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Countable Dense Homogeneity in Powers
of Zero-dimensional Definable Spaces

AndreaMedini

Abstract. We show that for a coanalytic subspace X of 2ω , the countable dense homogeneity of
Xω is equivalent to X being Polish. _is strengthens a result of Hrušák and Zamora Avilés. _en,
inspired by results of Hernández-Gutiérrez, Hrušák, and van Mill, using a technique ofMedvedev,
we construct a non-Polish subspace X of 2ω such that Xω is countable dense homogeneous. _is
gives the ûrst ZFC answer to a question of Hrušák and Zamora Avilés. Furthermore, since our
example is consistently analytic, the equivalence result mentioned above is sharp. Our results also
answer a question of Medini and Milovich. Finally, we show that if every countable subset of a
zero-dimensional separable metrizable space X is included in a Polish subspace of X, then Xω is
countable dense homogeneous.

1 Introduction

As is common in the literature about countable dense homogeneity, by space we will
always mean “separable metrizable topological space”. By countable we will always
mean “at most countable”. Our reference for general topology is [32]. Our reference
for descriptive set theory is [13]. For all other set-theoretic notions, we refer to [15].
Recall the following deûnitions. A space is Polish if it admits a complete metric. A
subspace of a Polish space is analytic if it is the continuous image of a Polish space,
and it is coanalytic if its complement is analytic. A space X is countable dense homo-
geneous (CDH) if for every pair (A, B) of countable dense subsets of X there exists a
homeomorphism h∶X → X such that h[A] = B.

_e fundamental positive result in the theory of CDH spaces is the following (see
[1, _eorem 5.2]). In particular, it shows that the Cantor set 2ω , the Baire space ωω ,
the Euclidean spacesRn , the spheres Sn , and theHilbert cube [0, 1]ω are all examples
of CDH spaces. See [2, Sections 14-16] for much more on this topic. Recall that a
space X is strongly locally homogeneous (SLH) if there exists a base B for X such that
for every U ∈ B and x , y ∈ U there exists a homeomorphism h∶X → X such that
h(x) = y and h ↾ (X ∖U) = idX∖U .

_eorem 1.1 (Anderson, Curtis, van Mill) Every Polish SLH space is CDH.
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_is article is ultimately motivated by the second part of the following question,
which is Problem 387 from the bookOpen problems in topology [6]. Recall that a space
X is homogeneous if for every pair (x , y) of elements of X there exists a homeomor-
phism h∶X → X such that h(x) = y.

Question 1.2 (Fitzpatrick, Zhou) Which subspaces X of 2ω are such that Xω is
homogeneous? CDH?

While the ûrst question was answered by the following remarkable result1 (see [18,
p. 3057]), the second question is still open.

_eorem 1.3 (Lawrence) Let X be a subspace of 2ω . _en Xω is homogeneous.

However, if one focuses on deûnable spaces, it is possible to obtain the following
result (see [11, Corollary 2.4]).

_eorem 1.4 (Hrušák, Zamora Avilés) Let X be a Borel subspace 2ω . If X is CDH,
then X is Polish.

Furthermore, there exist consistent examples of an analytic subspace of 2ω and a
coanalytic subspace of 2ω that are CDH but not Polish (see [11,_eorem 2.6]), which
show that _eorem 1.4 is sharp. Such deûnable examples could not have been con-
structed in ZFC, because, under the axiom of Projective Determinacy, _eorem 1.4
extends to all projective subspaces of 2ω (see [11, Corollary 2.7]).

Using _eorem 1.4 (see also the proof of_eorem 4.5), it is possible to obtain the
following result (see [11,_eorem 3.2]), which was the ûrst breakthrough on the sec-
ond part of Question 1.2.

_eorem 1.5 (Hrušák, Zamora Avilés) Let X be a Borel subspace of 2ω . _en the
following are equivalent.
● X is Polish.
● Xω is CDH.

