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Summary

In cancer research, high-throughput profiling studies have been extensively conducted, searching for markers
associated with prognosis. Owing to the ‘ large d, small n ’ characteristic, results generated from the analysis of a
single dataset can be unsatisfactory. Recent studies have shown that integrative analysis, which simultaneously
analyses multiple datasets, can be more effective than single-dataset analysis and classic meta-analysis. In most
of existing integrative analysis, the homogeneity model has been assumed, which postulates that different
datasets share the same set of markers. Several approaches have been designed to reinforce this assumption. In
practice, different datasets may differ in terms of patient selection criteria, profiling techniques, and many other
aspects. Such differences may make the homogeneity model too restricted. In this study, we assume the
heterogeneity model, under which different datasets are allowed to have different sets of markers. With multiple
cancer prognosis datasets, we adopt the accelerated failure time model to describe survival. This model may have
the lowest computational cost among popular semiparametric survival models. For marker selection, we adopt a
sparse group minimax concave penalty approach. This approach has an intuitive formulation and can be
computed using an effective group coordinate descent algorithm. Simulation study shows that it outperforms the
existing approaches under both the homogeneity and heterogeneity models. Data analysis further demonstrates
the merit of heterogeneity model and proposed approach.

1. Introduction

High-throughput genomic studies have been exten-
sively conducted, searching for markers associated
with the risk and prognosis of cancer. In this paper,
we focus on cancer prognosis studies with gene ex-
pression measurements. Data generated in high-
throughput studies have the ‘ large d, small n ’
characteristic, with the number of genes profiled d
much larger than the sample size n. In addition, in
whole-genome studies, only a subset of the profiled
genes is associated with prognosis. Thus, analysis of
cancer prognosis data with high-throughput genomic
measurements demands simultaneous regularized es-
timation and selection.

It has been recognized that genomic markers
identified from the analysis of single datasets can be
unsatisfactory. Multiple factors may contribute to the
unsatisfactory performance, including the highly
noisy nature of cancer genomic data, technical varia-
tions of profiling techniques and, more importantly,
small sample sizes of individual studies. Recent stu-
dies have shown that pooling and analysing multiple
studies may effectively increase sample size and im-
prove properties of the identified markers (Guerra &
Goldsterin, 2009). For example, simulation and data
analysis have shown that markers identified in multi-
dataset analysis may have more true positives, fewer
false positives and better prediction performance
(Ma et al., 2009, 2011a, b). Multi-dataset methods
include meta-analysis and integrative analysis meth-
ods. Integrative analysis pools and analyses raw data
from multiple studies, and differs significantly from
classic meta-analysis, which analyses multiple studies
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separately and then pools summary statistics (lists of
identified genes, P-values, effect sizes, etc.).

In this paper, we conduct integrative analysis of
multiple cancer prognosis studies, with note that the
proposed method may also be applicable to other
types of data (e.g. aetiology studies with categorical
responses and treatment studies with continuous
markers). In studies such as Ma et al. (2011b), the
homogeneity model has been assumed. Under this
model, multiple datasets have exactly the same set
of markers. This model has also been adopted
with cancer diagnosis studies (Ma et al., 2011a
and references therein). The existing approaches
have been designed to reinforce this homogeneity
assumption (more details available in Section 2).
In practice, different datasets may differ in terms of
patient selection criteria, platforms and protocols
used for profiling, normalization methods, and other
aspects. Such differences may make the homogeneity
assumption too restricted. In addition, data analyses
in Ma et al. (2011a, b) show that for some identified
genes, the magnitudes of estimated regression coeffi-
cients may vary significantly across datasets. It is
possible that the very small regression coefficients are
actually zero. This can also be seen from data analysis
presented in Section 4. Such an observation further
suggests the necessity of relaxing the homogeneity
assumption.

In what follows, we describe cancer survival
using the accelerated failure time (AFT) model.
Among the popular semiparametric survival models,
the AFT model may have the lowest computational
cost, which is especially desirable with high-dimen-
sional data. In addition, its regression coefficients
have more lucid interpretations. As an alternative to
the homogeneity model, we consider the heterogen-
eity model. It includes the homogeneity model as a
special case and is more flexible. For marker selection,
we adopt a sparse group penalization method. The
proposed penalization is intuitively reasonable and
computationally feasible. This study complements the
existing prognosis studies by conducting integrative
survival analysis under the more flexible heterogeneity
model and by adopting a penalization approach that has
satisfactory performance under both the homogeneity
and heterogeneity models. In a recent paper (Liu et al.,
2013), we have studied the heterogeneity model and
sparse penalization for binary data and logistic re-
gression models. As the present data and model set-
tings are significantly different from Liu et al. (2013),
the performance of the sparse group penalization
needs to be ‘re-examined’, the computational algor-
ithm needs to be adjusted, and so the present study is
warranted. In addition, this study may be the first to
observe that for prognosis data under the homogen-
eity model, sparse penalization outperforms group
penalization.

