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Abstract. We give a proof of Pesin entropy formula in a very general setting.

1. Introduction, formulation of the results

(1.1). The celebrated Pesin entropy formula asserts that when M is a compact
Riemannian manifold, when ¢ € Diff* **(M) and when w is an absolutely continuous
(i.e. absolutely continuous with respect to the measure on M induced by the
Riemannian metric) invariant probability measure, then

h(¢)= [ E x00)) dux) (1.1)

M (x.-(x)>0

when, as usual, x1(x) = * * = yaim m(x) denote all Lyapunov characteristic exponents
of ¢ at x and h,(¢) the metric entropy of the system (M, u, ).

The aim of this paper is to give a proof of formula (1.1) which remains valid if
one consider maps with singularities as defined in [6] as well as some class of
measures somewhat larger than the class of absolutely continuous measures (see
§1.3).

More precisely we prove only the estimation of the entropy through Lyapunov
characteristic exponents from below. Indeed, the estimation from above is com-
pletely independent and in the case of smooth maps of a smooth compact manifold
it holds for all invariant probability measures (see [17]). In the case of smooth
maps with singularities (see [6], [8], [23]) this estimation of entropy from above is
proved for a very large class of invariant probability measures in [8]. Let us note
that the classes of spaces M considered in [6],[7] and in [8] are not exactly the
same, but for the proof of the estimation from below, we need only the assumptions
from [6]. Thus we suppose that all assumptions from [6] are satisfied.

The fact that the Pesin entropy formula holds for the class of measures considered
here was well known to Pesin himself, although not clearly stated. Furthermore,
R. Mané [11] recently gave a very ingenious simple proof of the estimation of the
entropy from below in formula (1.1). As noted by A. Katok (University of Maryland,
USA), it seems that Mané’s proof can also be extended to the more general
framework we are considering. Nevertheless, the original proof given in [13], whose
idea goes back to Ja. G. Sinai (see [21]) is also beautiful, natural and, if one admits
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only the Pesin theory of invariant manifolds, this proof is in fact rather simple. It
allows us also to identify the Pinsker algebra of the system, that is the o-algebra
of sets A such that the mean entropy A (¢, y4) of the partition ya ={A, M\A} is
zero. The proof given here follows Pesin. One of our aims is to make it understand-
able by a large readership. Except for the knowledge of results stated in [6]
(propositions 1.1 and 3.3 below) and for elementary entropy theory (see [16]), this
paper is self contained. The notation used is the same as in [6] and is not explained
here. If the reader is interested only in C'** diffeomorphisms of a compact manifold
M, he may, in what follows, put

Qory=0a=N=M.
(1.2). The subset A = M is defined in § 3 of [6]. For x € A,

0#veTN,

let us denote by

. .1 n
X" (x, v) = lim —log llde % (v)

the Lyapunov characteristic exponent of vector v.
We call A" the following subset of A:

At ={xeA; x"(x,v)>0 for some 0 #v e T.N}.

Let .7\3,,,a== ./-\s,, N Q, (see §§ 3 and 4 of [6]), where 0 <a <1, a =a(s, r), is so big
that all results of [6] are applicable. Let us denote also

~ .y o . -
As,r,a: A hAs.r,oz and P" = U Agra

s=1,r=1

The local unstable manifold of ¢ (i.e. the local stable manifold for ¢ ) passing
through x € P and constructed in [6] will be denoted here by Viee(x). Let us denote

U ¢" (Viedd "x)) forxeP”,
V)=
{x} for x elsewhere.

We call V(x) the global unstable manifold passing through x. Let us also note that
w(A") = u(P") and that P* is ¢ invariant.

Theorem 1.1 is proved in our framework exactly in the same way as in [14] or
in [18].

THEOREM 1.1. Let x, y € P*. Then the following are true:

1.1.1) ifyg V(x) then V(x)nV{y)=J;

(1.1.2) ifye V(x) then V(x)=V(y);

(1.1.3) if K(x)=dimN —dim {ve TN, x"(x,v)=<0} then V(x) is a K(x)
dimensional open submanifold of N which is generally not connected ;

(1.1.4) &(V(x)) = V(D(x));

(1.1.5) if y € V(x) then lim, e pv @) (P "x, D "y)=0;
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where pv(,) denotes the distance induced on the connected components of the sub-
manifold V (z) by the Riemannian metric on N.