As above, it is easy to realize that, under the axiom of Projective Determinacy,
_eorem 1.5 extends to all projective subspaces of 2ω .
At this point, it seems natural to wonder whether the “Borel” assumption in the

above theorem can be dropped. In other words, is being Polish the characterization
that we are looking for? _is is precisely what the following question asks (see [11,
Question 3.2]).

Question 1.6 (Hrušák, Zamora Avilés) Is there a non-Polish subspace X of 2ω such
that Xω is CDH?

1Subsequently,_eorem 1.3 was greatly generalized by Dow and Pearl (see [4,_eorem 2]) by com-
bining themethods of Lawrence with the technique of elementary submodels.
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_e following (see [21, _eorem 21]) is the ûrst consistent answer to the above
question,2 where ultraûlters on ω are viewed as subspaces of 2ω through characteristic
functions.

_eorem 1.7 (Medini, Milovich) Assume that MA(countable) holds. _en there
exists a non-principal ultraûlter U on ω such that Uω is CDH.

Since a non-principal ultraûlter on ω can never be analytic or coanalytic (see [21,
Section 2]), the following question seems natural (see [21, Question 6]).

Question 1.8 (Medini, Milovich) Is there a non-Polish analytic subspace X of 2ω

such that Xω is CDH? Coanalytic?

Wewill give a stronger version of_eorem1.5 (namely,_eorem4.5) and show that
this version is sharp (see_eorem 8.4),while simultaneously answeringQuestions 1.6
and 1.8. _e countable dense homogeneity of the example given by _eorem 8.4 will
follow from _eorem 7.3, whose proof uses the technique of Knaster–Reichbach cov-
ers. Finally, by combining_eorem 7.3with several results about ω-th powers,wewill
obtain a simple suõcient condition for the countable dense homogeneity of Xω (see
_eorem 9.4).

2 Some Preliminary Notions

Recall that a space is crowded if it is non-empty and has no isolated points. Given
spaces X and Y , we will write X ≈ Y to mean that X and Y are homeomorphic.
Given a space Z, we will say that a subspace S of Z is a copy of a space X if S ≈ X.
_e following four classical results are used freely throughout this entire article (see
[32,_eorem 1.5.5] and [32,_eorem 1.9.8 and Corollary 1.9.9], [32,_eorem A.6.3],
[13,_eorem 13.6], and [32, Lemma A.6.2] respectively).

_eorem 2.1 Let X be a zero-dimensional space.
● If X is compact and crowded, then X ≈ 2ω .
● If X is Polish and nowhere locally compact, then X ≈ ωω .

_eorem 2.2 Let X be a subspace of a Polish space Z. _en X is Polish if and only if
X is a Gδ subset of Z.

_eorem 2.3 Let Z be a Polish space. If X is an uncountable Borel subspace of Z,
then X contains a copy of 2ω .

Proposition 2.4 Let I be a countable set. If X i is Polish for every i ∈ I, then∏i∈I X i
is Polish.

2Subsequently,Hernández-Gutiérrez andHrušák showed that bothF andFω are CDHwheneverF
is a non-meager P-ûlter on ω (see [9,_eorem 1.6]). In fact, as was recently shown by Kunen,Medini,
and Zdomskyy, a ûlter on ω is CDH if and only if it is a non-meager P-ûlter (see [16, _eorem 10]).
However, it is a long-standing open problem whether non-meager P-ûlters exist in ZFC (see [12] or
[3, Section 4.4.C]).
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Recall that a space X is completelyBaire (CB) if every closed subspace of X is a Baire
space. For a proof of the following result, see [13, Corollary 21.21] and [32, Corollary
1.9.13].

_eorem 2.5 (Hurewicz) Let X be a space. Consider the following conditions.
(i) X is Polish.
(ii) X is CB.
(iii) X does not contain any closed copy ofQ.
_e implications (i)→ (ii)↔ (iii) hold for every X. If X is a coanalytic subspace of some
Polish space, then the implication (i)← (ii) holds as well.

