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Countable Dense Homogeneity in Powers
of Zero-dimensional Definable Spaces

Andrea Medini

Abstract. We show that for a coanalytic subspace X of 2¢, the countable dense homogeneity of
X is equivalent to X being Polish. This strengthens a result of Hru$dk and Zamora Avilés. Then,
inspired by results of Hernandez-Gutiérrez, Hrusak, and van Mill, using a technique of Medvedev,
we construct a non-Polish subspace X of 2¢ such that X“ is countable dense homogeneous. This
gives the first ZFC answer to a question of Hrusak and Zamora Avilés. Furthermore, since our
example is consistently analytic, the equivalence result mentioned above is sharp. Our results also
answer a question of Medini and Milovich. Finally, we show that if every countable subset of a
zero-dimensional separable metrizable space X is included in a Polish subspace of X, then X is
countable dense homogeneous.

1 Introduction

As is common in the literature about countable dense homogeneity, by space we will
always mean “separable metrizable topological space”. By countable we will always
mean “at most countable”. Our reference for general topology is [32]. Our reference
for descriptive set theory is [13]. For all other set-theoretic notions, we refer to [15].
Recall the following definitions. A space is Polish if it admits a complete metric. A
subspace of a Polish space is analytic if it is the continuous image of a Polish space,
and it is coanalytic if its complement is analytic. A space X is countable dense homo-
geneous (CDH) if for every pair (A, B) of countable dense subsets of X there exists a
homeomorphism h: X — X such that h[A] = B.

The fundamental positive result in the theory of CDH spaces is the following (see
[1, Theorem 5.2]). In particular, it shows that the Cantor set 2%, the Baire space w®,
the Euclidean spaces R”, the spheres S”, and the Hilbert cube [0,1]“ are all examples
of CDH spaces. See [2, Sections 14-16] for much more on this topic. Recall that a
space X is strongly locally homogeneous (SLH) if there exists a base B for X such that
for every U € B and x, y € U there exists a homeomorphism #: X — X such that
h(x)=yand h | (X\U) =idx.v.

Theorem 1.1 (Anderson, Curtis, van Mill) Every Polish SLH space is CDH.
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This article is ultimately motivated by the second part of the following question,
which is Problem 387 from the book Open problems in topology [6]. Recall that a space
X is homogeneous if for every pair (x, y) of elements of X there exists a homeomor-
phism h: X — X such that h(x) = y.

Question 1.2 (Fitzpatrick, Zhou) Which subspaces X of 2¢ are such that X is
homogeneous? CDH?

While the first question was answered by the following remarkable result' (see [18,
p- 3057]), the second question is still open.

Theorem 1.3 (Lawrence) Let X be a subspace of 2. Then X is homogeneous.

However, if one focuses on definable spaces, it is possible to obtain the following
result (see [11, Corollary 2.4]).

Theorem 1.4 (Hrusak, Zamora Avilés) Let X be a Borel subspace 2“. If X is CDH,
then X is Polish.

Furthermore, there exist consistent examples of an analytic subspace of 2¢ and a
coanalytic subspace of 2¢ that are CDH but not Polish (see [11, Theorem 2.6]), which
show that Theorem 1.4 is sharp. Such definable examples could not have been con-
structed in ZFC, because, under the axiom of Projective Determinacy, Theorem 1.4
extends to all projective subspaces of 2¢ (see [11, Corollary 2.7]).

Using Theorem 1.4 (see also the proof of Theorem 4.5), it is possible to obtain the
following result (see [11, Theorem 3.2]), which was the first breakthrough on the sec-
ond part of Question 1.2.

Theorem 1.5 (Hrusak, Zamora Avilés) Let X be a Borel subspace of 2. Then the
following are equivalent.

e X is Polish.
¢ X“ is CDH.

As above, it is easy to realize that, under the axiom of Projective Determinacy,
Theorem L5 extends to all projective subspaces of 2.

At this point, it seems natural to wonder whether the “Borel” assumption in the
above theorem can be dropped. In other words, is being Polish the characterization
that we are looking for? This is precisely what the following question asks (see [11,
Question 3.2]).

Question 1.6 (Hru$ak, Zamora Avilés) Is there a non-Polish subspace X of 2¢ such
that X“ is CDH?

ISubsequently, Theorem 1.3 was greatly generalized by Dow and Pearl (see [4, Theorem 2]) by com-
bining the methods of Lawrence with the technique of elementary submodels.
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The following (see [21, Theorem 21]) is the first consistent answer to the above
question,” where ultrafilters on w are viewed as subspaces of 2 through characteristic
functions.

Theorem 1.7 (Medini, Milovich) Assume that MA(countable) holds. Then there
exists a non-principal ultrafilter U on w such that U is CDH.

Since a non-principal ultrafilter on w can never be analytic or coanalytic (see [21,
Section 2]), the following question seems natural (see [21, Question 6]).