Let us note that the proof of (1.1.5) is easy if derived from the estimates obtained
in the proof of theorem 6.1 from [6].

Let us remark also that the partition of N in global unstable manifolds can also
be defined (mod 0) as the classes of the following equivalence relation between the
points x and y

1
lim sup —log p(® ™" (x), P "(y)) <0

nsc0 N

(see theorem 6.1. from [6] and the very definition of unstable manifolds). We will
call this partition the global unstable foliation and we will denote it by V.

(1.3). In what follows, we shall use the notions of measurable partitions and
conditional measures (see [16]).

Let ¢ be a measurable partition of M. For x € M, we denote C,(x) the element
of the partition £ which contains the point x and {uc, ) }xenm the set of conditional
measures defined by u on the elements {C;(x)},ar of the partition & If  is another
measurable partition, then £ =u means that for u almost every x € M one has
C.(x) = C¢(x). By A we denote the o-algebra of all measurable subsets of M.

The global unstable foliation defined in § 1.2 is generally not a measurable
partition. But we may consider the o-algebra .# consisting of the measurable
subsets of M which are the union of unstable manifolds (A ey iff A€ and
x € A implies V(x)< A).

We shall also consider measures which are in some sense well disintegrated by
the global unstable foliation. For if W is a manifold imbedded in N, W inherits
from N a Riemannian structure and hence a Riemannian measure that we shall
call the induced measure on W. We denote u, the induced measure on V{(x).

Definition 1. A measure u on M will be called absolutely continuous with respect
to the global unstable foliation of ® iff for any measurable partition £ of M such
that Ce(x) < V(x) and u,(C(x))>0 for p almost every x e P*, the conditional
measures fc, ) are absolutely continuous with respect to the induced measure u,.

This property could also be called quasi-invariance by the global unstable foliation
(think of the foliation by the orbits of a flow, for instance).

A short name ought to be Sinai measures. In fact Sinai did stress the im-
portance of that property in [21] and in a lot of examples, the existence of such
a measure is the key property for explaining ‘stochastic’ properties of the system
(see [1], [2], [3], [4], [5], [6], [7], [13], [14], [19]). One is led to believe (see [20])
that measures absolutely continuous with respect to the unstable foliation play the
same role and have the same importance for multidimensional systems as absolutely
continuous invariant measures do in the theory of maps of an interval. The result
proved in this paper is the easiest step in that direction.

Let us now recall conditions (2.1) and (2.2) from [6] concerning the ®-invariant
measure u.
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Condition 2.1. There exist positive constants C; and a such that for every
positive ¢,

(U (A))=Cie”
Here A denotes the singular set of mapping ® and U, its ¢ neighbourhood.

Condition 2.2. fy,log” |d®3|| du (x) < +00 where log* x = max (log x, 0).
Let us note that when @ is a diffeomorphism of a smooth compact manifold
these conditions are automatically satisfied.

THEOREM 1.2. If the ®-invariant probability measure u satisfying conditions (2.1)
and (2.2) from [6)] is absolutely continuous with respect to the global unstable foliation
of ®, then

( ) xi(x)) du(x) (1.2)

xi(x)=>0

ha(@)= |

M

and the Pinsker o-algebra of the system coincides (mod 0) with My (i.e. for any
subset A in the Pinsker o-algebra there is a B € My with

n(A\B)=u(B\A)=0).

The above characterization of Pinsker o-algebra was given by Ia. B. Pesin in [14].

Before proving theorem 1.2, we want to emphasize that you can exchange the
role of @ and &' in all that is written here, thus replacing in every place unstable
by stable and vice versa. The characterization we give is more ‘natural’ because it
relates entropy and the coefficient of expansion of the volume.

