over K(J) up to row operations. The only thing to show is
that A’ is equivalent to A of (4.2) up to row operations. Consider the face

o(1) =V(K())~N{1,21,....,m} = {15,...,1, }u---u{my,...,mj, }.

After row operations, we can assume that every column of A’ belonging to o(1) is a
coordinate vector. Therefore, after exchanging some rows, A’ should have the follow-

ing form:
b0 -~ 0|by|O -~ 0|bs]0 --- 0O
* | 1 * *
0] : 0]

* 1 * *
* * 1 *

o @) ,
* * 1| *
* * * |1

o} 0] :
* * * 1

where b; is a column vector of n entries. Furthermore recall that the projection
Proj, ) A’ is given by the matrix minor (by -+ by),and Proj,qy A" = p(1) is
given by the matrix (al am) . Thus the two matrices above are equivalent up
to row operations, and hence we can replace b; by a; for all i after row operations
concerning only first n rows of A’.

Next, we pick a vertex v; of K(J) so that 2 < j < j,, or equivalently, we pick a vertex

a=(1,....5...,0p=7,...,1,...,1) € I(])
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of G(J) connected to 1 by an edge. Now A’ should look like the following:

a; 0 0 a 0 0 as 0 0
2 2 2
.fl,l 1 f2,1 f3,1
J1 J 1
1,1 1 2,1 3,1
2 2 2
.fl,Z f2,2 1 f3,2
j2 j2 1 j2
1,2 2,2 3,2
2 2 2
.fl,3 f2,3 f3,3 1
j3 J3 3 1
1,3 2,3 3,3

where f;, are integers. Observe that the minor of A’ corresponding to the projection
with respect to the face o(1) \ {v;} is

a o Ay a 0 ayg o ay
oo j j e. P
v,1 v,v—1 v,v—1 v, v+l v,m

and it is equivalent to the standard form of the edge el

( a A a, 0 au o ay )
j j j j
2% R | -1 1 i1 T Evm

by a sequence of row operations. Observe that there is the corresponding sequence
of row operations in A’, which results in an addition to the i-th row, i > n, of a linear
combination of the first n rows. In conclusion, after all possible choices of v; and the
corresponding row operations, we can assume that

i —1, lfV = i,

vii j

e, ;> otherwise,

which completes the proof. ]
Two edges

€= PrX X Pyiy X €y X Pyyg X0 X Py

I / ’ ’ / ’
€ =Py XX Py gXe, X Py XX Py

of G(J) that are colored v are said to be parallel if e, = e,,.
Corollary 4.4 A realizable puzzle corresponds to a canonical extension if and only if

the puzzle is reducible. Furthermore, if an edge e of a realizable puzzle is trivial, then
the edges parallel to e are also trivial.

Proof If a trivial edge e exists, we may assume that e is colored v and its endpoints

areland & = (ay,...,a,) so that p(«) = p(1). Then we have observed that the
edge corresponds to a canonical extension and every e; is zero in the standard form
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A in (4.1) for the edge. That means there is a row of the matrix of (4.2) such that
its v;-th entry is 1, v, -th entry is 1, and the remaining entries are zero (e,”, = 0
for all i). Therefore, by Lemma 4.2, it immediately follows that A also represents a
canonical extension such that Proj, A = Proj, ~A. Let e’ be an edge parallel to e
whose endpoints are § and B’. Then there is a face o of K(J) such that o U {v;} and
o U {v,} are also faces of K(J) and p(p) = Proj,,,, A and p(B) = Proj, ¢,y A
Therefore they are equal. ]

For later use, we state a version of a result in [4].