The rest of the paper is organized as follows. Data
and model settings are described in Section 2. For
integrity of this paper, we also briefly describe
the homogeneity model and an existing penalization
approach designed to reinforce the model assump-
tion. The heterogeneity model and sparse group
penalization approach are described in Section 3.
The proposed estimate can be computed using an
effective group coordinate descent (GCD) algorithm.
Numerical studies, including simulation and data
analysis, are conducted in Section 4. The paper
concludes with the discussion in Section 5. Some
additional analysis results are presented in the
Appendix.

2. Integrative analysis of cancer prognosis studies

(i) Data and model settings

Assume that there are M-independent studies,
and there are nm iid observations in study
m(=1, …, M). The total sample size is n=gM

m=1n
m.

In study m, denote Tm as the logarithm (or
another known monotone transformation) of the
failure time. Denote Xm as the length-d vector of
gene expressions. For simplicity of notation,
assume that the same set of genes is measured in all
M studies. For the ith subject, the AFT model
assumes that

Tm
i =bm

0 +Xmk
i bm+"mi , i=1, . . . , nm: (1)

where bm
0 is the intercept, bm is the length-d vector of

regression coefficients, and "mi is the error term.
When Tm

i is subject to right censoring, we observe
(Ym

i , d
m
i ,X

m
i ), where Ym

i =min {Tm
i ,C

m
i }, Cm

i is the
logarithm of censoring time, and dm

i =I{Tm
i fCm

i } is
the event indicator.

When the distribution of "mi is known, a parametric
likelihood function can be constructed. Here we con-
sider the more flexible case where this distribution
is unknown (i.e., a semiparametric model). In the
literature, multiple estimation approaches have been
developed, including for example the Buckley–James
and rank-based approaches. In this study, we adopt
the weighted least-squares approach (Stute, 1996),
which has the lowest computational cost. This prop-
erty is especially desirable with high-dimensional data.

Let F̂ m be the Kaplan–Meier estimator of the
distribution function Fm of Tm. F̂ m can be written
as F̂ m(y)=gnm

i=1v
m
i I{Y

m
(i)fy}, where vm

i s can be com-
puted as

vm
1 =

dm
(1)

nm
,

vm
i =

dm
(i)

nmxi+1

Yix1

j=1

nmxj

nmxj+1

� �dm(j)

, i=2, . . . , nm:
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Here Ym
(1)f � � �fYm

(nm) are the order statistics of Ym
i s,

and dm
(1), . . . , d

m
(nm) are the associated event indicators.

Similarly, let Xm
(1), . . . ,X

m
(nm) be the associated gene

expressions of the ordered Ym
i s. Stute (1996) proposed

the weighted least-squares estimator (b̂bm
0 , b̂b

m) that
minimizes

1

2n
g
nm

i=1
vm

i (Y
m
(i)xbm

0 xXmk
(i)b

m)2: (2)

Define X̄
m

v =gnm

i=1v
m
i X

m
(i)=g

nm

i=1v
m
i ,Ȳ

m
v=gnm

i=1v
m
i Y

m
(i)=

gnm

i=1v
m
i : Let Xm

v(i)=
ffiffiffiffiffiffiffi
vm

i

p
(Xm

(i)xX̄
m

v ) and Ym
v(i)=ffiffiffiffiffiffiffi

vm
i

p
(Ym

(i)xȲ
m

v ), respectively. With the weighted
centred values, the intercept is zero. The weighted
least-squares objective function can be written as

Lm(bm)=
1

2n
g
nm

i=1
(Ym

v(i)xXmk
v(i)b

m)2: (3)

Denote Ym=(Ym
v(1), . . . ,Y

m
v(nm))k and Xm=

(Xm
v(1), . . . ,X

m
v(nm))k. Further denote Y=(Y1 k, . . . ,YM k)k,

X=diag(X1, . . . ,XM), and b=(b1k, . . . , bMk)k.
Consider the overall objective function L(b)=

gM

m=1L
m(bm). With this objective function, larger

datasets have more contributions. When desirable,
normalization by sample size can be applied.

(ii) Homogeneity model and penalized selection

In Huang et al. (2012c) and Ma et al. (2011a, b),
the homogeneity model is adopted to describe the
genomic basis of M datasets. We briefly describe this
model here for integrity of this paper. Denote bm

j as
the jth component of bm. Then bj=(b1

j , . . . , b
M
j )k is the

length-M vector of regression coefficients representing
the effects of gene j in M studies. Under the homo-
geneity model, for any j(=1, …, d), I(b1

j=0)=
. . .=I(bM

j =0). That is, the M datasets have the same
set of cancer-associated genes. This is a sensible model
when multiple datasets have been generated under the
same protocol.