Question 1.8 (Medini, Milovich) Is there a non-Polish analytic subspace X of 2¢
such that X* is CDH? Coanalytic?

We will give a stronger version of Theorem 1.5 (namely, Theorem 4.5) and show that
this version is sharp (see Theorem 8.4), while simultaneously answering Questions 1.6
and 1.8. The countable dense homogeneity of the example given by Theorem 8.4 will
follow from Theorem 7.3, whose proof uses the technique of Knaster-Reichbach cov-
ers. Finally, by combining Theorem 7.3 with several results about w-th powers, we will
obtain a simple sufficient condition for the countable dense homogeneity of X“ (see
Theorem 9.4).

2 Some Preliminary Notions

Recall that a space is crowded if it is non-empty and has no isolated points. Given
spaces X and Y, we will write X ~ Y to mean that X and Y are homeomorphic.
Given a space Z, we will say that a subspace S of Z is a copy of a space X if § ~ X.
The following four classical results are used freely throughout this entire article (see
[32, Theorem 1.5.5] and [32, Theorem 1.9.8 and Corollary 1.9.9], [32, Theorem A.6.3],
[13, Theorem 13.6], and [32, Lemma A.6.2] respectively).

Theorem 2.1 Let X be a zero-dimensional space.

o If X is compact and crowded, then X ~ 2.
o If X is Polish and nowhere locally compact, then X ~ w®.

Theorem 2.2  Let X be a subspace of a Polish space Z. Then X is Polish if and only if
X is a Gg subset of Z.

Theorem 2.3 Let Z be a Polish space. If X is an uncountable Borel subspace of Z,
then X contains a copy of 2°.

Proposition 2.4  Let I be a countable set. If X; is Polish for every i € I, then [1;¢; X;
is Polish.

2Subsequently, Hernandez-Gutiérrez and Hru$ak showed that both F and F“ are CDH whenever F
is a non-meager P-filter on w (see [9, Theorem 1.6]). In fact, as was recently shown by Kunen, Medini,
and Zdomskyy, a filter on w is CDH if and only if it is a non-meager P-filter (see [16, Theorem 10]).
However, it is a long-standing open problem whether non-meager P-filters exist in ZFC (see [12] or
[3, Section 4.4.C]).
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Recall that a space X is completely Baire (CB) if every closed subspace of X is a Baire
space. For a proof of the following result, see [13, Corollary 21.21] and [32, Corollary
1.9.13].

Theorem 2.5 (Hurewicz) Let X be a space. Consider the following conditions.

(i) X is Polish.

(i) X is CB.

(iii) X does not contain any closed copy of Q.

The implications (i) — (ii) <> (iii) hold for every X. If X is a coanalytic subspace of some
Polish space, then the implication (i) < (ii) holds as well.

Recall that a A-set is a space in which every countable set is G5. Observe that no
A-set can contain a copy of 2. Recall that a A’-set is a subspace X of 2 such that XuD
isa A-set for every countable D € 2. For a proof of Lemma 2.6, see [27, Theorem 7.2].
For a proof of Theorem 2.7, which is based on the existence of a Hausdorft gap, see
[27, Theorem 5.5] and the argument that follows it.

Lemma 2.6 (Sierpiniski) A countable union of A'-sets is a A"-set.
Theorem 2.7 (Sierpinski) There exists a A'-set of size w;.

Recall that a subspace B of an uncountable Polish space Z is a Bernstein set if BNK #
@and (Z~B)nK # & for every copy K of 2 in Z. It is easy to see that Bernstein sets
exist in ZFC, and that they never have the property of Baire (see [13, Example 8.24]).
Using Theorem 2.5, one can show that every Bernstein set is CB.

3 The Property of Baire in the Restricted Sense

All the results in this section are classical, and they will be needed in the next section.
The exposition is based on [20, Appendix D]. Given a space Z, we will denote by
B(Z) the collection of all subsets of Z that have the property of Baire. For proofs of the
following two well-known results, see [13, Proposition 8.22] and [13, Proposition 8.23]
respectively.

Proposition 3.1 Let Z be a space. Then B(Z) is the smallest o-algebra of subsets of
Z containing all open sets and all meager sets.

Proposition 3.2  Let Z be a space. Then the following conditions are equivalent for
every subset X of Z.

e XeB(2).

* X = GUM, where G is a Gy subset of Z and M is a meager subset of Z.