If A is a linear operator between two Euclidean spaces of the same finite
dimension m, we denote A"« the k’th exterior power of A. Let us denote

lA®=1+ ¥ [A™.
K=1
With this notation, it follows from [17] (see also [8]) that u almost everywhere

1 nyA
Y xi(x)=lim —log ||(dP)"| (1.3)
xi(x)>0 n-co 1
and
. 1 ny A
j ( » X,-(x)) dp,(x)=11m—J‘ log (D))" du(x).
IM \x;(x)>0 nsoo N Jpg

Thus, the Pesin entropy formula may be also written as follows:
.1 .
(@)= lim — | 10g (@) du(x). (1.4)
n—->o0 M
We even conjecture that (1.4) or equivalently (1.2) is a characteristic property
-of Sinai measures, thus following the analogy with the one-dimensional case [9].

(1.4). The absolute continuity theorem proved for diffeomorphisms of compact
manifolds in [15] and for the mappings with singularities in [7] asserts that if u is
an absolutely continuous measure on N, then u is absolutely continuous with
respect to both global unstable and global stable foliation of ®.
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It is interesting to note that the measures which are absolutely continuous with
respect to global unstable (or stable) foliation of ® but which are not absolutely
continuous occur very frequently in Anosov and related dynamical systems (see
{227 and [3]).

2. Preliminaries

(2.1). If H is a finite dimensional Euclidean space, we denote Volg the volume on
H. Let E and F be two Euclidean spaces of the same dimension, E, = E be a linear
subspace of E and A : E » F a linear mapping. Let us define

Volg (A(U))

|Alg,|= Volg.(U)

where U is an arbitrary open and bounded subset of E,, F; is an arbitrary linear
subspace of F of the same dimension as E, and A(U) < F;. We also denote
|det A|=|A|g|.

Let X and Y be two Riemannian manifolds of the same finite dimension and
T:X - Y bea C' diffeomorphism. Riemannian measures (i.e. the measures induced
by the Riemannian metrics) on X and Y will be denoted vx and vy respectively.
We recalil the change of variables formula.

ProposITION 2.1. If fe L'(Y, vy), then
j (fo T) |det dT| dvx ='j fdvy.
X Y

(2.2). Let (M, A, ) be a measure space of finite measure and T : M - M a measur-
able measure preserving map. We shall use the following well-known result.

PROPOSITION 2.2. Let g be a positive finite measurable function defined on M such

that
_g°T _, -
log TE L (M, n), where log~ a = min (log a, 0).
Then
1
lim - logg(T"x)=0 u almost everywhere, 2.1
oT
J log 82" du =0. (2.2)
M g

Proof. Let us first note that when logge LY(M, ©) (2.2) is immediate and (2.1)
follows from the Birkhoff ergodic theorem applied to the function

geT
log .
g

Let us also note that the Birkhoff ergodic theorem is still true when applied to
a function h, h =h.—h_, with h, =0, h_=<0and h_e L' (M, ), but in general the

https://doi.org/10.1017/50143385700001528 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700001528

208 F. Ledrappier and J.-M. Strelcyn

limit can be infinite. As
_g°T
log TGLI(M9 M‘),

this shows that the following limit exists u almost everywhere

oTi +1 l
hm— Z logg —= lim ~log>——

n—>c 1 ;=0 o T" n=>0on

oTH
g def £
g

and moreover
oT
J- Kdu = J- logg—d/.l,,
M M g
where both sides may be equal +00.

As

1
—log g » 0 u almost everywhere,
n

we have therefore

1
= lim —log (g e T") u almost everywhere.

n—->co n

On the other hand, we know, as 0 <g <0 u almost everywhere, that
1 n
—log(g>T")
n

converges to 0 in measure, because T preserves the measure w. Thus there is a
sequence n; *+00 such that

1
lim —log (g c T™) =0 p almost everywhere.

i—>00 n’

This implies K (x) =0 u almost everywhere and proves (2.1) and (2.2). a

Let 4, be some sub o-algebra of 4. We will denote L2(.M, M1, ) the space of all
M1 measurable functions in L*(M, u). If @ is a measurable partition, we denote
M, the o-algebra generated by a and call a function f a-measurable iff f is 4,
measurable.

(2.3). Let ® be an invertible measurable and measure preserving map on a probabil-

ity space (M, #, u). We recall two results of entropy theory.

PROPOSITION 2.3. Let a be a measurable partition of M such that « <® 'a. Then
h( @®)=h(® ", a)=H (@ 'a|a).

