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Abstract Let G be a countable discrete group and let M be a proper free Cr G-manifold and N

a Cr G-manifold, where 1 � r � ω. We prove that if G acts properly and freely also on N and if
dim(N) � 2 dim(M), then equivariant immersions form an open dense subset in the space Cr

G(M, N) of
all equivariant Cr maps from M to N . The space Cr

G(M, N) is equipped with a topology, which coincides
with the Whitney Cr topology if G is finite and is suited to studying equivariant maps. We also prove an
equivariant version of Thom’s transversality theorem and show that Cω

G(M, N) is dense in Cr
G(M, N),

for 1 � r � ∞.
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1. Introduction

Let G be a Lie group and let M and N be proper Cr G-manifolds, 1 � r � ω (as
usual, Cω denotes real analytic). We denote the space of all Cr G-maps from M to N

by Cr
G(M, N) and equip it with the strong–weak Cr topology defined in [5], which is

well suited to studying group actions. For compact G, this topology coincides with the
Whitney Cr topology.

Let Immr
G(M, N) and Propr

G(M, N) denote the sets of Cr G-equivariant immersions
and Cr G-equivariant proper maps from M to N , respectively. We prove the following
equivariant version of Whitney’s immersion theorem.

Theorem 1.1. Let G be a countable discrete group and let M and N be proper free
Cr G-manifolds, where 1 � r � ω and dim(N) � 2 dim(M). Then

(1) Immr
G(M, N) is open and dense in Cr

G(M, N), and

(2) Immr
G(M, N) ∩ Propr

G(M, N) is open and dense in Propr
G(M, N).

We also prove an equivariant version of Thom’s transversality theorem.

Theorem 1.2. Let G be a countable discrete group and let M be a proper free Cr G-
manifold and N a Cr G-manifold, where 1 � r � ω. Let N ′ be a closed Cr G-submanifold
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of N , and L a closed G-invariant subset of M . Then the set of Cr G-maps from M to N

which are transverse to N ′ along L is open and dense in Cr
G(M, N).

Theorem 1.2 does not always hold if the action of G on M is not free (see [1, § 2]
or [2, § 2]). In both cases, easy counterexamples are constructed, where a finite group
acts non-freely.

Finally, we obtain the following density result for real analytic G-equivariant maps.

Theorem 1.3. Let G be a countable discrete group and let M be a proper free Cω

G-manifold and N a Cω G-manifold. Then Cω
G(M, N) is dense in Cr

G(M, N), where
1 � r � ∞.

Since the set of all G-equivariant diffeomorphisms is open in Cr
G(M, N) [5, Theo-

rem 7.5], we obtain the following corollary.

Corollary 1.4. Let G be a countable discrete group and let M and N be proper free
Cω G-manifolds. If M and N are Cr G-diffeomorphic, where 1 � r � ∞, then they are
Cω G-diffeomorphic.

In [6, Theorem II] it was proved that Cω
G(M, N) is dense in Cr

G(M, N), where 1 � r �
∞, if G is a closed subgroup of a virtually connected Lie group and M and N are proper
Cω G-manifolds. Using the same simple idea as in the proofs of Theorems 1.2 and 1.3,
one can also drop the assumption there that the action on N is proper.

2. Proofs of the theorems

Throughout the paper, let G be a countable discrete group. We call M a proper free Cr

G-manifold, where 1 � r � ω, if the action G × M → M is properly discontinuous, free
and Cr differentiable. Then the map G×M → M ×M , (g, x) �→ (x, gx), is a proper map,
i.e. the inverse image of every compact set is compact for it. By [9, Corollary I 3.24], the
orbit map πM : M → M/G is a covering, i.e. a locally trivial map with fibre G. Unless
otherwise stated, M and N will be proper free Cr G-manifolds, where 1 � r � ω. All
manifolds are assumed to be finite dimensional, second countable and without boundary.

As mentioned in § 1, the topology in the set Cr
G(M, N), 1 � r � ω, of all Cr G-maps

from M to N is the strong–weak Cr topology defined in [5, §§ 1, 4]. This topology depends
on the action of G and coincides with the Whitney Cr topology (see, for example, [4,
Chapter 2]) if G is finite. In particular, whenever we consider spaces of maps between
manifolds without a group action, the topology will be the Whitney Cr topology. In the
strong–weak Cr topology the basic neighbourhoods can be defined in the same way as in
the Whitney Cr topology, but by using only families of charts in M whose images in the
orbit space M/G form a locally finite family. For the notation of basic neighbourhoods
etc., see [5].