Recall that a λ-set is a space in which every countable set is Gδ . Observe that no
λ-set can contain a copy of 2ω . Recall that a λ′-set is a subspace X of 2ω such that X∪D
is a λ-set for every countable D ⊆ 2ω . For a proof of Lemma 2.6, see [27,_eorem 7.2].
For a proof of _eorem 2.7, which is based on the existence of a Hausdorò gap, see
[27,_eorem 5.5] and the argument that follows it.

Lemma 2.6 (Sierpiński) A countable union of λ′-sets is a λ′-set.

_eorem 2.7 (Sierpiński) _ere exists a λ′-set of size ω1.

Recall that a subspace B of anuncountablePolish space Z is aBernstein set if B∩K /=
∅ and (Z ∖B)∩K /= ∅ for every copy K of 2ω in Z. It is easy to see that Bernstein sets
exist in ZFC, and that they never have the property of Baire (see [13, Example 8.24]).
Using _eorem 2.5, one can show that every Bernstein set is CB.

3 The Property of Baire in the Restricted Sense

All the results in this section are classical, and they will be needed in the next section.
_e exposition is based on [20, Appendix D]. Given a space Z, we will denote by
B(Z) the collection of all subsets of Z thathave theproperty of Baire. Forproofs of the
following twowell-known results, see [13, Proposition 8.22] and [13, Proposition 8.23]
respectively.

Proposition 3.1 Let Z be a space. _en B(Z) is the smallest σ-algebra of subsets of
Z containing all open sets and all meager sets.

Proposition 3.2 Let Z be a space. _en the following conditions are equivalent for
every subset X of Z.
● X ∈ B(Z).
● X = G ∪M, where G is a Gδ subset of Z andM is ameager subset of Z.

Recall that a subset X of a space Z has the property of Baire in the restricted sense if
X∩S ∈ B(S) for every subspace S of Z (see [17, SubsectionVI of Section 11]). Wewill
denote by Br(Z) the collection of subsets of Z that have the property of Baire in the
restricted sense. Using Proposition 3.1, it is easy to check that Br(Z) is a σ-algebra.
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_e inclusion Br(Z) ⊆ B(Z) is obvious. To see that the reverse inclusion need
not hold, let Z = 2ω × 2ω and ûx z ∈ 2ω . Let X be a Bernstein set in S = {z} × 2ω . In
particular, X∩S = X ∉ B(S), so X ∉ Br(Z). However, since X is nowhere dense in Z,
it is clear that X ∈ B(Z). Notice that the same example X shows that, in the following
proposition, the hypothesis “X ∈ Br(Z)” cannot be weakened to “X ∈ B(Z)”.

Proposition 3.3 Let Z be a Polish space, and assume that X ∈ Br(Z). _en either X
has a dense Polish subspace or X is not Baire.

Proof Since X ∈ B(cl(X)), by Proposition 3.2, there exist a Gδ subset G of cl(X)
and ameager subset M of cl(X) such that X = M∪G. Notice thatG is Polish, because
cl(X) is Polish. Furthermore, since X is dense in cl(X), the set M is meager in X as
well. _erefore, if G is dense in X, then the ûrst alternative will hold. Otherwise, the
second alternative will hold.

Finally, we will point out a signiûcant class of sets that have the property of Baire
in the restricted sense. Given a Polish space Z,wewill denote byAσ(Z) the σ-algebra
of subsets of Z generated by the analytic sets.

Proposition 3.4 Let Z be a Polish space. _en Aσ(Z) ⊆ Br(Z).

Proof Since, as we have already observed, Br(Z) is a σ-algebra, it will be enough
to show that every analytic subset of Z has the property of Baire in the restricted
sense. Trivially, every closed subset of Z has the property of Baire in the restricted
sense. _erefore, since every analytic set is obtained by applying Souslin operation
A to a family of closed sets (see [13, _eorem 25.7]), it will be enough to show that
the property of Baire in the restricted sense is preserved by operation A. _is is a
straightforward corollary of the classical fact that the property of Baire is preserved
by operation A (see [13, Corollary 29.14]).