Proposition 4.5 ([4, Proposition 4.4]) Let A: V(wed, K) — R"*! be a map which is
not necessarily a characteristic map. Label the two new vertices as vi and v,. Moreover,
assume that the set {A(v1), A(v2) } is unimodular. Then A is a characteristic map if and
only if Proj, A and Proj, A are characteristic maps over K.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1 One direction is straightforward by Remark 3.12. To prove
the converse, assume that every subcube of p: G(J) - D’(K) is realizable and assume
that j, > 2 for all v (if not, some canonical extensions may be used). At this time
we are not sure whether p is realizable, but we can still follow the construction of
Proposition 4.3 and obtain the matrix A in (4.2). We recursively apply Proposition 4.5
to show that A is non-singular. Observe that in (4.2), {A(v2), A(v3),..., A(vj,)} is
a unimodular set for any v such that 1 < v < m because all vectors are coordinate
vectors. Apply Proposition 4.5 to two vertices v, and v, of K(J) other than v;. By
recalling that the projection simply involves the deletion of a column and a row, we
obtain two “smaller” standard forms. Continuing this process, we reach matrices of
the following form:

aa 0 a, 0 a3 -+ a, O
-1 1 = * 0
+ 0 -1 1 0
* 0 % 0 -1 1

Here we terminate our process since the available pair of coordinate vectors is not
found. However, this matrix is simply a standard form of a subcube, which is realizable
by assumption. In particular, it is non-singular. Finally, a recursive application of
Proposition 4.5 shows that A is non-singular, proving that the puzzle p is realizable.

|

5 Squares to Cubes

Definition 5.1 Let R = Z or Z,. A marked row vector in R™ is a pair (r,v) where1 <
v<mandr=(r,...,1r,) € R is a row vector. The number v is called the marking
of the marked row vector. When there is no danger of confusion, the markings can
simply be omitted to write (r,v) = r. When r, = 0, the marked row vector is called
reduced.
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Let us fix a characteristic map A over K and let (r,v) and (r’,v) be two marked
row vectors in Z™ with the same markings. We write r ~, r’ if r — ¢ is a linear

combination of row vectors of A. Assume thatr = (r1,...,1,) and
A = (al o am)nxm :
Let us use the notation
A (1 - v-1 V1 v, v+l - om)
(I’ V) = kal Ay ay 0 ayy - am}
rocr ryar Sl4r, 1 ryg e Ty (n+1)x(m+1)
Note that if the matrix (%) defines a characteristic map for wed, K, it is simply a

standard form if r is reduced. Observe that ( (rl,\v)) are D-J equivalent to ( (rffv) ) if

and only ifr ~5 r'.
Consider its two projections over K. The projection Proj, ( A) is simply A, whereas
the other projection is denoted by A" := Proj, (%).

Let us calculate AT explicitly. Without loss of generality, we assume that the mark-
ing of r is 1. Then by definition,

A\ a; 0 a, a3 -+ ay

r] \-l+rn 1 rp r3 - 1)
In fact, one may further assume that r is reduced, that is, r; = 0 (see the proof of
Lemma 4.2). After suitable row operations, it becomes

0 a; ay+ra az+ria; - a,+rpa

-1 1 1 r3 T'm )
Deleting the 1;-th column and the last row, we obtain the projection
(5.1) A" = (a1 a,+rpa; az+rza; - a,+ rmal) .

The notation () can be extended in an obvious way. Let r', ..., r* be marked
row vectors with mutually distinct markings. By relabeling the vertices of K, we may
assume that r” = (r”,v) has marking v for v = 1,..., k. Then we define

A a; 0 a, o .- ay 0 agy - ay
1 1 1 1 1
o —1+2r1 1 T, , 0 - r§ 0 r,chr1 m
= ri 0 -1+r; 1 -- % 0 7 T
o : : : "
r{‘ 0 r§ o .- —1+r£ 1 r’,zﬂ rfn
Again, if the above matrix defines a characteristic map over K(J), where the first k
coordinates of ] = (2,...,2,1,...,1) are 2 and the remaining coordinates are 1, the
matrix is a standard form if !, . .., r¥ are reduced.