Proof. Proposition 2.3 follows immediately from the very definition of entropy of

@' (see [16, § 7.1]). a

PROPOSITION 2.4. Let a be a measurable partition of M such that a <® 'a,

h(®)=H (@ 'ala) <+
and that the partitions {®"a}, .z generate M. Then the Pinsker o-algebra of the system
coincides (mod 0) with N,z Mora.
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Proof. Proposition 2.4 is only a reformulation in terms of o-algebra of theorems
12.1 and 12.3 of [16]. d

(2.4). From now on ¢: M - M will be a map with singularities as in the statement
of the theorem we want to prove.

For x e N let us recall that T,N is the tangent space to N at the point x. For
x €A, TN decomposes in

T.N =E:®E,®E;

where E¥, E2, and E; are linear subspaces corresponding respectively to positive,
zero and negative Lyapunov characteristic exponents of ® at x. This decomposition
is invariant in the sense that

d®,(EY)=Eju), dD,(EY)=E¢x and d®.(E:)=Epw).

Let us note that for x J.V, E; is a non-trivial subspace of T,N.
Let us consider (see § 2.1)

T (x)=|d®,|e:

PROPOSITION 2.5. log 7 € L'(M, u) and

IM( z Xi(X)) du(x)=leog7“(x)du(x). (2.3)

xi(x)>0

Proof. The proof is based on the following fact implicitly contained in [12] but
explicitly in [17] (compare with (1.3)). If x € A then

E3l (2-4)

1
Y xilx)= lim ~log |d®?

xi{x)>0
From the Hadamard inequality we have

1 - 1
"dd);l.)zx)“m B ldq);}x) Edx)

=T (x)=<|d®.|",

=|d®,

EX

where m = dim N. Thus condition (2.2) from [6] and the ® invariance of the measure
u, implies that log 77 eL'(M, ). Now (2.3) follows from (2.4) and the Birkhoff
ergodic theorem, because

n-1 .
log |d®llex| = T 7(@'(x)). O

(2.5). Let us now formulate a classical remark due to E. Hopf (see [2, theorem
4.4}). We write down the proof here for the sake of completeness.

PROPOSITION 2.6. Let My be the o-algebra of the ® invariant subsets of M. Then
./“1 cMy.

Proof. We shall prove an equivalent inclusion

LA(M, My, ) = LA(M, Mv, ).
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We first consider a dense set F' of continuous functions in L*(M, 4, ). By the
Birkhoff ergodic theorem, for any f € F, the limit

FE)=lim L ¥ f@7 (%)
n>®©R =0

exists on a set My, My e M, u(M;)=1.

Let P be the orthogonal projection of LM w)on L 201, M, ). By the mean
ergodic theorem, f~ represents Pf. The set of Pf where f € F is dense in LM, My, ).
But for any two points x, y € M; which are V equivalent, i.e. such that there exists
some z € P* with x, y € V(z), we have by (1.1.5) lim, .« p(®;", ;") =0 and thus
f (x)=f"(y). Therefore any function in {Pf;feF} is constant along the global
unstable manifolds restricted to My and so coincides (mod 0) with an ./ measurable
function. O

(2.6). Suppose now w(P")=1. Using propositions 2.3, 2.4 and 2.5 we shall prove
theorem 1.2 by constructing a measurable partition 7 of P* such that

n Scbvln’ /\ ﬂq)"n =‘/ﬂV9

e 2.5)
{®"n}.cz generate A (with respect to u)
and
H(¢_1n|n)=j log 7*(x) du (x). (2.6)
M

This will at once prove the estimation of entropy from below and hence formula
(1.2). The characterization of the Pinsker o-algebra comes by applying proposition
2.4 also to the partition 7.

Let us remark also that there is nothing to prove in theorem 1.2 if u(l;+) =0.
The entropy of w is zero (see [8]) and formula (1.2) is true. The Pinsker o-algebra
is thus # and as V(x) = x u almost everywhere, # also coincides (mod 0) with .

In general, when 0<u(P*)<1, theorem 1.2 follows clearly because u can be
written as

p=wP s+ (1 - u(Bua,

with w1 (P*) =1 and u,(P")=0.