4 Strengthening a Result of Hrušák and Zamora Avilés

_emain result of this section is _eorem 4.5, which gives the promised strengthen-
ing of _eorem 1.5 and answers the second part of Question 1.8. We will need a few
preliminaries. Proposition 4.1 ûrst appeared as [16, Proposition 13]. Proposition 4.2
ûrst appeared as [7,Lemma 3.2]. Corollary 4.3ûrst appeared as the ûrstpart of [7,_e-
orem 3.4]. Proposition 4.4 ûrst appeared as [11,_eorem 3.1].

Proposition 4.1 (Kunen,Medini, Zdomskyy) Let X be a space that is notCB but has
a dense CB subspace. _en X is not CDH.

Proof Let D be a dense CB subspace of X, and let A be a countable dense subset of
D. By _eorem 2.5, there exists a closed subspace Q of X that is homeomorphic to
Q. Extend Q to a countable dense subset B of X. Clearly there is no homeomorphism
h∶X → X such that h[A] = B.
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Proposition 4.2 (Fitzpatrick, Zhou) Every meager space has a countable dense Gδ
subset.

Proof Let {Un ∶ n ∈ ω} be a countable base for X. Assume that X = ⋃ℓ∈ω Kℓ , where
each Kℓ is a closed nowhere dense subset of X. Let D = {dn ∶ n ∈ ω}, where each
dn ∈ Un ∖⋃ℓ<n Kℓ . It is clear that D is a countable dense subset of X. To see that D is
Gδ , notice that

X ∖ D = ⋃
ℓ∈ω

(Kℓ ∖ {dn ∶ n ≤ ℓ})

is Fσ , because each Kℓ ∖ {dn ∶ n ≤ ℓ} is Fσ .

Corollary 4.3 (Fitzpatrick, Zhou) Let X be ameager CDH space. _en X is a λ-set.

Proof By Proposition 4.2, there exists a countable dense Gδ subset A of X. Now let
D be an arbitrary countable subset of X. Extend D to a countable dense subset B of
X. Notice that B is Gδ , because there exists a homeomorphism h∶X → X such that
h[A] = B. Since B ∖ D is countable, it follows that D is Gδ .

Proposition 4.4 (Hrušák, Zamora Avilés) Let X be a space such that Xω is CDH.
_en X is Baire.

Proof If ∣X∣ ≤ 1, then X is obviously Baire, so assume that ∣X∣ ≥ 2. In particular, Xω

contains a copy of 2ω . Assume, in order to get a contradiction, that U is a non-empty
meager open subset of X. Let Mn = {x ∈ Xω ∶ x(n) ∈ U} for n ∈ ω, and observe that
each Mn is ameager subset of Xω . Notice that Xω is meager, because

Xω = (X ∖U)ω ∪ ⋃
n∈ω

Mn

and (X ∖ U)ω is a closed nowhere dense subset of Xω . _erefore, Xω is a λ-set by
Corollary 4.3. _is contradicts the fact that Xω contains a copy of 2ω .

_eorem 4.5 Let X be a coanalytic subspace of 2ω . _en the following are equivalent.
(i) X is Polish.
(ii) Xω is CDH.

Proof In order to prove the implication (i)→ (ii), assume that X is Polish and that
∣X∣ ≥ 2. _en Xω is a crowded zero-dimensional Polish space that is either compact
or nowhere locally compact. It follows that Xω ≈ 2ω or Xω ≈ ωω . In both cases,
Xω is homogeneous and zero-dimensional, hence SLH. In conclusion, Xω is CDH
by _eorem 1.1. Notice that _eorem 9.4 gives an alternative proof of the implication
(i)→ (ii), since being Polish is obviously stronger than being countably controlled (see
Deûnition 7.2).