Lemma 2.1. Let N ′ be a closed Cr G-submanifold of N and let x ∈ M . Let f : M → N

be a G-equivariant map and f̃ : M/G → N/G the map induced by f . Then

(1) f is Ck differentiable, if and only if f̃ is Ck differentiable, 1 � k � r;
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(2) f is an immersion, if and only if f̃ is an immersion;

(3) f is a submersion, if and only if f̃ is a submersion;

(4) f is proper, if and only if f̃ is proper;

(5) f is transverse to N ′ at x, if and only if f̃ is transverse to N ′/G at πM (x);

(6) f is a (closed) Ck embedding, if and only if f̃ is a (closed) Ck embedding; and

(7) f is a Ck diffeomorphism, if and only if f̃ is a Ck diffeomorphism.

Proof. The first three claims follow at once from the fact that the orbit maps are
coverings. The fourth claim follows from [5, Lemmas 3.7 and 3.9]. The last three claims
are easy to verify. �

Let f0, f1 : M → N be Cr maps. By a Cr homotopy between f0 and f1 we mean a
homotopy M × I → N between f0 and f1 which can be extended to be Cr on M × J ,
where J is some open interval containing the unit interval I.

The following version of the covering homotopy theorem of Palais (see [7, Theo-
rem 2.4.1]) holds for properly discontinuous free Cr actions. Although first proved for
actions of compact groups, the covering homotopy theorem holds for proper actions as
well, as pointed out by Palais in [8, § 4.5]. The lift is of class Ck by part (1) of Lemma 2.1.

Theorem 2.2. Let G be a countable discrete group and let M and N be proper
free Cr G-manifolds, 1 � r � ω. Let f : M → N be a Ck G-map, 0 � k � r. If
H̃ : M/G × I → N/G is any Ck homotopy of the induced map f̃ , then there exists a Ck

G-homotopy H : M × I → N of f with induced map H̃.

Lemma 2.3. Let M and N be Cr manifolds, 1 � r � ω. Let f : M → N be a Cr map
and let N be a neighbourhood of f in Cr(M, N). Then f has a neighbourhood M in
Cr(M, N) such that every h ∈ M is homotopic to f by some Cr homotopy H : M×I → N

and Ht ∈ N for every t ∈ I.

Proof. We can assume that N is a basic neighbourhood, i.e. of form
⋂

i∈Λ

N r(f ; Ki, (Ui, ϕi), (Vi, ψi), εi)

(see [5]). Let J be some bounded open interval containing I and let Hf : M × J → N be
the constant extension of the constant homotopy induced by f . Then

Ñ =
⋂

i∈Λ

N r(Hf ; Ki × I, (Ui × J, ϕi × id), (Vi, ψi), εi)

is a neighbourhood of Hf . By the embedding theorems of Whitney (1 � r � ∞) and
Grauert (r = ω), there exists a closed Cr embedding e : N → R

p, for some p. Let r : W →
e(N) be a Cr tubular neighbourhood of e(N). Let W ⊂ Cr(M, N) be a neighbourhood
of f such that if h ∈ W, then

te ◦ f(x) + (1 − t)e ◦ h(x) ∈ W,
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for every t ∈ J and for every x ∈ M . Then the mapping

A : W → Cr(M × J, N),

A(h)(x, t) = e−1 ◦ r ◦ (te ◦ f(x) + (1 − t)e ◦ h(x)),

is continuous in the Whitney Cr topology and A(f) = Hf . Thus f has a neighbourhood
M such that A(M) ⊂ Ñ . Therefore A(h)t ∈ N , for every h ∈ M and for every t ∈ I. �

The following theorem will be crucial in proving Theorems 1.1, 1.2 and 1.3.

Theorem 2.4. The map

τ : Cr
G(M, N) → Cr(M/G, N/G),

taking f to the induced map f̃ , is open and continuous.

Proof. We begin by proving the continuity. Let f ∈ Cr
G(M, N) and let

Ñ =
⋂

i∈Λ

N r(f̃ ; K̃i, (Ũi, ϕ̃i), (Ṽi, ψ̃i), εi)

be a basic neighbourhood of f̃ such that K̃i is connected and the diagrams

Ũi × G
≈−−−−→ π−1

M (Ũi)

pr1

�

Ũi

Ṽi × G
≈−−−−→ π−1

N (Ṽi)

pr1

�

Ṽi

πM | πM |

are commutative for every i. The restrictions πM | : Ui → Ũi and πN | : Vi → Ṽi are dif-
feomorphisms, for some charts Ui of M and Vi of N , respectively, where GUi = π−1