This shows that to finish the proof we have only to construct a partition n
satisfying (2.5) and (2.6) in the case when u(};+) =1, and this is what the rest of
the paper is devoted to.

3. Construction of the partition n
(3.1). In this section we construct a measurable partition satisfying (2.5) for which
we compute the entropy in § 4. More precisely we want to prove

PROPOSITION 3.1. Let u be a b-invariant probability measure such that u(P*) = 1.
Then there exists a measurable partition n of N such that
(3.1.1) n=0"1n;
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(3.1.2) for u almost every point x € N, C,(x) < V(x) contains a V (x) neighbourhood
of x and

(3.1.3) U, ®"C,(® "x) = V(x) u almost everywhere and ( \, Morn, =M+ (mod 0);

(3.1.4) the partitions {®"n}ncz generate M ;

(3.1.5) for any Borel subset B < M the function ¢(x) = u,(C,(x) B) is measurable
and . almost everywhere finite.

Let us emphasize before proving proposition 3.1 that the absolute continuity of
the measure u with respect to the global unstable foliation does not play any role
in this section.

We want also to point out one meaning of (3.1.3); we have already said that u
being absolutely continuous with respect to the global unstable foliation means
that w is quasi-invariant for the equivalence relation V: x ~y iff there exists z
such that x,y € V(z). In that framework, it follows easily from (3.1.3) that the
measured equivalence relation (M, u ; V) is hyperfinite.

The second property in (3.1.3) is a reformulation of the first one. Note that

D"C, (D "x) = Comy (x).

Therefore
U Cd)"'n (x) = V(x)
implies clearly that #, <4, for all n and that any measurable set which is in
all #4~, belongs to My,
(3.2). We first prove a general lemma from measure theory (see also [9, lemma 3.17J).

PROPOSITION 3.2. Let ro>0 and v be a finite non-negative Borel measure on R,
concentrated on [0, ro}, 0<a < 1. Then the Lebesgue measure of the set L,,

L, ={r;0sr5r0, Y V([r—ak,r+ak])<+oo}
k=0

is equal to ro.
Proof. Let us define

v ([O’zro])} )

Na,k={r;0sr5ro, v([r—a* r+a*)> k

Let ‘bad interval’ denote an interval of length 2a”* with its centre in a point of N ;.
It is easy to see the N, can be covered by bad intervals C;i, 1 =i =S(k), so that
any point meets at most two bad intervals. We have

Sk 0, S(k)
w = 3 v(Cu)=2v(0, )

and |N,.| =2S(K)a*, where |W| denotes the Lebesgue measure of the set W. We
get [N, | =4a*k? and therefore, by the Borel-Cantelli lemma, Lebesgue almost any
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point r belongs only to a finite number of N, ; and thus the series
po k k
Y v([r—a“,r+a”))
k=0
converges. O

(3.3). Let us recall some fact from Pesin theory (see [6, §8§ 6, 7]). Let B(x, r) denote
the closed ball in M with centre x and radius r. Let us define the distance py:

Py, y)ifx,y € V(w) forsome w e P™,

+ o0 otherwise.

pvix,y)= {
The distance pv (x, y) does not depend on the choice of the point w.
PROPOSITION 3.3. There exists an increasing sequence {A}1=1 of closed subsets of
P*, u(P\Ui A1) =0 and positive numbers r, A, B; and C, such that
(3.3.1) foreach y e Ay, B(y,3r)=N;

(3.3.2) for each x € A, there exists e (1), 0 <e (1) <1, such that for any

yeAINnB(x,e()r),0<r=n,

the local unstable manifold V\o(y) is such that V,.(y) n B(x, r) is connected ;

(3.3.3) the map y -» Vio(y)nB(x, r) is continuous from B(x,e()r)) " A, into the
space of subsets of B(x, r;) (endowed with the Hausdorff topology);

(3.3.4) for each y € A; Vi (y) contains the closed ball of centre y and py radius A,
in V(y) and

(3.3.5) if z € Vio(y), then for every n =0

pv(@ "y, ®"2)<Bie " py(y, 2);

(3.3.6) foranyr, 0<r=<r, if two points z1 and z, belong to

Sx,r)= U Vieely) N B(x, r)

yeAinB(x,e(l)r)

and are not in the same local leaf Vie(y)nB(x,r) for some y
belonging to A "B (x, e(l)r), then pv(z1, z2)>2r.