For marker selection, Ma et al. (2011b) propose
using the group minimax concave penalty (GMCP)
approach, where the estimate is defined as

b̂b= argmin{L(b)+Pl1 (b)},

with

Pl1 (b)= g
d

j=1
r bj

�� ��
Sj
;
ffiffiffiffi
dj

p
l1, c

� �
: (4)

r(t; l, c)=l
R tj j
0 (1x(x=lc))+dx is the MCP penalty

(Zhang, 2010). bj

�� ��
Sj
=kS1=2

j bjk2, jj � jj2 is the L2 norm,
Sj=nx1XjkXj, and Xj is the nrdj submatrix of X
that corresponds to bj. In (4), dj is the size of the co-
efficient group corresponding to gene j. When the M
datasets have matched gene sets, djwM. We keep dj

so that this formulation can easily accommodate
partially matched gene sets. When gene j is not
measured in dataset k, we take the convention bk

j � 0.
l1 is a tuning parameter, and c is a regularization
parameter.

In this analysis, genes are the functional units.
The overall penalty is the sum over d individual
penalties, with one for each gene. For gene selection,
MCP penalization is adopted. For a specific gene,
its effects in the M studies are represented by a
‘group’ of M regression coefficients. Under the
homogeneity model, the M studies are expected
to identify the same set of genes. Thus, within a
group, no further selection is needed, and hence the L2

norm is adopted. Note that here we adopt the jj � jjSj

norm, which rescales the regression coefficient vector
by covariance matrix Sj, so that computation is less
ad hoc. This differs from the approach in Ma et al.
(2011b).

3. Heterogeneity model and penalized selection

(i) Heterogeneity model

When multiple datasets are generated in independent
studies, heterogeneity inevitably exists (Knudsen,
2006). The degree of heterogeneity depends on differ-
ences in study protocols, profiling techniques and
many other factors. In cancer prognosis studies, the
effort to unify the sets of identified markers across
independent studies has not been very successful
(Knudsen, 2006; Cheang et al., 2008). This can also be
partly seen from Ma et al. (2011b) and our
data analysis in Section 4. Such observations raise
the question whether the homogeneity model is too
restricted and motivates the heterogeneity model.
Under the heterogeneity model, one gene can be
associated with prognosis in some studies but not
others. This model includes the homogeneity model as
a special case and can be more flexible.

There are also scenarios under which the homo-
geneity model is conceptually not sensible, but the
heterogeneity model is. The first is where different
studies are on different types of cancers (Ma et al.,
2009). On the one hand, different cancers usually have
different sets of markers. On the other hand, multiple
pathways, such as apoptosis, cell cycle and signalling,
are associated with prognosis of multiple cancers. The
second scenario is the analysis of different subtypes of
the same cancer. Different subtypes have different
risks of occurrence and progression patterns, and
it is not sensible to reinforce the same genomic basis.
The third scenario is where subjects in different
studies have different demographic measurements,
clinical risk factors, environmental exposures and
treatment regimens. For genes not intervened with
those additional variables, their importance remains
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consistent across multiple studies. However, for other
genes, they may be important in some studies but not
others.

(ii) Penalized selection

Consider the penalized estimate

b̂b= argmin{L(b)+Pl1, l2 (b)},

where

Pl1, l2= g
d

j=1
r bj

�� ��
Sj
;
ffiffiffiffi
dj

p
l1, c

� �
+ g

d

j=1
g
M

k=1

r bk
j

��� ���; l2, c
� �

:
(5)

Here, notations have similar definitions as in
Section (ii). l2 is another tuning parameter.

Under the heterogeneity model, marker selection
needs to be achieved in two dimensions. The first
is to determine whether a gene is associated with
prognosis in any dataset at all. This step of selection
is achieved using a GMCP penalty. For an important
gene, the second dimension is to determine in
which dataset(s) it is associated with prognosis.
This step of selection is achieved using an MCP
penalty. The sum of two penalties can achieve
two-dimensional selection and fully recover the as-
sociations between multiple genes and prognosis in
multiple studies.

In the single-dataset analysis with a continuous
response and linear regression model, Friedman et al.
(2010) proposed a sparse group Lasso (SGLasso)
penalty. The penalty in (5) has been partly motivated
by that study. Owing to the analogy, we refer to
penalty (5) as ‘sparse groupMCP’ or SGMCP.Unlike
in Friedman et al. (2010), multiple heterogeneous
datasets are analysed in this study, and a group cor-
responds to one gene in multiple datasets, as opposed
to multiple variables. In addition, the MCP penalty
is adopted to replace the Lasso penalty, as in single-
dataset analysis, MCP has been shown to outperform
Lasso (Zhang, 2010; Huang et al., 2012a, b). In ad-
dition, censored survival data under the AFT model
are analysed, which differ from the continuous re-
sponse and linear model in Friedman et al. (2010).
Note that MCP becomes Lasso when c=‘. Thus,
SGMCP includes SGLasso as a special case.

(iii) Computation

For dataset m(=1, …, M), we standardize the
gene expressions to have marginal means zero and
satisfy Xm

j kX
m
j =n. Thus, nx1XjkXj=Idj , where Idj is

the djrdj identity matrix. With slight abuse of nota-
tion, we denote jjbjjj for jjbjjjIdj . For computation,

we consider a GCD algorithm. It optimizes the
objective function with respect to one gene at a time,
and iteratively cycles through all genes. The overall
cycling is repeated multiple times until convergence.