M (Ũi),
GVi = π−1

N (Ṽi) and f(π−1
M (K̃i) ∩ Ui) ⊂ Vi. Then

N =
⋂

i∈Λ

N r(f ; π−1
M (K̃i) ∩ Ui, (Ui, ϕ̃i ◦ πM |), (Vi, ψ̃i ◦ πN |), εi)

is a basic neighbourhood of f in Cr
G(M, N) and τ(N ) ⊂ Ñ . Consequently, τ is continuous

at f . Since f was arbitrary, it follows that τ is continuous.
It remains to prove that τ is open. It suffices to show that τ maps every basic neighbour-

hood onto an open set in Cr(M/G, N/G). Let f , f̃ , N and Ñ be as above. By Lemma 2.3,
f̃ has a neighbourhood M̃ such that every h̃ ∈ M̃ is homotopic to f̃ by some Cr homotopy
H̃ : M/G × I → N/G and H̃t ∈ Ñ for every t ∈ I. Since the sets of form N ∩ τ−1(M̃)
form a neighbourhood basis at f , it is enough to show that τ maps N ∩ τ−1(M̃) onto
an open set in Cr(M/G, N/G). We will show that τ(N ∩ τ−1(M̃)) = M̃.

Assume h̃ ∈ M̃ and let H̃ be a Cr homotopy between f̃ and h̃ with H̃t ∈ Ñ for every
t ∈ I. By Theorem 2.2, H̃ has a Cr G-equivariant lift H : M×I → N such that H0 = f . It
suffices to show that H1 ∈ N . Let x ∈ π−1

M (K̃i) ∩ Ui, for some i ∈ Λ. Then Ht(x) ∈ GVi,
for every t ∈ I. Since f(x) ∈ Vi and Vi ∩ gVi = ∅ unless g equals the identity element,
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it follows that H({x} × I) ⊂ Vi. In particular, H1(x) ∈ Vi. Since this holds for every
x ∈ π−1

M (K̃i) ∩ Ui and for every i ∈ Λ and also the required inequalities for the norms
of the differences of the partial derivatives of f and H1 clearly hold, it follows that
H1 ∈ N . �

Proof of Theorem 1.1. By [4, Theorems 2.1.1 and 2.1.5], Immr(M/G, N/G) and
Propr(M/G, N/G) are open in Cr(M/G, N/G). Thus the openness claims follow by
using parts (2) and (4) of Lemma 2.1 and the fact that τ is continuous. By [4, Theo-
rem 2.2.12], Immr(M/G, N/G) is dense in Cr(M/G, N/G). The density claims follow by
using parts (2) and (4) of Lemma 2.1 and the fact that τ is open. �

Notice that for the openness results one in fact does not need to assume that G is
a discrete group acting freely and properly discontinuously. The strong–weak topology
for Cr

G(M, N) is defined when G is any Lie group and, by [5, Propositions 6.1 and 6.4],
the sets Immr

G(M, N) and Propr
G(M, N) are open in Cr

G(M, N), assuming that G acts
properly on M and N .

Proof of Theorem 1.2. If the action of G on N is free and properly discontinuous,
then the claim follows from Thom’s transversality theorem (see, for example, [4, The-
orem 3.2.1]), part (5) of Lemma 2.1 and Theorem 2.4. The proof is similar to that of
Theorem 1.1.

Assume then that the Cr action of G on N is arbitrary. This case can be reduced to
the case of a proper free action. Namely, the diagonal action of G on M × N is proper
and free and of class Cr. Moreover, a Cr G-map f : M → N is transverse to N ′ along
L, if and only if for every h ∈ Cr

G(M, M), (h, f) : M → M × N is transverse to M × N ′

along L. Both the density and openness results follow easily by using Proposition 4.6
in [5], according to which there is a canonical homeomorphism

Cr
G(M, M × N) ≈ Cr

G(M, M) × Cr
G(M, N).

�

Proof of Theorem 1.3. If G acts freely and properly on N , then the claim follows as
the proofs of Theorems 1.1 and 1.2, by using Whitney’s approximation theorem, which
implies that Cω(M/G, N/G) is dense in Cr(M/G, N/G), and part (1) of Lemma 2.1.
The proof of the case of an arbitrary Cω action of G on N can be reduced to the case of
a proper free action, as in the proof of Theorem 1.2. �

Remark 2.5. In [4], Whitney’s immersion theorem and Thom’s transversality the-
orem are only stated for the cases 1 � r � ∞. However, the Cω case follows easily
from Whitney’s approximation theorem, according to which Cω maps form a dense set
in C∞(M, N) when M and N are Cω manifolds.

Remark 2.6. Studying ordinary transversality in the equivariant case only makes
sense because the action of G on M is free and properly discontinuous. For smooth
actions of a compact Lie group there exist the notions of general position (see [1]) and
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G-transversality (see [2]). These concepts are equivalent by [3] and agree with ordinary
transversality if G is a finite group acting freely. Notice that if one tries to generalize the
results in [1] and [2] to the case of proper actions of non-compact Lie groups, one should
not work with the Whitney Cr topology in Cr

G(M, N), which is discrete [5, Proposi-
tion 4.7], but with the strong–weak Cr topology.
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