Lemma 5.2  In the above settings, we have the following identity:

A AF
1 1r*
Proj K r = (r ) ,
rk (rk—.l )rk

https://doi.org/10.4153/CJM-2016-037-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-037-4

784 S.Choi and H.Park

wherer® = (r,v) (") is a marked row vector in which marking v has the defining prop-
erty
A AS
Proj, | r|= (rs ) .
s

To prove the lemma, it is necessary to show that r® is well defined up to the equiv-
alence relation ~,. In the matrix

A
rj,
s
one can assume that r = (r,1) and s = (s,2) and that r and s are reduced as before.
Then
A aa 0 a, 0 a3 -+ ay
r|=|1-11 r, 0 rz3 - 1y
S s1 0 -1 1 s3 - sp

After a series of row operations, the matrix becomes

a+sa, 0 0 a, az+ssza, -+ ay+sSpa
“1+sr, 1 0 ry r3+s3ry -+ rym+smra|,
51 0 -1 1 $3 Sm

after which the 2;-th column and the last row are deleted to obtain
. a+s;a; 0 a, az+sza, -+ a,+spa
Proj, [ r | = 1+ $122 2 a3 +S33 m+Smaz)

1 —1+s1r, 1 1y r3+83ry o+ tptSur

From (5.1) and the above formula, one concludes that
r’ = (511’2 Ty T3+ 83ty T4+ S41rp -+ Ty +Sm7’2).

Care should be taken that r* itselfis not reduced if s;7, # 0. If we want r® to be reduced,
then we can select a row vector r’ such thatr’ ~, r°.

Proof of Lemma 5.2 The proof is a straightforward calculation once one assumes

thatr', ..., r* are reduced. ]

Now we are ready to prove the following.
Lemma 5.3 A cube is realizable if and only if all of its subsquares are realizable.

Proof In this proof, we assume that J = (2,...,2,1,...,1) has k twos in its coor-
dinates. The set I(]) of vertices of the corresponding cube is the same as {1,2}*. To
simplify the notation, we omit the last (m—k) onesof & = (&, ..., ax,1,...,1) € I(J)
and write & = (o, ..., ag).

For the “only if” part, we have a stronger fact that every subpuzzle of a realizable
puzzle is again realizable (see Remark 3.12). For the “if” part, we use induction on the
dimension k of the cube. When k = 2, it is a square and thus we are done. For v =
L...,k letusdenoteh, = (1,...,1,2,1,...,1) € I(J) the vertex of the k-dimensional
cube whose v-th coordinate is 2. There are exactly k edges connected to the center
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vertex 1. Recall that every edge of a puzzle produces a characteristic map over a wedge
of K. Therefore if p(1) = A, then one can assume that the edge connecting 1 and h,
corresponds to the standard form (3 ), where r" is a reduced marked row vector with
marking v for v = 1,. .., k. By uniqueness of standard forms, the proof is complete if
it is shown that the matrix

provides a realization of the cube, i.e., it represents a characteristic map. By induc-
tion hypothesis, the facet p; determined by 1,hy, ..., h_; and its opposite facet p;
are realizable. Let us denote by h, ; the fourth vertex of the square determined by
1, h,,hy. Then p, is the cube determined by hy, hy ,h, i, ..., hx_; . We study the
edges connecting hy and h, ;. The square determined by 1, h,, hy,h, j is realizable
by the hypothesis and its characteristic map is

A

Proj, ¢, = ((3r)rk)

defines the characteristic map corresponding to the edge connecting hy and h, 4.
Thus the standard form for p; is

AF
()"
(rk—.l)r"

which is exactly Proj, ¢ by Lemma 5.2. As we already know, the standard form for
Ju is

and it is exactly Proj, ¢. Because the set of column vectors {¢(k1), ¢(k2)} is uni-
modular, we can apply Proposition 4.5 to show that ¢ is non-singular. ]

By combining Theorem 4.1 and Lemma 5.3, we obtain the main result.
Theorem 5.4 A puzzle is realizable if and only if all of its subsquares are realizable.
Definition 5.5 A subgraph of D’(K) that is the image of a realizable subsquare is

called a realizable square of D'(K). The diagram for K, denoted by D(K), is the triple
(V,E,S) where V and E are the set of vertices and edges of D’ (K), respectively, and
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S is the set of realizable squares of D’(K). As in Definition 3.5, a diagram D(K)
depends on the choice of Remark 1.1.

Remark 5.6 The diagram D(K) provides a complete classification of toric spaces
of the choice of Remark 1.1 over K(J) for any J.

Remark 5.7 Note that the square of the form

M —— 1,

w w

M —— 1,

is always realizable, because it corresponds to a canonical extension of the edge

M —1,.