Consider the overall objective function

~LL(b, l1, l2, c)=
1

2n
Yx g

d

j=1
Xjbj

�����
�����
2

+ g
d

j=1
r bj

�� ��
Sj
;
ffiffiffiffi
dj

p
l1, c

� �
+ g

d

j=1
g
M

k=1

r bk
j

��� ���; l2, c
� �

:
(6)

For j=1, …, d, given bk (klj) fixed at their current
estimates ~bb(s)

k , we seek to minimize ~LL(b, l1, l2, c) with
respect to bj. Here, only the terms involving bj in
~LL(b, l1, l2, c) matter. This is equivalent to minimizing

R(bj)=
1

2n
rxjxXjbj

�� ��2+r bj

�� ��; ffiffiffiffi
dj

p
l1, l

� �
+ g

M

k=1

r bk
j

��� ���; l2, c
� �

,
(7)

where rxj=Yxg
klj

Xj
~bb(s)
k . The first-order derivative

of (7) is :

@R(bj)

@bj

=x
1

n
Xjkrxj+

1

n
XjkXjbj+

bj

bj

�� ��
r

ffiffiffiffi
dj

p
l1x

bjk k
c

, if bj

�� ��fc
ffiffiffiffi
dj

p
l1

0, if bj

�� ��>c
ffiffiffiffi
dj

p
l1

8<: +t,

(8)

where

t= sgn(b1
j )

l2x
b1
jj j
c
, if b1

j

��� ���fcl2

0, if b1
j

��� ���>cl2

, . . . ,

8><>:
0B@

sgn(bM
j )

l2x
bMjj j
c

, if bM
j

��� ���fcl2

0, if bM
j

��� ���>cl2

8><>:
1CAk:

With normalization, nx1Xk
jXj=Idj . By setting ex-

pression (8) to be zero, we have:

xzj+gbj+t=0, (9)

where

zj=nx1Xj
krxj = (z1j , . . . , z

M
j )k,

g= 1+
1

bj

�� ��
 !

r
ffiffiffiffi
dj

p
l1x

bjk k
c

, if bj

�� ��fc
ffiffiffiffi
dj

p
l1

0, if bj

�� ��>c
ffiffiffiffi
dj

p
l1

8<: :
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We first take g fixed at the current estimate of bj. The
kth element in (9) can be rewritten as:

x
zkj
g
+bk

j +sgn(bk
j )

l2
g
x

bkjj j
cg

, if bk
j

��� ���fcl2

0, if bk
j

��� ���fcl2

8<: =0:

(10)

The solution to equation (10) is

d
gbk

jgbk
j =

S1(z
k
j , l2)

1x1=(cg)
, if zkj

��� ���fcl2g

zkj , if zkj

��� ���>cl2g

8<: , S1=sgn(u)(jujxl)+:

For k=1, …M, we set uk=
d
gbk

jgbk
j and

u=(u1, . . . , uM)k. Taking u back into its definition,
we have

bj+
bj

bj

�� �� ffiffiffiffi
dj

p
l1x

bjk k
c

, if bj

�� ��fc
ffiffiffiffi
dj

p
l1

0, if bj

�� ��>c
ffiffiffiffi
dj

p
l1

(
=u: (11)

Solving equation (11) leads to

b̂bj=
c

cx1
S2(u,

ffiffiffiffi
dj

p
l1), if uk kfc

ffiffiffiffi
dj

p
l1

u, if uk k>c
ffiffiffiffi
dj

p
l1

(
, (12)

where S2(u, t)= 1x t
uk k

� �
+
u:

Solving equation (9) amounts to iteratively calcu-
lating equation (10)–(12) until convergence. Overall,
with fixed tuning parameters,

1. Initialize s=0, the estimate ~bb(0)=(0, . . . , 0)k, and
the vector of residuals r=Yxgd

j=1Xj
~bb(0)
j ;

2. For j=1, …, d,

(a) Update ~bb(s+1)
j . This is achieved by solving

equation (9)–(12) iteratively until convergence.
In our numerical study, convergence is
achieved for all datasets within ten iterations;

(b) Update r rxXj(~bb
(s+1)
j x~bb(s)

j ) ;

3. Update sqs+1;
4. Repeat Steps 2–3 until convergence.

This algorithm starts with a null model. In each iter-
ation, it cycles through all d genes. For each gene, it
only involves simple calculations, and the update can
be accomplished easily. We use the L2 norm of the
difference between two consecutive estimates smaller
than 10x5 as the convergence criterion. Convergence
is achieved with all our simulated and real data.

(iv) Tuning parameter selection

With the MCP penalty, there is one tuning parameter
l and one regularization parameter c. Generally
speaking, smaller values of c are better at retaining
the unbiasedness of the MCP penalty for large coeffi-
cients, but they also have the risk of creating objective
functions with a non-convexity problem that are

difficult to optimize and yield solutions that are dis-
continuous with respect to l. It is therefore advisable
to choose a c value that is big enough to avoid this
problem but not too big (Zhang, 2010; Breheny &
Huang, 2011). Such results can be extended to the
SGMCP.