Recall that a subset X of a space Z has the property of Baire in the restricted sense if
XnS e B(S) for every subspace S of Z (see [17, Subsection VI of Section 11]). We will
denote by B,(Z) the collection of subsets of Z that have the property of Baire in the
restricted sense. Using Proposition 3.1, it is easy to check that B,(Z) is a 0-algebra.

https://doi.org/10.4153/CMB-2014-062-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2014-062-6

338 A. Medini

The inclusion B,(Z) ¢ B(Z) is obvious. To see that the reverse inclusion need
not hold, let Z = 2“ x 2 and fix z € 2°. Let X be a Bernstein setin S = {z} x 2. In
particular, XnS = X ¢ B(S),so0 X ¢ B,(Z). However, since X is nowhere dense in Z,
itis clear that X € B(Z). Notice that the same example X shows that, in the following
proposition, the hypothesis “X € B,(Z)” cannot be weakened to “X € B(Z)”.

Proposition 3.3 Let Z be a Polish space, and assume that X € B,(Z). Then either X
has a dense Polish subspace or X is not Baire.

Proof Since X € B(cl(X)), by Proposition 3.2, there exist a G5 subset G of cl(X)
and a meager subset M of cI(X) such that X = MUG. Notice that G is Polish, because
cl(X) is Polish. Furthermore, since X is dense in cl(X), the set M is meager in X as
well. Therefore, if G is dense in X, then the first alternative will hold. Otherwise, the
second alternative will hold. ]

Finally, we will point out a significant class of sets that have the property of Baire
in the restricted sense. Given a Polish space Z, we will denote by A, (Z) the o-algebra
of subsets of Z generated by the analytic sets.

Proposition 3.4 Let Z be a Polish space. Then Ay(Z) € B,(Z).

Proof Since, as we have already observed, B,(Z) is a g-algebra, it will be enough
to show that every analytic subset of Z has the property of Baire in the restricted
sense. Trivially, every closed subset of Z has the property of Baire in the restricted
sense. Therefore, since every analytic set is obtained by applying Souslin operation
A to a family of closed sets (see [13, Theorem 25.7]), it will be enough to show that
the property of Baire in the restricted sense is preserved by operation A. This is a
straightforward corollary of the classical fact that the property of Baire is preserved
by operation A (see [13, Corollary 29.14]). |

4 Strengthening a Result of Hrusak and Zamora Avilés

The main result of this section is Theorem 4.5, which gives the promised strengthen-
ing of Theorem 1.5 and answers the second part of Question 1.8. We will need a few
preliminaries. Proposition 4.1 first appeared as [16, Proposition 13]. Proposition 4.2
first appeared as [7, Lemma 3.2]. Corollary 4.3 first appeared as the first part of [7, The-
orem 3.4]. Proposition 4.4 first appeared as [11, Theorem 3.1].

Proposition 4.1 (Kunen, Medini, Zdomskyy) Let X be a space that is not CB but has
a dense CB subspace. Then X is not CDH.

Proof Let D be a dense CB subspace of X, and let A be a countable dense subset of
D. By Theorem 2.5, there exists a closed subspace Q of X that is homeomorphic to
Q. Extend Q to a countable dense subset B of X. Clearly there is no homeomorphism
h: X — X such that h[A] = B. ]
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Proposition 4.2 (Fitzpatrick, Zhou) Every meager space has a countable dense G
subset.

Proof Let{U, :n € w} bea countable base for X. Assume that X = U, K¢, where
each K, is a closed nowhere dense subset of X. Let D = {d,, : n € w}, where each
dy € Uy N Upen Ke. Ttis clear that D is a countable dense subset of X. To see that D is
Gy, notice that
X~D=U(Kex{d,:n<¢t})
lew

is F, because each Ky \ {d,, : n < £} is F,,. [ ]
Corollary 4.3 (Fitzpatrick, Zhou) Let X be a meager CDH space. Then X is a A-set.

Proof By Proposition 4.2, there exists a countable dense G5 subset A of X. Now let
D be an arbitrary countable subset of X. Extend D to a countable dense subset B of
X. Notice that B is G, because there exists a homeomorphism h: X — X such that
h[A] = B. Since B \ D is countable, it follows that D is Gs. [ |

Proposition 4.4 (Hrusdk, Zamora Avilés) Let X be a space such that X is CDH.
Then X is Baire.

Proof If|X| <1, then X is obviously Baire, so assume that | X| > 2. In particular, X*
contains a copy of 2“. Assume, in order to get a contradiction, that U is a non-empty
meager open subset of X. Let M,, = {x € X : x(n) € U} for n € w, and observe that
each M, is a meager subset of X“. Notice that X“ is meager, because
XY= (X\U)“u U M,
new
and (X \ U) is a closed nowhere dense subset of X“. Therefore, X“ is a A-set by
Corollary 4.3. This contradicts the fact that X contains a copy of 2. [ |

Theorem 4.5 Let X be a coanalytic subspace of 2. Then the following are equivalent.

(i) X is Polish.
(ii) X is CDH.