In order to prove the implication (ii) → (i), assume that Xω is CDH. By Propo-
sition 4.4, it follows that X is Baire. Clearly X ∈ Aσ(2ω), so X ∈ Br(2ω) by Propo-
sition 3.4. _erefore, X has a dense Polish subspace by Proposition 3.3. In particu-
lar, Xω has a dense CB subspace, hence it is CB by Proposition 4.1. Notice that X is
homeomorphic to a closed subspace of Xω , so it is CB as well. Since X is coanalytic,
it follows that X is Polish by _eorem 2.5.
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5 Knaster–Reichbach Covers

_e results in this section and the next are known and are by no means optimal;
we simply want to make the main part of this article as self-contained as possible.
Knaster–Reichbach covers were introduced in [14] and have been successfully ap-
plied by several authors, including van Engelen, Medvedev, and Ostrovskĭı. Let us
mention, for example, the articles [23–26,29,31],where one can ûndmuchmore gen-
eral results than the ones stated here. _e ûrst application of this technique to the
theory of countable dense homogeneity was recently given by Hernández-Gutiérrez,
Hrušák and van Mill in [10].
Fix a homeomorphism h∶ E → F between closed nowhere dense subsets of 2ω . We

will say that ⟨V,W,ψ⟩ is a Knaster-Reichbach cover (KR-cover) for ⟨2ω ∖E , 2ω ∖F , h⟩
if the following conditions hold.
● V is a partition of 2ω ∖ E consisting of non-empty clopen subsets of 2ω .
● W is a partition of 2ω ∖ F consisting of non-empty clopen subsets of 2ω .
● ψ∶V→W is a bijection.
● If f ∶ 2ω → 2ω is a bijection such that h ⊆ f and f [V] = ψ(V) for every V ∈ V, then
f is continuous on E and f −1 is continuous on F.

Whenever f ∶ 2ω → 2ω is a bijection such that f [V] = ψ(V) for every V ∈ V, we will
say that f respects ψ.

_e following lemma will be the key ingredient at the inductive step in the proof
of_eorem 7.3. _e proof given here is inspired by [33,_eorem 3.1].

Lemma 5.1 Let h∶ E → F be a homeomorphism between closed nowhere dense subsets
of 2ω . _en there exists a KR-cover for ⟨2ω ∖ E , 2ω ∖ F , h⟩.

Proof _e case inwhich E and F are empty is trivial, so assume that E and F arenon-
empty. Let X⊕Y be the disjoint topological sumof two spaces that are homeomorphic
to 2ω . Without loss of generality, assume that E is a subspace of X and F is a subspace
of Y . Consider the equivalence relation on X⊕Y obtained by identifying x with h(x)
for every x ∈ E. Denote by Z the corresponding quotient space. For simplicity, we
will freely identify an element of X ⊕ Y with its equivalence class in Z. Notice that Z
is separable andmetrizable by [32,_eorem A.11.2]. Furthermore, it is clear that Z is
compact.
Fix an admissiblemetric d on Z. Fix a partitionV of X∖E consisting of non-empty

clopen subsets of X and a partitionW ofY∖F consisting of non-empty clopen subsets
of Y such that diam(Vk) → 0 and diam(Wk) → 0 as k →∞, where V = {Vk ∶ k ∈ ω}
andW = {Wk ∶ k ∈ ω} are injective enumerations. Pick ak ∈ Vk and bk ∈Wk for each
k. It is easy to check that the sequences ⟨ak ∶ k ∈ ω⟩ and ⟨bk ∶ k ∈ ω⟩ have the same
set of limit points in Z, namely E = F. _erefore, by a result of von Neumann from
[34, pp. 11–12] (see also [8, 35] for simpler proofs), there exists a bijection π∶ω → ω
such that d(ak , bπ(k))→ 0 as k →∞.
Deûne ψ∶V → W by setting ψ(Vk) = Wπ(k) for k ∈ ω. We claim that ⟨V,W,ψ⟩

is a KR-cover for ⟨2ω ∖ E , 2ω ∖ F , h⟩. Let f ∶X → Y be a bijection that extends h and
respects ψ. We need to show that f is continuous on E and f −1 is continuous on F.
Since these proofs are similar, we will only deal with the ûrst statement. So ûx x ∈ E,
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and let ⟨xn ∶ n ∈ ω⟩ be a sequence that converges to x in X. Let y = f (x), and notice
that x = y in Z. We will show that the sequence ⟨ f (xn) ∶ n ∈ ω⟩ converges to y in
Y . Fix a neighborhoodW of y in Y . Let ε > 0 be such that B(y, ε) ∩ Y ⊆ W , where
B(y, ε) = {z ∈ Z ∶ d(z, y) < ε}. It will be enough to show that f (xn) ∈ B(y, ε) for all
but ûnitely many values of n.