In principle, it is possible to have different c values
for the two penalties. In practice, adopting the same c
value may reduce computational cost without affect-
ing performance of the estimate much. In numerical
study, we have experimented with a few values for
c, particularly including 1.8, 3, 6 and 10 and ‘, as
suggested in Zhang (2010) and Breheny & Huang
(2011). l1 and l2 control shrinkage at the group and
individual-coefficient levels, respectively. Let l2max

be the largest l2 for which all regression coefficients
are shrunk to zero. Let l1max(l2) be the largest l1
under a fixed l2 for which all regression coefficients
are shrunk to zero. It can be shown that l2max=
nx1 maxj=1, ..., d, k=1, ...,M jXk

j Y
kj, where Xk

j is the com-
ponent of Xj that corresponds to the kth dataset.
l1max(l2)=maxj=1, ..., d S1(n

x1XjkY, l2)
�� ��= ffiffiffiffi

dj
p

. This
result puts constraints on the range of tuning para-
meters.

In this study, we search for c, l1 and l2 values
jointly using V-fold cross-validation (V=5 in nu-
merical study). This is computationally feasible as the
GCD algorithm has low computational cost. It is ex-
pected that l1, l2 cannot go down to very small values
that correspond to regions not locally convex. The
cross-validation criteria in such non-locally convex
regions may not be monotonous. To avoid such re-
gions, we select l1 and l2 where the cross-validation
criterion first goes up.

4. Numerical study

(i) Simulation

We simulate three datasets, each with 100 subjects.
For each subject, we simulate the expressions of 1000
genes. The gene expressions are jointly normally dis-
tributed, with marginal means equal to zero and var-
iances equal to one. We consider two correlation
structures. The first is the auto-regressive (AR) cor-
relation, where expressions of genes j and k have
correlation coefficient r| jxk|. We consider two sce-
narios with r=0.2 and 0.7, corresponding to weak
and strong correlations, respectively. The second is
the banded correlation. Here, two scenarios are con-
sidered. Under the first scenario, genes j and k have
correlation coefficient 0.33 if |jxk|=1 and 0 other-
wise; under the second scenario, genes j and k have
correlation coefficient 0.6 if |jxk|=1, 0.33 if |jxk|=2,
and 0 otherwise. We consider the heterogeneity
model, under which each dataset has 10 prognosis-
associated genes. The three datasets share five
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common important genes, and the rest prognosis-
associated genes are dataset-specific. As a special case
of the heterogeneity model, we also consider the
homogeneity model, under which all three datasets
share the same 10 prognosis-associated genes. Under
both models, across the three datasets, there are a
total of 30 true positives. For the mth dataset, we
generate the logarithm of event time from the AFT
model : Tm=bm

0 +Xmkbm+"m, where bm
0 =0�5 and

smyN(0, 0.25). The non-zero regression coefficients
for b1, b2 and b3 are (0.4, 0.4, 0.6, x0.5, 0.3, 0.3, 0.6,
0.5, 0.5, 0.2), (0.5, 0.2, 0.3,x0.5, 0.4, 0.4, 0.3, 0.2, 0.6,
0.5) and (0.6, 0.3, 0.7,x0.4, 0.5, 0.3, 0.5, 0.7, 0.4, 0.3),
respectively. The logarithm of censoring time is gen-
erated as uniformly distributed and independent of
the event time. We adjust the censoring distributions
so that the overall censoring rate is about 30% under
all simulation scenarios. In the Appendix, we also
present simulation results under s1y0.2t(60),
s2y0.6t(30), s3yt(20), that is, the three datasets
have different error distributions with different var-
iances.

For a simulated dataset, we analyse using SGMCP
as well as the following alternatives : (i) MCP and
Lasso (which is MCP with c=‘). Here, we analyse
the three datasets separately and then combine

analysis results across datasets. This is a meta-analysis
approach. (ii) GMCP and GLasso (which is GMCP
with c=‘). These two approaches reinforce that
the same set of genes are identified across datasets,
are sensible under the homogeneity model, but can
be too restricted under the heterogeneity model ;
and (iii) SGLasso (which is SGMCP with c=‘).
With the above approaches, we consider three differ-
ent c values for the MCP and GMCP penalties. For
all approaches, tuning parameters are chosen using
5-fold cross-validation.