In general, a reducible puzzle is realizable if and only if

* every edge parallel to a trivial edge is trivial
* and a maximal irreducible subpuzzle is realizable.

6 Combinatorics of Puzzles

In this section, we discuss the combinatorial interpretation of realizable puzzles and
provide a few examples. Let K be a star-shaped simplicial sphere on [m] and | =
(ji>--+»jm) € Z an m-tuple of positive integers. A realizable puzzle p: G(J) —
D’(K) can be interpreted as a way to fill a board with stones by obeying the following
rules:

* Stones: all characteristic maps Ay, ..., A, up to D-J classes over K.
* Board G(J): a stone is placed on each vertex of G(J).
* Rules D(K): a diagram D(K) is a pre-diagram D’(K) equipped with the list of
realizable squares.
- Two stones A; and A can be connected on G(J) by an edge colored v only when
Ai and A; are connected in D’(K) by an edge colored v.
- Any square on G(J) of form

M —— 1,

w w

Ay —— Ay
is realizable.

Now let us provide a few examples of puzzles for R = Z, which correspond to real
topological toric manifolds over K. The reader can find other cases in [5].

Example 6.1 Let K be the boundary complex of a cyclic 4-polytope with 7 vertices.
It is easy to see that K is a seed. Fixing an order of vertices, it is known that there are
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two Z,-characteristic maps up to D-J equivalence

10001 0 1 1000 1 1 1
01000 1 1 010010 1
M=l o101 1 of ™ A=lg01 0 001 1
000111 1 0001110

It is clear that there is no A on a wedge of K whose two projections are A; and 1,
respectively, so its pre-diagram D’(K) is a discrete graph with two vertices. Since it
has no edge, for any ] € Z7, each puzzle only contains stones of one particular kind.
In conclusion, there are only two puzzles for any J.

Example 6.2 LetK ={1,2,3,4,5,6,12,23,34, 45,56, 61} be the boundary complex
of a hexagon on [6] = {1,...,6}. Then, there are eleven Z,-characteristic maps, and
they can be separated into four types up to their rotational symmetries.

e TYPE I: ababab type

Lot o1 oo
"o 1 0 1 0 1
* TYPE 2: abcbceb type
Lo-froro 0 Lot o1
2170 11 1 1 2271001 01 0 1
Lot 01010 Lot o111
270111 0 1 2471001 0 1 0 1
L._ft 01010 Lot o101
7lo001 01 1 1 267\o0 1 0 1 0 1
* TYPE 3: abcacb type
Lot o1 110 Lot o1 1
710 11 0 1 1 710 101 1 1
1 1 01011
710011 1 1

* TYPE 4 abcabc type

By Lemma 3.8, one can obtain the following pre-diagram D’ (K)
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2,5

where

* athick edge represents triple edges each of which is colored 2,4, and 6, respectively;

* a dashed edge represents triple edges each of which is colored 1,3, and 5, respec-
tively;

* an edge with {i, j} represents double edges each of which is colored i and j, respec-
tively.

One can check that the all possible irreducible rectangles in D’(K) are realizable.
The following are some examples:

4 2

/11 /\2 5 /11 /\2,3 /\2,1;)‘3 1

> >

A2,3#A2,1 )L2,6f/\3,3 /\2,1#/13,1 .

The following is an example of realizable puzzles on G(2,3,1,1,1,1).

,6 2 A
2
2
/\3,3

1 1

Ay 2,6

N AT
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Indeed, the puzzle has two irreducible squares and one reducible square. Since all irre-
ducible squares are on the list of realizable squares and a reducible square is automat-
ically realizable by Remark 5.7, the above puzzle is a realizable puzzle by Theorem 5.4.
Furthermore, one can check that there are 119 realizable puzzles on G(2,3,1,1,1,1).
We leave it as an exercise.

We remark that there are finitely many realizable puzzles for given K when R = Z,;
therefore, it would be interesting to enumerate the number of realizable puzzles over

K(J).

Question 6.3 Count the realizable puzzles over K(J) where R = Z, and K is an
n-gonal simplicial complex.
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