This proposition follows from results (and from the proofs) of §§ 6 and 7 of [6],
if one takes as A, the set (in the notation of [6])

!
U AL, QuinA™),

sr=1
where a = a(s, r) (see § 1.2).

(3.4). We will now prove proposition 3.1 in a particular case. We choose [ and
x € A; such that u(8(x, r))>0 for all r, 0<r=r. This is possible by choosing first
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{ such that «(A;) >0 and then x in the support of the trace of the measure x on
A, For any r, 0 <r =r, we consider the partition ¢, of M defined by all the sets

Vie(y) N B(x,r)

for y e AinB(x, e([)r) and the set M\S(x, r). From (3.3.3) it follows clearly that ¢,
is a measurable partition of M.

We define 1, = V=0 ®"¢.. The partition 5 of lemma 3.1 will be a partition 7, for
some r, 0 <r <r, that we choose later. Let us define

S, =J ®"S(x, r).

n=0

We now prove properties (3.1.1)~(3.1.5) when u(S,)=1.
(3.1.1) This property is clear from the definition of n,.
(3.1.2) Itis clear that for z € S, and for some n =0.

Cm (Z) co” Vloc(q)—nz) <V(z )

On the other hand, we claim that there exists a function 8,, 8, =0, such that
ye V(z), pv(y, z)=B,(z) implies y € C, (z).

The proof of (3.1.2) consists in constructing such a 8, and then choosing r such
that 8, >0 u almost everywhere.

We define 8, only on |_; A.. For z €U A, put

[(z)=inf{l'; z e A;}

and

1 -
B(z)= inf {A,(Z), ——p(®7"z,3B(x, 1)) "1

2By, ’ Bt(n}'

Let us first prove our claim. Let z e U A, y € V(z) and pv (y, 2) =B,(z). We have
to check that for any n =0

Ce, (D7"y) = C¢, (®7"2). 3.1)

First we know by (3.3.4) as y € V(z) and pv(y, z) < Ay, that y € V(z) and that
(3.3.5) applies. Therefore we have for any n =0

pv (@ "y, ®7"2) <Bi;y e "py(y, 2)<3p(®7"z, 0B (x, 1)) (3.2)
and
pv(@7"y, ®"2) <Biy e "py(y, z) <r. (3.3)

We have four cases to consider.
(i) If ®™"y and ® "z both belong to S(x, r), we have (3.1) by (3.3.6) and (3.3).
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(ii) If neither @ "y nor ® "z belong to S(x, r), we have (3.1) by the definition of
&

(iii)-(iv) If & "y belongs to S(x, r) but not "z, or vice versa, we should have
pv(® "y, 3(x, 1)) =pv(® "y, ®7"z)

which would contradict (3.2).
Thus only (i) and (ii) occur, which proves the claim.

We will now choose r, 0<r=r, such that 8, >0 u almost everywhere. We will
even show that for Lebesgue almost every choice of r, 0<r=r, 8, >0 u almost

everywhere.
Let x € M. Let v be the finite non-negative measure on [0, ;] defined by

v(A)=ulyeM;p(x, y)e A},
and let p be an integer, p = 1. We get by proposition 3.2, applied to a =™, that
|K,| =r, where
K,= {r; O<r=r, ¥ uyeM;lp(x,y)—r[<e™ S} <+°0}-
k=0
As ® preserves the measure u, we have also

sz{’;os'srb Y ulyeM;lp(x, <I>"‘y)—r|<e"‘c"})<+°°}'
k=0

Note that from the uniformity of the Riemannian metric on B (x, r;) (see proposi-
tion 3.3.1) there is a constant D >0 such that

P(Z, aB(xa "1)) =T
implies
lplx, 2)-r=Dr

forryand 7 such that 0 <r<r,<r,
Thus we have for r in K,

L u({yeM;p@ty, B0 )=
k=0

-kC,

5 })<+°°'

This implies by the Borel-Cantelli lemma that for u almost every y there exist
only a finite number of k with

~kC,

—k (4
p(® "y, 8B(x,r))= D

The set
7= {r; u(U ®" (9B (x, r))) >o}

is at most countable and for r in ([ =1 K,)\7 we have clearly 8, >0 u almost
everywhere. This completes the proof of (3.1.2).