Summary statistics, including the number of true
positives, number of false positives, and their stan-
dard deviations based on 100 replicates, are shown in
Table 1 (homogeneity model, homogeneous errors)
and 2 (heterogeneity model, homogeneous errors)
and 5 (Appendix, homogeneity model, heterogeneous
errors) and 6 (Appendix, heterogeneity model,
heterogeneous errors), respectively. We observe that
SGMCP has the best performance under all simulated
scenarios. It can significantly outperform GMCP
under the homogeneity model. SGMCP is able to
identify most or all of the true positives. Under some
simulated scenarios, there are a number of false posi-
tives. This is partly caused by correlations among
genes. The false positive rate increases as genes

Table 1. Simulation under the homogeneity model. In each cell, the first/second row is the mean number (SD) of
true/false positives. When c=‘, MCP simplifies to Lasso

Correlation c=1.8 c=3 c=6 c=‘

MCP
AR r=0.2 24.02 (3.09) 25.18 (3.49) 26.36 (2.97) 19.74 (5.26)

25.38 (21.76) 44.80 (24.16) 67.90 (10.11) 179.48 (67.80)
AR r=0.7 15.12 (2.62) 15.66 (2.60) 16.88 (2.38) 23.84 (1.40)

9.74 (6.80) 24.64 (7.86) 49.28 (17.30) 97.76 (40.83)
Banded 1 22.14 (3.47) 23.54 (3.23) 24.40 (2.88) 20.30 (3.20)

24.66 (23.86) 44.86 (23.16) 66.96 (10.69) 173.56 (64.82)
Banded 2 16.20 (2.14) 16.60 (3.19) 18.16 (2.57) 21.66 (1.87)

12.42 (7.12) 29.12 (12.30) 60.54 (11.63) 134.90 (57.59)

GMCP
AR r=0.2 29.92 (0.44) 30.00 (0.00) 30.00 (0.00) 29.82 (0.72)

2.36 (3.88) 16.50 (13.43) 93.30 (29.26) 222.54 (75.33)
AR r=0.7 25.74 (3.79) 27.60 (3.74) 26.88 (4.65) 27.12 (1.04)

7.56 (7.23) 42.24 (17.68) 104.94 (46.98) 88.74 (59.42)
Banded 1 29.94 (0.42) 30.00 (0.00) 30.00 (0.00) 29.70 (0.91)

2.22 (3.25) 20.34 (10.69) 99.48 (24.99) 198.12 (86.65)
Banded 2 26.22 (4.69) 27.36 (4.23) 27.48 (3.85) 26.76 (1.90)

7.50 (8.23) 43.44 (17.71) 108.60 (48.77) 117.72 (54.09)

SGMCP
AR r=0.2 29.34 (0.92) 29.42 (1.14) 29.68 (0.51) 28.46 (1.62)

0.58 (1.36) 0.94 (1.46) 19.56 (9.37) 143.18 (49.32)
AR r=0.7 20.88 (3.70) 20.96 (4.92) 22.80 (5.04) 26.42 (0.91)

1.98 (3.01) 4.40 (4.60) 31.92 (12.69) 67.46 (36.97)
Banded 1 28.96 (0.99) 29.26 (0.83) 29.60 (0.61) 27.02 (2.33)

0.56 (1.55) 1.34 (1.98) 23.96 (12.09) 111.96 (50.98)
Banded 2 21.36 (3.92) 21.60 (4.62) 24.64 (4.28) 25.42 (1.60)

1.24 (2.17) 4.22 (4.50) 31.72 (14.72) 76.76 (49.50)
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become ‘more correlated’. When c increases, then the
number of false positives increases. This is as ex-
pected, as in single-dataset analysis, it has been sug-
gested that Lasso-type penalization (c=‘) tends to
overselect (Huang et al., 2012a). GMCP and MCP
may identify a satisfactory number of true positives,
however, at the price of a much larger number of false
positives (Table 2).

(ii) Analysis of breast cancer studies

Worldwide, breast cancer is the commonest cancer
death among women. In 2008, breast cancer caused
458 503 deaths worldwide (13.7% of cancer deaths in
women). Multiple high-throughput profiling studies
have been conducted, searching for genomic markers
associated with breast cancer prognosis. We collect
data from three independent breast cancer prognosis
studies, which were originally reported in Huang et al.
(2003), Sotiriou et al. (2003) and van’t Veer et al.
(2002), respectively, and referred to as D1, D2 and D3
hereafter. In D1, Affymetrix chips were used to profile
the expressions of 12 625 genes. There were a total of
71 subjects, among whom 35 died during follow-up.
The median follow-up was 39 months. In D2, cDNA
chips were used to profile the expressions of 7650

genes. There were a total of 98 subjects, among whom
45 died during follow-up. The median follow-up
was 67.9 months. In D3, oligonucleotide arrays were
used to profile 24 481 genes. There were a total of 78
patients, among whom 34 died during follow-up. The
median follow-up was 64.2 months. We process each
dataset separately as follows. With Affymetrix data, a
floor and a ceiling are added, and then measurements
are log 2 transformed. With both Affymetrix and
cDNA data, we fill in missing expressions with means
across samples. We then standardize each gene ex-
pression to have zero mean and unit variance.