_e case in which xn ∈ E for all but ûnitely many values of n is trivial by the
continuity of h, so assume that xn ∉ E for inûnitely many values of n. For every
n ∈ ω such that xn ∉ E, deûne kn ∈ ω to be the unique index such that xn ∈ Vkn , and
notice that f (xn) ∈Wπ(kn) because f respects ψ. Furthermore, it is easy to check that
bπ(kn) → y as n → ω, since akn → x = y and d(akn , bπ(kn))→ 0 as n → ω. _erefore,
given that

d( f (xn), y) ≤ d( f (xn), bπ(kn)) + d(bπ(kn) , y),

there exists m ∈ ω such that f (xn) ∈ B(y, ε) whenever n ≥ m and xn ∉ E. Finally,
since h is continuous, we can also assume without loss of generality that f (xn) ∈
B(y, ε) whenever n ≥ m and xn ∈ E.

6 Knaster–Reichbach Systems

_roughout this section, we will denote by d a ûxed admissiblemetric on 2ω . We will
say that a sequence ⟨⟨hn ,Kn⟩ ∶ n ∈ ω⟩ is a Knaster-Reichbach system (KR-system) if
the following conditions are satisûed.
(a) Each hn ∶ En → Fn is a homeomorphism between closed nowhere dense subsets

of 2ω .
(b) hm ⊆ hn whenever m ≤ n.
(c) Each Kn = ⟨Vn ,Wn ,ψn⟩ is a KR-cover for ⟨2ω ∖ En , 2ω ∖ Fn , hn⟩.
(d) mesh(Vn) ≤ 2−n andmesh(Wn) ≤ 2−n for each n.
(e) Vm reûnes Vn andWm reûnes Wn whenever m ≥ n.
(f) Given U ∈ Vm and V ∈ Vn with m ≥ n, then U ⊆ V if and only if ψm(U) ⊆

ψn(V).

_eorem 6.1 Assume that ⟨⟨hn ,Kn⟩ ∶ n ∈ ω⟩ is a KR-system. _en there exists a
homeomorphism h∶ 2ω → 2ω such that h ⊇ ⋃n∈ω hn .

Proof Let E = ⋃n∈ω En and F = ⋃n∈ω Fn . Given x ∈ 2ω ∖E and n ∈ ω, denote by V x
n

the unique element of Vn that contains x. Given y ∈ 2ω ∖ F and n ∈ ω, denote byW y
n

the unique element ofWn that contains y.
If x ∈ En for some n ∈ ω, deûne h(x) = hn(x). _e choice of n is irrelevant

by condition (b). Now assume that x ∈ 2ω ∖ E. Notice that every ûnite subset of
{ψn(V x

n ) ∶ n ∈ ω} has non-empty intersection by conditions (e) and (f). Since
2ω is compact and condition (d) holds, it follows that there exists y ∈ 2ω such that
⋂n∈ω ψn(V x

n ) = {y}. Set h(x) = y. _is concludes the deûnition of h.
Similarly, deûne g∶ 2ω → 2ω by setting g(y) = h−1

n (y) if y ∈ Fn for some n ∈ ω, and
g(y) = x if y ∈ 2ω ∖ F, where x ∈ 2ω is such that ⋂n∈ω ψ−1

n (W y
n ) = {x}. It is easy to

check that g = h−1, hence h is a bijection.
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It is straightforward to verify that h respectsψn for each n. _erefore, by condition
(c), h is continuous on E and h−1 is continuous on F. It remains to show that h is
continuous on 2ω ∖ E and that h−1 is continuous on 2ω ∖ F. Since these proofs are
similar,wewill only dealwith the ûrst statement. Fix x ∈ 2ω ∖E, and let y = h(x). Fix
a neighborhoodW of y in 2ω . By condition (d), there exists n ∈ ω such thatW y

n ⊆W .
It remains to observe that h[V x

n ] =W y
n .