Fix re ((p=1 K,)\7 and omit the subscript r in 3, &, y, etc., except S..

(3.1.3). Firstly it is clear that for all n and z in §,, ®"C, (®™"z) are contained in
V(z).
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On the other hand, let y be in V(z). By (1.1.5) we have

lim, e pv(® "y, @ "2)=0.

The invariance of u implies

12 ;
lim— ¥ B(® 'z)>0 u almost everywhere
noni=1

and hence there will be some n as large as we want such that
B(@"z)>pv(d "y, @ "2).

By the proof of (3.1.2), we have ® "y € C,,(®™"z). Therefore for any y € V(z)
there exists some » such that

y e ®"C (P "z).
(3.1.3) is proved.

(3.1.4). To show that the partitions {®"n}..z generate #, we will show that any
two different points y and z of a set of full measure in S, are separated by some
partition ® "n, n = 1. Suppose y belongs to infinitely many &~ "S(x, r) and that

P "Cn(z)=®7"C,(z) for all n.
®"z and ®"y are infinitely often in the same local unstable manifold and by
(3.3.5)

pviy, z)<2Bire "¢

Therefore pv (y, z) =0 and they coincide.
(3.1.5) Let B be a Borel subset of M. By (3.3.3) the function

y > uy (Ce(y)nB)

is measurable and finite on the set S(x, r), possibly not in the complement.
It follows clearly that the function
) =uy(C.. (y)nB)
AL

n-1

is measurable and finite on the set | J"'"a ®'S(x, r), though possibly not on the
complement. Moreover f, =f, ;. Therefore

#y(Cy(y)nB) = lim f,(y)

is measurable and finite & almost everywhere on §, and this completes the proof
of proposition 3.1 on §,.

(3.5). The proof of proposition 3.1 is completed if x(S,) =1 and in particular if
is ergodic. If wu(S,)<1, let us remark that by proposition 2.6 any invariant set A
is a union of global unstable manifolds.

Soif u(A) <1, let us consider for some ! a point x in the support of the restriction
of the measure u to (M\A)N A, If we take the trace on M\A of the partition
constructed in the same way as in § 3.4 starting from a small neighbourhood of x,
it clearly satisfies the properties (3.1.1)-(3.1.5) on a new invariant subset of M\A,
of positive measure.
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Therefore we can construct inductively a partition satisfying (3.1.1)-(3.1.5) almost
everywhere. As this will be done in a countable number of steps, all measurability
properties are preserved and we thus complete the proof of proposition 3.1. d

4. Computation of the entropy
(4.1). We have now only to prove (2.6), i.e.

H@ 'nln)= [ log 7" (x) du(x) (2.6)
‘M
Let us define the Borel measure » on M by
v = [ 1y (Ca)IAK) duy) @.1)
M

for all Borel subsets K of M. By (3.1.5) v is a o-finite measure on M.
Let us recall that by definition of the conditional measures {uc, (y)}yerm We have

w(K)= J.Mﬂc,,(y)(cn()’)ﬁK) du(y) 4.2)

for all Borel subsets K of M. In future we will use the short form pc (,)(K) instead

of pc,m)(Cy(y) N K).
As the measure u is absolutely continuous with respect to the global unstable

foliation (we now use this assumption for the first time) we have_%that @ is absolutely
continuous with respect to ». We call g the Radon-Nikodym' derivative du/dv;
g(r)=0 w almost everywhere on M. The next result is a well-known measure
theoretic statement.
PROPOSITION 4.1. For u almost every ye M
_dpcyy
du,

Wy almost everywhere on C,(y).
Proof. Let A € #,,, B € M be two arbitrary sets. As

[ sav=| au,
AnB AnB

from (4.1) and (4.2) one obtains that

Lma gdv = L (.[Bncﬂ(y) 8(2) d“y(z)) du(y)

= J du = J ke, y(B) du(y).
AnB A
The measure space (M, #, u) is separable as a Lebesgue space (see [16]). Let
{B;};21 = be a dense subset in .# (with respect to the standard metric
d(C, D)= u(C\D)+u(D\C)).

