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1. Introduction

Free groups and free inverse semigroups are characterized by certain
properties which are usually called universal. Category-theoretically they arise
from left adjoints of forgetful functors which assign to each structure its
underlying set. The purpose of this note is to give a construction of a wealth of
inverse semigroups with certain universal properties which subsumes free groups
and free inverse semigroups and incidentally elucidates some well-known
constructions of free inverse semigroups (Scheiblich (1972)). Category-
theoretical terminology will be freely taken from (Mac Lane (1971)).

2. The category IS(E)

Let £ be a semilattice. IS(E) will denote the category whose objects are
pairs (S, 6) where S is an inverse semigroup and 0: E —> E(S) an isomorphism
of semilattices, E(S) denoting the semilattice of idempotents of S. A morphism
in IS(E) between two objects (S, 6) and (T, 17) is a homomorphism a: S —» T of
inverse semigroups such that 17 = 0(a | E(S)). In practice, we may visualize
IS(E) as consisting of inverse semigroups with 6 labelling the idempotents and
the morphisms being "idempotent-preserving" homomorphisms. As usual, TE

will denote the inverse semigroup of isomorphisms between principal ideals of E
(see Munn (1966)). Let T: E —* E(TE) be the map defined by ex = identity on Ee,
Ee being the principal ideal of E generated by e. Then T is an isomorphism of
semilattices and hence (TE, T) an object in IS(E).

The following propositions are easy to prove, the proofs will therefore be
omitted.

PROPOSITION 2.1. (TE,T) is the terminal object in IS(E).

PROPOSITION 2.2. IS(E) has all small products: if (S,, ft), iGJ, are
objects in IS(E), then (P,ir) = U{(S,,di)\ieI} is given by P =
{v: I -» U {Si I / G /} I iv G S,, iva, = jvah for all i, j &I,a,: (Sh 0,)-> (TE, T) being
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the-unique terminal morphism for (Sf, ft)}, E(P) = {v G P\ iv G £(S,) for all
i G /} and TT: J5 —» E(P) is defined by /(eir) = eft. The inverse semigroup
operations on P are defined "pointwise".

PROPOSITION 2.3. IS(E) has all equalizers: Let (S, 0)=S(T, 17) be two morph-
isms in IS(E). Then y: (X, e)—»(S, 6) is an equalizer where X =
{s £ S I sat = 5/3}, E(X) = E(S), e = 0, and xy = x, for all x G X.

COROLLARY 2.4. IS(E) has all small limits.

3. The category Set | TE

Let Set I TE be the category of "sets on T E " whose objects are mappings
a: M —> TE where M is a set and where a morphism from a : M —» TE to
)3: N —» TE is defined to be a mapping y: M —* N such that a = yfi. We are
going to describe products and equalizers in this category.

PROPOSITION 3.1. Set | TE has all small products: if {a, | i G 7} is a set of
objects in Set I TE, a,: Mi—>TE, then IIa* = a : M—*TE is given by M =
{v. I —* U (Mj I i G / ) I iv G Mi, ivat = yVa,, for all i, j G / } , and va = iva,, for
some {and hence for all) i G /.

PROOF. Straightforward.

PROPOSITION 3.2. Set J, TE has all equalizers: let ft: M —» TE, v: N^TEbe
objects in Set | TE, and a,fl:M—>N mappings such that /x = av = [iv. If
X = {m G M I ma = m/3}, £: X —> TE is defined by xi; = x/u., and y: X —» M is
defined by xy = x, then y: £ —> ju, is an equalizer.

PROOF. Obvious.

We are now ready to define a "forgetful" functor [/: IS(E)-* Set | TE. If (S, 0)
is an object of IS(E) and cr: (S, 0)—>(TE, T) is the morphism for S, let
L/(S, 0) = cr, regarded as a map from S to TE. If a : (S, 0)—»(I?, 17) is a morphism
in IS(E), and p is the terminal morphism for R, then define Ua = a. Indeed,
Uai'cr—* p is a morphism in Set | TE as ap: (S, 6)^>(TE, r) and hence ap = a-
as (TE, T) is terminal in IS(E). That 1/ satisfies all requirements for a functor is
quite plain.