In previous studies such as Ma et al. (2011b), the
homogeneity model is assumed. As the three datasets
were generated in three independent studies, hetero-
geneity is expected to exist across datasets. This can
be partly seen from the summary survival data, the
profiling protocols, as well as results from analysis of
each individual dataset using MCP (Table 7). We
analyse the three datasets using the proposed ap-
proach as well as MCP, GMCP and SGLasso. The
identified genes and corresponding estimates are
shown in Tables 3 and 7–9 in the Appendix. Note that
with all approaches, the small magnitudes of re-
gression coefficients are caused by ‘clustered’ log
survival times. SGMCP identifies seven, eight and five

Table 2. Simulation under the heterogeneity model. In each cell, the first/second row is the mean number (SD) of
true/false positives. When c=‘, MCP simplifies to Lasso

Correlation c=1.8 c=3 c=6 c=‘

MCP
AR r=0.2 24.30 (3.26) 25.50 (2.82) 24.96 (2.91) 15.44 (4.98)

31.58 (37.28) 51.86 (33.81) 68.96 (13.42) 87.02 (39.50)
AR r=0.7 15.06 (2.19) 15.32 (2.68) 16.82 (2.46) 23.28 (1.71)

8.94 (4.63) 24.04 (9.06) 51.30 (17.30) 84.40 (30.32)
Banded 1 23.08 (3.40) 23.48 (3.64) 24.80 (3.18) 18.22 (3.80)

39.94 (50.17) 45.16 (31.55) 69.16 (13.07) 99.60 (40.52)
Banded 2 16.10 (2.65) 16.40 (2.72) 17.64 (2.71) 21.50 (1.99)

11.38 (8.23) 26.26 (8.22) 57.32 (13.42) 88.38 (28.67)

GMCP
AR r=0.2 25.38 (2.03) 26.44 (1.73) 25.74 (5.18) 23.68 (4.02)

32.82 (9.46) 59.60 (14.28) 124.44 (25.75) 209.72 (96.92)
AR r=0.7 18.64 (4.89) 18.86 (4.92) 19.00 (4.17) 26.04 (1.09)

27.86 (10.98) 57.70 (15.30) 83.30 (44.74) 163.86 (65.25)
Banded 1 25.10 (1.56) 25.96 (1.54) 25.28 (4.28) 22.84 (3.75)

32.50 (9.78) 64.58 (11.96) 125.44 (23.75) 173.90 (74.02)
Banded 2 19.78 (5.63) 19.48 (4.94) 18.46 (4.41) 24.96 (1.89)

28.46 (10.55) 58.40 (17.36) 103.64 (40.09) 198.12 (72.69)

SGMCP
AR r=0.2 26.62 (1.74) 25.96 (2.64) 27.00 (1.98) 22.86 (5.74)

7.78 (5.60) 11.20 (7.64) 39.70 (13.59) 141.62 (72.83)
AR r=0.7 18.72 (4.21) 17.58 (4.36) 17.48 (4.28) 25.44 (1.11)

5.72 (4.84) 8.92 (5.78) 34.88 (15.24) 109.44 (52.82)
Banded 1 24.36 (3.45) 25.42 (2.47) 26.64 (2.35) 22.70 (3.65)

5.48 (3.25) 12.94 (7.99) 40.04 (10.44) 130.88 (58.28)
Banded 2 18.96 (4.36) 16.88 (5.46) 17.96 (4.28) 23.58 (2.20)

5.56 (4.81) 9.62 (8.54) 38.48 (13.88) 113.78 (45.67)
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genes for D1–D3, respectively. Estimates in Table 3
suggest that different datasets may have different
prognosis-associated genes. This partly explains why
it fails to unify the identified markers across different
breast cancer prognosis studies (Cheang et al., 2008).
As described in Section 1, multiple factors may
contribute to this heterogeneity. Without having ac-
cess to all the experimental details, we are not able to
determine the exact cause of heterogeneity. Although
there are overlaps, different approaches identify sig-
nificantly different sets of genes. This observation is
not surprising given the simulation results. We mine
the published literature and find that genes identified
by SGMCP may have important biological impli-
cations. More details are provided in the Appendix.
Of note, as there is no objective way to determine
which set of genes are ‘biologically more meaningful ’,
we do not discuss the biological implications of genes
identified by the alternative methods.

To provide amore comprehensive description of the
three datasets and various approaches, we also con-
duct evaluation of prediction performance. Although,
in principle, marker identification and prediction
are two distinct objectives, evaluation of prediction
performance can be informative for marker identifi-
cation. In particular, if prediction is more accurate,
then the identified markers are expected to be more
meaningful. For prediction evaluation, we adopt a
random sampling approach as in Ma et al. (2009).
More specifically, we generate training sets and cor-
responding testing sets by random splitting data with
sizes 3 : 1. Estimates are generated using the training
sets only. We then make prediction for subjects in
the testing sets. We dichotomize the predicted linear
risk scores Xkb̂b at the median, create two risk groups,
and compute the logrank statistics, which measure
the difference in survival between the two groups. To
avoid extreme splits, this procedure is repeated 100
times. The average logrank statistics are calculated as

7.30 (SGMCP), 3.43 (MCP), 2.77 (GMCP) and 3.33
(SGLasso). SGMCP is the only approach that can
separate subjects into groups with significantly dif-
ferent survival risks (P-value=0.007). Such a result
suggests that allowing for heterogeneity in markers
across datasets can lead to better prediction per-
formance.