Proof In order to prove the implication (i) — (ii), assume that X is Polish and that
|X] > 2. Then X is a crowded zero-dimensional Polish space that is either compact
or nowhere locally compact. It follows that X ~ 2% or X“ ~ w®. In both cases,
X® is homogeneous and zero-dimensional, hence SLH. In conclusion, X* is CDH
by Theorem L.1. Notice that Theorem 9.4 gives an alternative proof of the implication
(i) — (ii), since being Polish is obviously stronger than being countably controlled (see
Definition 7.2).

In order to prove the implication (ii) — (i), assume that X“ is CDH. By Propo-
sition 4.4, it follows that X is Baire. Clearly X € A,(2“), so X € B,(2*) by Propo-
sition 3.4. Therefore, X has a dense Polish subspace by Proposition 3.3. In particu-
lar, X“ has a dense CB subspace, hence it is CB by Proposition 4.1. Notice that X is
homeomorphic to a closed subspace of X, so it is CB as well. Since X is coanalytic,
it follows that X is Polish by Theorem 2.5. ]
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5 Knaster—Reichbach Covers

The results in this section and the next are known and are by no means optimal;
we simply want to make the main part of this article as self-contained as possible.
Knaster-Reichbach covers were introduced in [14] and have been successfully ap-
plied by several authors, including van Engelen, Medvedev, and Ostrovskii. Let us
mention, for example, the articles [23-26,29,31], where one can find much more gen-
eral results than the ones stated here. The first application of this technique to the
theory of countable dense homogeneity was recently given by Hernandez-Gutiérrez,
Hrus$ak and van Mill in [10].

Fix a homeomorphism h: E — F between closed nowhere dense subsets of 2. We
will say that (V, W, v) is a Knaster-Reichbach cover (KR-cover) for (2 N E,2“ \ F, h)
if the following conditions hold.

* Vis a partition of 2¢ \ E consisting of non-empty clopen subsets of 2.

* W is a partition of 2“ \ F consisting of non-empty clopen subsets of 2¢.

e y:V - Wis a bijection.

o If f:2% — 2¢ isa bijection such that & ¢ f and f[V] = (V) for every V €V, then
f is continuous on E and ™! is continuous on F.

Whenever f:2° — 2¢ is a bijection such that f[V] = y(V) for every V € V, we will
say that f respects y.

The following lemma will be the key ingredient at the inductive step in the proof
of Theorem 7.3. The proof given here is inspired by [33, Theorem 3.1].

Lemma 5.1 Let h: E — F be a homeomorphism between closed nowhere dense subsets
of 2°. Then there exists a KR-cover for (2“ \ E,2“ \ F, h).

Proof The casein which E and F are empty is trivial, so assume that E and F are non-
empty. Let X@Y be the disjoint topological sum of two spaces that are homeomorphic
to 2¢. Without loss of generality, assume that E is a subspace of X and F is a subspace
of Y. Consider the equivalence relation on X & Y obtained by identifying x with h(x)
for every x € E. Denote by Z the corresponding quotient space. For simplicity, we
will freely identify an element of X @ Y with its equivalence class in Z. Notice that Z
is separable and metrizable by [32, Theorem A.11.2]. Furthermore, it is clear that Z is
compact.

Fix an admissible metric d on Z. Fix a partition V of X \ E consisting of non-empty
clopen subsets of X and a partition W of Y \ F consisting of non-empty clopen subsets
of Y such that diam( V) — 0 and diam(W;) — 0 as k - oo, where V = {Vy : k € w}
and W = { Wy : k € w} are injective enumerations. Pick ay € Vi and by € W for each
k. It is easy to check that the sequences {ay : k € w) and (by : k € w) have the same
set of limit points in Z, namely E = F. Therefore, by a result of von Neumann from
[34, pp. 11-12] (see also [8, 35] for simpler proofs), there exists a bijection mw —
such that d(ax, by(x)) = 0as k — oo.

Define y:V — W by setting y( Vi) = Wy for k € w. We claim that (V, W, y)
is a KR-cover for (2“ \ E,2“ \ F, h). Let f: X — Y be a bijection that extends h and
respects . We need to show that f is continuous on E and f~' is continuous on F.
Since these proofs are similar, we will only deal with the first statement. So fix x € E,
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and let (x, : n € w) be a sequence that converges to x in X. Let y = f(x), and notice
that x = y in Z. We will show that the sequence (f(x,) : n € w) converges to y in
Y. Fix a neighborhood W of y in Y. Let € > 0 be such that B(y,¢) n Y ¢ W, where
B(y,¢) ={z € Z:d(z, y) < ¢}. It will be enough to show that f(x,) € B(y, ¢) for all
but finitely many values of .