4. U has a left adjoint

PROPOSITION 4.1. U preserves all small limits.

PROOF. We have to show that U preserves products and equalizers. Prop.
2.3 and Prop. 3.2 imply that U preserves equalizers. Let (P, v) = U{(Sh ft)| i G /}
and </*: (P, ir)—»(TE, T) the terminal morphism. If a-/: (£, ft)—»(TE, T) are termi-
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nal morphisms, then the domain of Ylcri in Set | TE is just the set P =
{v: I—* U (Sr | i G / ) | iv G Sh ivo-t = jvah for all i,j G / } . M o r e o v e r vXlat - ivaj,

for some i G /. Hence Ilcr, is a morphism in IS(E) and since both Ylat and i/» are
terminal with the same domain we have Fla-i = t//, Q.E.D.

THEOREM 4.2. U: IS(E)-*Set j TE has a left adjoint.

PROOF. If will suffice to verify that the hypothesis of Freyd's Adjoint
Functor Theorem (see e.g. Mac Lane (1971)) is satisfied. By Cor. 2.4, IS(E) is
small-complete and by Prop. 4.1, U preserves all small limits. All that remains is
to show that the solution set condition is satisfied. Let £: M —»• TE be an object in
Set | TE, (S, 0) an object in IS(E), a the terminal morphism for (S, 0), and
<p: £—><r any morphism in Set | TE. Then My U E(S) generates an inverse
subsemigroup G(<p) of S, E(G((p)) = E(S), and (G(<p), 6) is an object in IS(E).
Every element of G(<p) is then a finite product of elements nup, (m<p)~\
ed G E(S), where m G M. Hence the cardinality of any such G((p) is bounded,
given M. For 0 there are as many possible choices as there are elements in the
automorphism group of E. Hence taking one copy of each isomorphism class of
such (G(<p), 6) gives a small set of objects in IS(E) with terminal morphisms
y<p: (G(<p), 9)—*(TE, T) say, and the set of all morphisms £—* y<p is a solution
set. Hence U has a left adjoint.

DEFINITION. The left adjoint F: Set | TE ->• IS(E) of U will be called the
"free inverse E-semigroup generated by", and if a is a set over TE, then F(a)
will denote the free inverse ^-semigroup generated by a.

The following two propositions will justify the use of the phrase "generated
by".

PROPOSITION 4.3. Let £:M^>TE be a set over TE, (
X'-(Set 4 TE)-+IS(E) (F(£), F(£)) the 1-1-correspondence between the morph-
ism sets arising from the adjunction, C, = idF{()x *'• £~* UF(f;), F( | ) = (F, (p) (and
hence C/F(|): (F, 0)—»(TE, T) (lie terminal morphism). Then £ regarded as a
mapping from M to F is injective.

PROOF. Let 5 = Z2 x TE, Z2 = {0,1} being the (additive) group of integers
mod 2. Define 0: E -» 5 by eO = (0, er); then (S, 0) is an object in IS(E) with
terminal morphism a: (S,0)—*(TE, T) given by (a, b)a = b. Let mt/ m2& M
and put 5j = (0, mif), 52 = (l,fn2f). Then s, ^ 52 and s,o-= m,|, s2o" = m2£
Therefore there exists a morphism 5: f -* [/(S, 0) with niiS = su m2S = s2. As 5
factors through £,, we must have m^^ m2£-

REMARK. F is generated by M£ U E(F) as an inverse semigroup. This is an
immediate consequence of the universal property of F (Theorem 4.2).
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PROPOSITION 4.4. Let M = {m} be a singleton, t £ TE, and a,: M^TE the
set over TE with ma, = t. Then {F(a,)| t G TE} is a generating set for the category

PROOF. Let /3, y: (S, #)—»(/?, TJ) be two distinct morphisms in IS(E). Then
there exists s E. S with s/3 ^ sy. If a is the terminal morphism for (S, 0), we claim
that there is a morphism S: F(as<r) —* (S, 0) with S/37̂  S-y. As mo,, = scr, there is
a unique 5: F(a^)^>(S, 0) extending m —»s. If p is the terminal morphism for
(R, 17), then s/3p = syp = so-. Hence S/3 extends m —» s/3 and Sy extends m —» s-y,
therefore S/3^ Sy, Q.E.D.