(iii) Analysis of lung cancer studies

Lung cancer is the leading cause of death from cancer
for both men and women in USA and in most other
parts of the world. Non-small-cell lung cancer
(NSCLC) is the most common cause of lung cancer
death, accounting for up to 85% of such deaths
(Tsuboi et al., 2007). Gene-profiling studies have been
extensively conducted on lung cancer, searching for
markers associated with prognosis. Data were col-
lected from three independent experiments (Shedden
et al., 2008; Jeong et al., 2010; Xie et al., 2011).
The UM (University of Michigan Cancer Center)
study had a total of 175 patients, among whom 102
died during follow-up. The median follow-up was
53 months. The HLM (Moffitt Cancer Center) study
had a total of 79 subjects, among whom 60 died dur-
ing follow-up. The median follow-up was 39 months.
The CAN/DF (Dana-Farber Cancer Institute) study
had a total of 82 patients, among whom 35 died dur-
ing follow-up. The median follow-up was 51 months.
22 283 genes were profiled in all three studies.

In studies such as Xie et al. (2011), the three data-
sets were combined and analysed. Such a strategy
corresponds to the homogeneity model. Here, we
analyse using SGMCP (Table 4), MCP (Table 10),
GMCP (Table 11) and SGLasso (Table 12). The ob-
served estimation patterns are similar to those for
the breast cancer data. The SGMCP estimates again
suggest that different datasets may have different
prognosis-associated genes. In the Appendix, we show
that the SGMCP identified genes may have important
biological implications. We also evaluate prediction
performance using the resampling approach described

Table 3. Analysis of breast cancer data using
SGMCP: identified genes and their estimates

UniGene D1 D2 D3

Hs.159142 0.0049 x0.0019
Hs.168075 0.0359
Hs.23311 0.0015
Hs.240534 0.0001 0.0001 x0.0004
Hs.41587 0.0037 0.0044
Hs.50282 0.0073 0.0082
Hs.646 0.0003
Hs.75372 0.0006
Hs.75890 x0.0011 0.0153
Hs.78225 x0.039 0.0008
Hs.80768 0.0168
Hs.98658 0.0067 x0.0023

Table 4. Analysis of lung cancer data using SGMCP:
identified genes and their estimates

Probe Gene UM HLM CAN/DF

200786_at PSMB7 x0.0002 x0.0002
203544_s_at STAM x0.002
207814_at DEFA6 x0.0001 x0.001 x0.0003
207850_at CXCL3 x0.004
208933_s_at LGALS8 0.004 0.004 x0.009
214261_s_at ADH6 x0.014 x0.001
214374_s_at PPFIBP1 x0.0005
217299_s_at NBN x0.012
217583_at PAH x0.0004 x0.016
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in the last subsection. The average logrank statistics
are calculated as 10.93 (SGMCP), 2.83 (MCP), 1.73
(GMCP) and 3.07 (SGLasso), respectively. The ob-
servation is again similar to that for the breast cancer
data.

5. Discussion

In cancer genomic research, multi-dataset analysis
provides an effective way to overcome certain draw-
backs of single-dataset analysis. In most published
studies, it has been reinforced that multiple datasets
share the same set of prognosis-associated genes, that
is, the homogeneity model. In this study, for multiple
cancer prognosis datasets, we consider the hetero-
geneity model, which includes the homogeneity model
as a special case and is less restricted. This model
may provide a way to accommodate the failure to
unify cancer prognosis markers across independent
studies (Knudsen, 2006; Cheang, 2008). Under
the heterogeneity model, we use sparse group penali-
zation for marker identification. This penalization
approach is intuitively reasonable and computation-
ally feasible. Simulation study shows that it has sat-
isfactory performance. It is interesting to note that
SGMCP outperforms GMCP even under the hom-
ogeneity model. Thus, in practical data analysis,
the heterogeneity model and SGMCP can be a ‘safer ’
choice. With the breast cancer and lung cancer prog-
nosis datasets, existing analyses assume the same set
of markers across datasets. Our analysis suggests that
it may be more reasonable to allow for different sets
of markers.

Under the heterogeneity model, marker identifi-
cation needs to be conducted in two dimensions.
Beyond sparse group penalization, composite penali-
zation and multi-step approaches may also be able to
achieve such identification. In this paper, we focus on
sparse group penalization. Comprehensive investi-
gation and comparison of different approaches
are beyond the scope of this paper. The proposed
approach is based on the MCP penalty, which has
been shown to have satisfactory performance in sin-
gle-dataset analysis. We suspect that it is possible to
develop similar approaches based on, for example,
bridge and SCAD penalties. As in single-dataset
analysis there is no evidence that such penalties
are superior to MCP, such a development is not
pursued. In our numerical study, we observe
superior performance of the proposed approach. A
limitation of this study is lack of theoretical support.
Pursuit of theoretical properties is postponed to
future studies.
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