The case in which x, € E for all but finitely many values of » is trivial by the
continuity of h, so assume that x, ¢ E for infinitely many values of n. For every
n € w such that x, ¢ E, define k,, € w to be the unique index such that x,, € Vj, , and
notice that f(x,) € Wy, because f respects y. Furthermore, it is easy to check that
br(k,) = yasn — w,since ax, - x = y and d(ax,, bn(k,)) = 0 as n - w. Therefore,
given that

d(f(xn),y) <d(f(xn), ba(k,y) + d(br(k,)> ¥)s

there exists m € w such that f(x,) € B(y, e) whenever n > m and x,, ¢ E. Finally,
since h is continuous, we can also assume without loss of generality that f(x,) €
B(y,¢) whenever n > m and x,, € E. [ |

6 Knaster-Reichbach Systems

Throughout this section, we will denote by d a fixed admissible metric on 2. We will
say that a sequence ((h,,X,) : n € w) is a Knaster-Reichbach system (KR-system) if
the following conditions are satisfied.

(a) Each h,:E, — F, is a homeomorphism between closed nowhere dense subsets
of 2¢.

(b) hy, € h, whenever m < n.

() EachX, = (V,,W,,y,) is a KR-cover for (2“ \ E,,;,2° \ F,,, h,).

(d) mesh(V,) <27" and mesh(W,,) < 27" for each n.

(e) V,, refines V,, and W,, refines W,, whenever m > n.

(f) GivenU € V,, and V € V,, with m > n, then U ¢ V if and only if y,,(U) ¢

Vn(V).

Theorem 6.1  Assume that ((h,,X,) : n € w) is a KR-system. Then there exists a
homeomorphism h:2% — 2% such that h 2 U, ¢, hn.

Proof LetE =U,c En and F = U, ¢, Fy. Given x € 2 N\ E and n € w, denote by V,*
the unique element of V,, that contains x. Given y € 2° \ F and n € w, denote by W,/
the unique element of W,, that contains y.

If x € E, for some n € w, define h(x) = h,(x). The choice of n is irrelevant
by condition (b). Now assume that x € 2“ \ E. Notice that every finite subset of
{vn(V}) : n € w} has non-empty intersection by conditions (e) and (f). Since
2¢ is compact and condition (d) holds, it follows that there exists y € 2“ such that
Npeo ¥n (V) = {y}. Set h(x) = y. This concludes the definition of .

Similarly, define g:2° — 2¢ by setting g(y) = h,'(y) if y € F,, for some 1 € w, and
g(y) = xif y € 2° \ F, where x € 2 is such that N,,c, ;' (W,)) = {x}. It is easy to
check that g = h™*, hence h is a bijection.
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It is straightforward to verify that h respects y,, for each n. Therefore, by condition
(c), h is continuous on E and k7! is continuous on F. It remains to show that % is
continuous on 2° \ E and that h™! is continuous on 2 \ F. Since these proofs are
similar, we will only deal with the first statement. Fix x € 2 \ E, and let y = h(x). Fix
a neighborhood W of y in 2. By condition (d), there exists 7 € w such that W,) ¢ W.
It remains to observe that k[ V] = W,). [ |

Corollary 6.2 Let X be a subspace of 2¢. Assume that ((h,,X,) : n € w)isa
KR-system satisfying the following additional conditions.

(g) 29N Unéw En cX

(h) 29 N Upeo Fn € X.

(i) hu[XnE,]=XnF, foreach n.

Then there exists a homeomorphism h:2° — 2% such that

h2 U h, and h[X]=X.

new

Proof By Theorem 6.1, there exists a homeomorphism h:2% — 2% such that h 2
Upew Hin- In order to show that h[X] € X, fix x € X. If x € U, e En> then h(x) € X
by condition (i). On the other hand, if x € 2% \ U, ¢, Ex then h(x) € 2° N~ U, e Fr
which implies #(x) € X by condition (h). A similar argument shows that A [ X] ¢ X.
It follows that h[ X] = X. u

7 The Main Result

The following two definitions are crucial for our purposes. Recall that a 7-base for
a space Z is a collection B consisting of non-empty open subsets of Z such that for
every non-empty open subset U of Z there exists V € B such that V ¢ U.

Definition 71 Let X be a subspace of Z. We will say that X is h-homogeneously
embedded in Z if there exists a m-base B for Z consisting of clopen sets and homeo-
morphisms ¢y: Z — U for U € B such that ¢y[X] =X nU.

Definition 7.2 We will say that a space X is countably controlled if for every count-
able D c X there exists a Polish subspace G of X such that D ¢ G ¢ X.

The technique used in the proof of the following theorem is essentially due to
Medvedev (see [26, Theorem 5]).

Theorem 7.3  Assume that X is h-homogeneously embedded in 2* and countably con-
trolled. Then X is CDH.