Corollary 6.2 Let X be a subspace of 2ω . Assume that ⟨⟨hn ,Kn⟩ ∶ n ∈ ω⟩ is a
KR-system satisfying the following additional conditions.
(g) 2ω ∖⋃n∈ω En ⊆ X.
(h) 2ω ∖⋃n∈ω Fn ⊆ X.
(i) hn[X ∩ En] = X ∩ Fn for each n.
_en there exists a homeomorphism h∶ 2ω → 2ω such that

h ⊇ ⋃
n∈ω

hn and h[X] = X .

Proof By _eorem 6.1, there exists a homeomorphism h∶ 2ω → 2ω such that h ⊇
⋃n∈ω hn . In order to show that h[X] ⊆ X, ûx x ∈ X. If x ∈ ⋃n∈ω En , then h(x) ∈ X
by condition (i). On the other hand, if x ∈ 2ω ∖⋃n∈ω En then h(x) ∈ 2ω ∖⋃n∈ω Fn ,
which implies h(x) ∈ X by condition (h). A similar argument shows that h−1[X] ⊆ X.
It follows that h[X] = X.

7 The Main Result

_e following two deûnitions are crucial for our purposes. Recall that a π-base for
a space Z is a collection B consisting of non-empty open subsets of Z such that for
every non-empty open subset U of Z there exists V ∈ B such that V ⊆ U .

Deûnition 7.1 Let X be a subspace of Z. We will say that X is h-homogeneously
embedded in Z if there exists a π-base B for Z consisting of clopen sets and homeo-
morphisms ϕU ∶ Z → U for U ∈ B such that ϕU[X] = X ∩U .

Deûnition 7.2 We will say that a space X is countably controlled if for every count-
able D ⊆ X there exists a Polish subspace G of X such that D ⊆ G ⊆ X.

_e technique used in the proof of the following theorem is essentially due to
Medvedev (see [26,_eorem 5]).

_eorem 7.3 Assume that X is h-homogeneously embedded in 2ω and countably con-
trolled. _en X is CDH.

Proof If X is empty, then X is obviouslyCDH, so assume that X is non-empty. Since
X is h-homogeneously embedded in 2ω , there exists a (countable) π-base B for 2ω

consisting of clopen sets and homeomorphisms ϕU ∶ 2ω → U for U ∈ B such that
ϕU[X] = X ∩U . In particular, X is dense in 2ω .
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Fix a pair (A, B) of countable dense subsets of X. Let D0 = A ∪ B, and given Dn
for some n ∈ ω, deûne

Dn+1 = ⋃{ϕ−1
U [Dn ∩U] ∶ U ∈ B}.

In the end, let D = ⋃n∈ω Dn . It is easy to check that D is a countable dense subset of
2ω such that A∪ B ⊆ D ⊆ X. Furthermore, it is clear that ϕ−1

U (x) ∈ D whenever x ∈ D
and U ∈ B is such that x ∈ U .

Since X is countably controlled, it is possible to ûnd a Gδ subset G of 2ω such that
D ⊆ G ⊆ X. By removing countablymany points from G, we can assumewithout loss
of generality that 2ω ∖ G is dense in 2ω . Fix closed nowhere dense subsets Kℓ of 2ω

for ℓ ∈ ω such that 2ω ∖G = ⋃ℓ∈ω Kℓ . Also ûx the following injective enumerations.
● A = {a i ∶ i ∈ ω}.
● B = {b j ∶ j ∈ ω}.
Fix an admissible metric d on 2ω such that diam(2ω) ≤ 1. Our strategy is to con-

struct a suitable KR-system ⟨⟨hn ,Kn⟩ ∶ n ∈ ω⟩, then apply Corollary 6.2 to get a
homeomorphism h∶ 2ω → 2ω such that h ⊇ ⋃n∈ω hn and h[X] = X. We will use the
same notation as in Section 6. In particular, hn ∶ En → Fn andKn = ⟨Vn ,Wn ,ψn⟩ for
each n.