Fix j, 1=<j <00, and apply (4.3) to an arbitrary set A<, and to B=B,. As A
is arbitrary, (4.3) implies that there exists a measurable subset Z; of #, u(Z;)=1

4.3).
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such that for every y € Z; one has

[ s@)du @) =ncoB).
B;Cy(y)

This implies our assertion. O
We may therefore write for any Borel subset B of M

[ s@duy @) =nem® @4
BNCy(y)
w almost everywhere. In particular
[ g@du(e)=1 @)
Ca(y)

w almost everywhere.

(4.2). We now compute the entropy. We denote

1@ 'nln)(y) = —log e (Co1n ().
By (4.4) as Cp—1,,(y) = C,(y), we have

1@ mn)=-log [ g()duy(2).

Co—1,(y)

Using now that Cy—1,,(y) = <I>"1(C,, (®y)) and proposition 2.1, we have

j 2(z) duy(z)=j ¢(z) duy(z)
Cao-1,(y) D [Cp(DY)]

1
= oz ————d z).
ICn(¢y)g( )g' @) Koy (2)

The following proposition is the key point in our computation. We will prove it
in §4.3.

PROPOSITION 4.2. The function

L(z)= =
B =@
is 1 measurable.
We have now
- (2)
(@ =—lo J LA .
(@ "nln)(y) g oy L(z) o) (2)

But by proposition 4.2, the function L is constant on i almost all elements of the
partition 7. Therefore on C, (Py) we have L(z) =L(dy) for u almost every y.
Consequently by (4.5)

@ _ 1 _ 1
Lﬂ@y) L) duay)(z) L@y Lﬂ@y) g(z) dpoy)(z) L@y
and finally
[(@ *nln)(y) =log L(®y) =log T*(y) +log g;f;y)’. 4.6)
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Now I (¢>‘1n|n) =0 and by proposition 2.5 log J* eL'M, ). Consequently (4.6)
implies

_god
log” =€ L'(M, ).
g

But the entropy H(® 'n|n) is given by
H@ 'nln)= [ 1@ nln)y) du(y)
M

and (2.6) follows immediately from (4.6) and from proposition 2.2.

(4.3). We give now the proof of proposition 4.2.
Let Z (y) denote the M4, measurable function defined by

Z(y) = pc,on (Co1n(y)).
We shall write the family of conditional measures with respect to ® ' in two ways.
Firstly as <D'1n =n, we can write for any Borel subset K of M
pe (K nCep1,(y)) 1
(s 701 MR CIL S
Secondly by invariance of u we also have for any Borel subset K of M
KCa1,0) (K) = pc @y (PK)). (4.8)
Therefore we get from (4.7) and (4.8) for any Borel subset K of M that
761
Z(y) Co—1,(y)NK

=L 8(2) diuy ()= | ¢ (®2)T"(2) dusy (2).
(Co1,(y)nK) Co—19(y)nK

HCo1,) (K) =

g(z) duy(z) =j 8(2) dio)(z)

Co(@y)INP(K)

The last equality follows from proposition 2.1.
Consequently we get for x almost every y e M

Lg(2)=g(<I>Z)?7"(Z)

Z(y)
for u, almost every 2z in Ce-1,,(y). Thus the function
1
Lo®d= Z

is @ 'n measurable and proves proposition 4.2. This achieves the proof of theorem
1.2 : [

(4.4). Let us finally point out that this last proposition 4.2 can be written as follows:

PROPOSITION 4.2 (bis). Let n be a measurable partition with the properties from
proposition 3.1. Then there exists a strictly positive, measurable function h such that
the function
uho®

h

is n measurable.
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This result was proved in a completely different way for Anosov systems by
A. N. Livsic and Ya. G. Sinai (see [10] and [3]). It turns out that it is true in a
much larger setting.

(4.5). After this paper was finished, F.L. proved that the conjecture formulated
after formula (1.4) is true in the case when no characteristic exponent is zero. A
proof will appear elsewhere (see [24]).
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