Proof If X is empty, then X is obviously CDH, so assume that X is non-empty. Since
X is h-homogeneously embedded in 2%, there exists a (countable) n-base B for 2¢
consisting of clopen sets and homeomorphisms ¢y:2” — U for U € B such that
¢y[X] = X nU. In particular, X is dense in 2¢.
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Fix a pair (A, B) of countable dense subsets of X. Let Dy = A U B, and given D,
for some n € w, define

Dy = U{¢'[D,nU]: U e B}

In the end, let D = ¢, Dy It is easy to check that D is a countable dense subset of
2 such that AUB ¢ D ¢ X. Furthermore, it is clear that ¢ (x) € D whenever x € D
and U € Bissuch thatx € U.

Since X is countably controlled, it is possible to find a G5 subset G of 2¢ such that
D ¢ G ¢ X. By removing countably many points from G, we can assume without loss
of generality that 2 \ G is dense in 2¢. Fix closed nowhere dense subsets K, of 2¢
for £ € w such that 2° \ G = Uy, K. Also fix the following injective enumerations.
e A={a;:icw}

* B={bj:jew}.

Fix an admissible metric d on 2¢ such that diam(2) < 1. Our strategy is to con-
struct a suitable KR-system ((h,,X,) : n € w), then apply Corollary 6.2 to get a
homeomorphism h:2¢ — 2¢ such that & 2 U, hq and h[X] = X. We will use the
same notation as in Section 6. In particular, h,: E, - F, and X,, = (V,,, W,,, v,,) for
each n.

Of course, we will have to make sure that conditions (a)-(f) in the definition of a
KR-system are satisfied. Furthermore, we will make sure that the following additional
conditions are satisfied for every n € w.

(I) U£<n Kf S En-

(I)  Ug<n K¢ € F.

() hu[XNE,] = XNF,

(IV) {a;:i<n}CE,.

(V) {bj:j<n}cF,.

(V) h,[AnE,]=BnE,.

Conditions (I)-(III) will guarantee that conditions (g)-(i) in Corollary 6.2 hold. On
the other hand, conditions (IV)-(VI) will guarantee that h[A] = B.

Start by letting by = @ and Ko = ({2“}, {2}, {(2“,2“)}). Now assume that
(hy,X,) is given. First, for any given V € V,, we will define a homeomorphism
hy:Ey — Fy, where Ey will be a closed nowhere dense subset of V and Fy will be a
closed nowhere dense subset of y,,(V). So fix V € V,,, and let W = y,, (V).

Define the following indices.

e ¢(V)=min{ew:K,nV # 3}

e ¢(W)=min{ecw:K,nW # @}

* i(V)=min{i e w:a; €V~ Ky}

o j(W)=min{jew:bje W~ Kew)}.

Notice that the indices £(V') and £( W) are well defined, because U,e, Kp = 2“ N\ G is
dense in 2¢.

Let S = (V n Ke(vy). Since Ky(vy is a closed nowhere dense subset of 2¢, we
can fix U(S) € B such that U(S) € V N (Su{ajvy}). Let T = (W n Keewy)-
Since Ky () is a closed nowhere dense subset of 2, we can fix U(T) € B such that
U(T)c W~ (Tu {bj(W)})-
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Define Ev = {a;(v)} US U dy(s)[T] and Fy = {bj(w)} U T U ¢y(r)[S]. Observe
that Ey is a closed nowhere dense subset of V and Fy is a closed nowhere dense subset
of W. Define hy: Ey — Fy by setting

bj(w) ifx = ai(v),
hy(x) = ¢U(T)(x) ifxeS,
(Pu(s)) ' (x) ifx € py(s)[T].

It is clear that hy is a homeomorphism. Therefore, by Lemma 5.1, there exists a KR-
cover (Vv, Wy, wy) for (V N\ Ey, W\ Fy, hy). Furthermore, it is easy to realize that
hyv[X nEy] = X n Fy, which will allow us to mantain condition (III).

Notice that ¢y s)[T] N D = @, because ¢y[Ke]n D = @ forevery U € Band £ € w
by the choice of D. Similarly, one sees that ¢y (7)[S] N D = @. Since AUB ¢ D, it
follows that hy[A N Ev] = hy[{aiv)}] = {bj(w)} = BN Fy, which will allow us to
mantain condition (VI).

Repeat this construction for every V € V,,, thenlet E,;; = E, UU{Ey : V € V,,}
and Fy,41 = F, UU{Fy : V €V, }. Define

hpa=h,u U hy,
Vev,
and observe that hy,1:E,y1 — Fui is a bijection. Now extend hy to a bijection
fviV >y, (V) for every V € V,,, and let f, = h, UUycy, fv. Clearly, f,:2¢ - 2¢
is a bijection that extends h,.; 2 h, and respects y,. Since K, = (V,, Wy, v,,)
is a KR-cover for (2“ \ E,,2° \ F,, h,), it follows that A, is continuous on E,
and h;}, is continuous on F,. On the other hand, it is straightforward to check that
41 is continuous on E,y N E, = U{Ev : V € V,} and h,}, is continuous on
Fni1 N F, =U{Fy : V €V,}. In conclusion, h,,; is a homeomorphism.