REMARK. Obviously if E = {1} is a singleton, then Set | TE is equivalent to
the category Set, and the functor "free inverse semigroup generated by" reduces
to "free group generated by the domain of". The next proposition will show that
the free inverse semigroup is another special case of our construction.

PROPOSITION 4.5. Let M by any set, F the free inverse semigroup on M,
E = E(F), 1 the identity map on E, <p: F-*TE the homomorphism of inverse
semigroups defined by e(fip) = f'xef, e £ Eff-i and a = (p | M. Then F(a) = (F, 1).

PROOF. . Let K: M —» F be the injection, then K<p = a, hence K extends
uniquely to a morphism </*: F(a)—*(F,i). If <p = UF(a), and £: a —»<p as in
Prop. 4.3, then £ extends uniquely to a homomorphism x'- F—>F where F is
given by F(a) = (F, A), say. Then e £ E implies e\ip = e. The universal proper-
ties of F and F(a) imply that ifrx a nd X1!1 a r e identities. Hence ex = eXtfrx — e\,
thus X: (F, «•)—» F(a) is a morphism in IS(E). Therefore if/ is an isomorphism.

5. A description of F(a)

It is desirable to have a normal form system for the elements of F in
F(a) = (F, A). As the construction is a straightforward generalization of the case
of a free group and is also known for the case of a free inverse semigroup, we
give just a description of it without proof.

Let M be a set and a: M —» TE in Set | TE. By red seq (M) we denote the
set of all "reduced sequences in MU M~"', i.e. we choose a further set M~'
whose elements will be written as m "', m £ M, and let red seq (M) consist of all
finite sequences (wif,1, mf2

2, • • •, m°k
k), mit E. M, e, = ± 1, such that m'ij^ m7'j*\

j = 1,- • -,k — 1. Moreover red seq (M) shall contain the empty sequence <f>. Let
us associate with every non-empty 2 £ red seq (M) an element Sa „, as follows: If
2 = (mf,1, • • •, m'i), then S a , = (m^a)'1 • • • (mika)'k. Let F(a) be the set of all
pairs (2, e), seq (M), S £ red e £ E(TE) such that, for 2 ^ <£, e S (2a); ' (2a,) .
Let S"1 = (mrk"S • • •, mT,*1)' tr>en 2"1 £ red seq (M). F(^) becomes an inverse
semigroup if we define (2,e)"1 = (S"',(XaJe(2a*)"')> ^ ^^<t>, (<P,e)"'=
(</>, e), and multiplication inductively on the length of S:
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(X,e) (2',e') = ((2,2'), (2'a,)- 'e(2'a,)e') if (2,2') e red seq (M), and if 2 =
(L,,m-'), 2'=(me,21'), then (2,e) (2',e') = (2,,(ma)-'e(ma)') (2{,e') where
both 2, and 2{ have shorter length than 2 and 2', resp., and hence the product is
defined by induction. If (T, T) is the terminal object in IS(E), then eA = (<t>, er)
defines an isomorphism \: E —> E(F(a)). Altogether one can show that F(a) =
(F(a),A).

REMARKS. The construction of the free inverse semigroup F is a special case
of this construction. We see that the knowledge of E(F) produces then
immediately the construction of F itself. We also note that the use of the
category Set 4 TE was somewhat arbitrary, and that under favourable condi-
tions (with respect to the Adjoint Functor Theorem), Set could be possibly
replaced by other categories. Finally, in view of the Kurosh subgroup theorem,
the following problem emerges: Let F(a) be a free object in IS(E). What
condition has one to put on a subject U of F(a) to ensure that U is also free in
/S(£)?

The author wishes to thank the referees for a few valuable suggestions.
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