Finally, we define K,.41 = (Vyr1, Woat, Vna1). Let Vyop = U{Vv : V € V,} and
Wy = U{Wy : V € V,}. By further refining V,,;; and W,,,;, we can assume that
mesh(V,1) < 2-("*+1) and mesh(W,,1) < 27 () Let Va1 = Uyey, ¥v. Using
the fact that (Vy, Wy, yv) is a KR-cover for (V N\ Ey, W \ Fy, hy) foreach V €V,
together with condition (c), it is easy to realize that X,,; is a KR-cover for (2“ \
En+1)2w \FrH—l) hn+1)~ n

8 Infinite Powers and 1’-sets

The main result of this section is Theorem 8.4, which simultaneously answers Ques-
tion 1.6 and the first part of Question 1.8, and shows that Theorem 4.5 is sharp.
The idea of looking at (the complements of) A’-sets is inspired by a recent article of
Herndndez-Gutiérrez, Hru$ak, and van Mill (more precisely, by [10, Theorem 4.5]).

We will need a few preliminary results. The straightforward proofs of the following
two propositions are left to the reader.

Proposition 8.1 Let I be a countable set. If X; is h-homogeneously embedded in Z;
for every i € I, then [1;c; X; is h-homogeneously embedded in [1;c; Z;.
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Proposition 8.2  Let I be a countable set. If X; is countably controlled for each i € I,
then [1;e; Xi is countably controlled.

Proposition 8.3  There exists a \'-set of size w; that is h-homogeneously embedded in
2¢,

Proof Fix a (countable) n-base B for 2¢ consisting of clopen sets and homeomor-
phisms ¢y:2¢ — U for U € B. Let Xy be a A’-set of size w; (whose existence is
guaranteed by Theorem 2.7) and, given X, for some n € w, define

Xus1 = U{pu[X.]: U e B}uU{¢y [XnnU]: UeB}.

Intheend,let X = U,¢, Xn. Using induction and Lemma 2.6, it is easy to see that each
X, is a AM'-set of size w;. Therefore, X is a A’-set of size w;. Finally, the construction
of X ensures that ¢y[X] = X n U for every U € B. [ |

Theorem 8.4  There exists a subspace X of 2 with the following properties.

* X is not Polish.
* X“is CDH.
e IfMA +-CH + w; = wf holds, then X is analytic.

Proof By Proposition 8.3, we can fix a A'-set Y of size w; that is h-homogeneously
embedded in 2¢. Let X = 2° \ Y. By Theorem 8.5, if MA +-~CH + w; = w} holds
then X is analytic. It is straightforward to verify that X is is h-homogeneously em-
bedded in 2. By Proposition 8.1, it follows that X is h-homogeneously embedded
in (29)¢ ~ 2. Furthermore, the definition of A’-set immediately implies that X is
countably controlled. By Proposition 8.2, it follows that X“ is countably controlled.
In conclusion, X* is CDH by Theorem 7.3.

Assume, in order to get a contradiction, that X is Polish. This means that X is a
G; subspace of 2“, so Y is an F,. Since Y is uncountable, it follows that Y contains a
copy of 2“, which contradicts the fact that Y is a A-set. ]

Observe that, by the remark that follows Theorem 1.5, the analytic counterexample
given by Theorem 8.4 could not have been constructed in ZFC.

The following is a classical result (see [28, Theorem 23.3]). For a new topological
proof, based on a result of Baldwin and Beaudoin, see [22, Theorem 8.1].

Theorem 8.5 (Martin, Solovay) Assume MA +-CH + w; = wk. Then every subspace
of 2 of size wy is coanalytic.

9 A Sufficient Condition

The main result of this section is Theorem 9.4, which shows that being countably
controlled is by itself a sufficient condition on a zero-dimensional space X for the
countable dense homogeneity of X*. It is easy to realize that Theorem 8.4 could have
been proved using Corollary 9.5. However, since the proof of Theorem 9.4 relies on
deep results such as [4, Theorem 1] and Theorem 9.2, we preferred to make the rest of
the paper more self-contained.
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The following result is inspired by [19, Proposition 24], where the proof of the
equivalence (i) <> (iii) first appeared. Recall that a space X is h-homogeneous (or
strongly homogeneous) if C ~ X for every non-empty clopen subspace C of X.

Proposition 9.1 Let X be zero-dimensional space such that | X| > 2. Then the following
are equivalent.

(i) X~ Y for some space Y with at least one isolated point.
(ii) X can be h-homogeneously embedded in 2°.
(iii) X is h-homogeneous.

Proof In order to prove the implication (i) — (ii), assume that X“ ~ Y“, where Y
is a space with at least one isolated point. Assume without loss of generality that Y is
a subspace of 2¢, and let z € 2¢ be an isolated point of Y. Let K = cl(Y), where the
closure is taken in 2, and notice that z remains isolated in K. Also notice that K¢ is
crowded because | X| > 2 and Y* ~ X®. It follows that K“ ~ 2%, so it will be enough
to show that Y is h-homogeneously embedded in K“.

Let [w]*“ = {F S w: Fis finite}. Given any F € [w]**, define

Up={xeK”:x(n)=zforallneF},

and notice that each UF is a clopen subset of K. Furthermore, itis clear that { Uy : F €
[w]<“} is alocal base for K at (z,z, ... ). By [4, Theorem 1], given any x € Y, there
exists a homeomorphism h,: K® - K such that h,[Y*] = Y® and h,({z,2,...)) =
x. Fix a countable dense subset D of Y. It is easy to realize that the collection

B ={h,[Ur]:x€D,F e [w]“}

is a countable 77-base for K consisting of clopen sets.
For every F € [w]<¥, fix a bijection 7p:w \ F — w, then define hg: K¢ — Ur by
setting

z ifnekF,
x(np(n)) ifnew\F

he(x)(n) ={

for every x € K“ and #n € w. One can easily check that each hF is a homeomorphism
such that hg[Y“] = Y“ n Ug. Given any U € B, where U = h,[Ug] for some x € D
and F € [w]<“, let ¢y = hy o hp. It is straightforward to verify that each ¢: K¢ - U
is a homeomorphism such that ¢y [Y*] = Y“ n U.

In order to prove the implication (ii) — (iii), assume that X is h-homogeneously
embedded in 2“. In particular, X has a m-base consisting of clopen sets that are
homeomorphic to X. If X is compact, then X“ ~ 2, which is well known to be h-
homogeneous. On the other hand, if X is non-compact then it is non-pseudocompact
by [5, Proposition 3.10.21 and Theorem 4.1.17], so the desired result follows from a the-
orem of Terada (see [30, Theorem 2.4] or [19, Theorem 2 and Appendix A]).

In order to prove the implication (iii) — (i), assume that X“ is h-homogeneous. It
will be enough to show that X* and (X @ 1)“ are both homeomorphic to the space
C=(X®1)” x X“, where X @ 1 denotes the space obtained by adding one isolated
point to X. Notice that X“ can be partitioned into two non-empty clopen subsets,
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because | X| > 2. Therefore,
X#» XX~ (XxX)Yo X~ (X®l) x X°.
By taking the w-th power of both sides, one sees that X® ~ C. On the other hand, we
know that (X @1)* is h-homogeneous by the implication (i) — (iii). Since
Xo)’~»Xel)x(Xao)’~(Xx(Xo)) e (Xa1)*,

it follows that (X ®1)” ~ X x (X & 1)“. By taking the w-th power of both sides, one
sees that (X @ 1) ~ C. [ |

The following result has been obtained independently by van Engelen (see [31, The-
orem 4.4]) and Medvedev (see [24, Corollary 6]).

Theorem 9.2 (van Engelen, Medvedev) Let X be a zero-dimensional space. If X has
a dense Polish subspace, then X is h-homogeneous.

Corollary 9.3 Let X be a zero-dimensional space such that |X| > 2. If X has a dense
Polish subspace, then X can be h-homogeneously embedded in 2°.

Proof Apply Proposition 9.1. ]

Theorem 9.4 Let X be a zero-dimensional countably controlled space. Then X is
CDH.

Proof The case |X| = 1is trivial, so assume that | X| > 2. Clearly, the fact that X is
countably controlled implies that X has a Polish dense subspace. Therefore, X“ can
be h-homogeneously embedded in 2 by Corollary 9.3. Furthermore, Proposition 8.2
shows that X“ is countably controlled. In conclusion, X is CDH by Theorem 7.3. W

Corollary 9.5 IfY isa A -set, then (2 N\ Y)“ is CDH.

It seems natural to wonder whether, in the above theorem, it would be enough to
assume that X has a dense Polish subspace, instead of assuming that X is countably
controlled. The following simple proposition shows that this is not the case.

Proposition 9.6  There exists a zero-dimensional space X such that X has a dense
Polish subspace while X is not CDH.

Proof Fixz € 2“. Let D = 2% x (2“ \ {z}), and fix a countable dense subset Q of
2 x {z}. Define

X=QuDc2“x2“.
Itis clear that D is a dense Polish subspace of X. Furthermore, X is not Polish, because

Q isaclosed countable crowded subspace of X. Since X is a coanalytic subspace of 2 x
29 ~ 2% (actually, it is 0-compact), if follows that X is not CDH by Theorem 4.5. W

Finally, we remark that, by Theorem 1.7, it is not possible to prove in ZFC that
being countably controlled (or even having a dense Polish subspace) is a necessary
condition for the countable dense homogeneity of X“.
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