Of course, we will have to make sure that conditions (a)–(f) in the deûnition of a
KR-system are satisûed. Furthermore,wewill make sure that the following additional
conditions are satisûed for every n ∈ ω.
(I) ⋃ℓ<n Kℓ ⊆ En .
(II) ⋃ℓ<n Kℓ ⊆ Fn .
(III) hn[X ∩ En] = X ∩ Fn .
(IV) {a i ∶ i < n} ⊆ En .
(V) {b j ∶ j < n} ⊆ Fn .
(VI) hn[A∩ En] = B ∩ Fn .
Conditions (I)–(III) will guarantee that conditions (g)–(i) in Corollary 6.2 hold. On
the other hand, conditions (IV)–(VI) will guarantee that h[A] = B.

Start by letting h0 = ∅ and K0 = ⟨{2ω}, {2ω}, {⟨2ω , 2ω⟩}⟩. Now assume that
⟨hn ,Kn⟩ is given. First, for any given V ∈ Vn , we will deûne a homeomorphism
hV ∶ EV → FV , where EV will be a closed nowhere dense subset of V and FV will be a
closed nowhere dense subset of ψn(V). So ûx V ∈ Vn , and let W = ψn(V).
Deûne the following indices.

● ℓ(V) = min{ℓ ∈ ω ∶ Kℓ ∩ V /= ∅}.
● ℓ(W) = min{ℓ ∈ ω ∶ Kℓ ∩W /= ∅}.
● i(V) = min{i ∈ ω ∶ a i ∈ V ∖ Kℓ(V)}.
● j(W) = min{ j ∈ ω ∶ b j ∈W ∖ Kℓ(W)}.
Notice that the indices ℓ(V) and ℓ(W) are well deûned, because⋃ℓ∈ω Kℓ = 2ω ∖G is
dense in 2ω .

Let S = (V ∩ Kℓ(V)). Since Kℓ(V) is a closed nowhere dense subset of 2ω , we
can ûx U(S) ∈ B such that U(S) ⊆ V ∖ (S ∪ {a i(V)}). Let T = (W ∩ Kℓ(W)).
Since Kℓ(W) is a closed nowhere dense subset of 2ω , we can ûx U(T) ∈ B such that
U(T) ⊆W ∖ (T ∪ {b j(W)}).
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Deûne EV = {a i(V)} ∪ S ∪ ϕU(S)[T] and FV = {b j(W)} ∪ T ∪ ϕU(T)[S]. Observe
that EV is a closed nowhere dense subset ofV and FV is a closed nowhere dense subset
ofW . Deûne hV ∶ EV → FV by setting

hV(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b j(W) if x = a i(V),
ϕU(T)(x) if x ∈ S,
(ϕU(S))−1(x) if x ∈ ϕU(S)[T].

It is clear that hV is a homeomorphism. _erefore, by Lemma 5.1, there exists a KR-
cover ⟨VV ,WV ,ψV ⟩ for ⟨V ∖ EV ,W ∖ FV , hV ⟩. Furthermore, it is easy to realize that
hV [X ∩ EV ] = X ∩ FV , which will allow us to mantain condition (III).

Notice that ϕU(S)[T]∩D = ∅, because ϕU[Kℓ]∩D = ∅ for everyU ∈ B and ℓ ∈ ω
by the choice of D. Similarly, one sees that ϕU(T)[S] ∩ D = ∅. Since A ∪ B ⊆ D, it
follows that hV [A ∩ EV ] = hV [{a i(V)}] = {b j(W)} = B ∩ FV , which will allow us to
mantain condition (VI).

Repeat this construction for every V ∈ Vn , then let En+1 = En ∪⋃{EV ∶ V ∈ Vn}
and Fn+1 = Fn ∪⋃{FV ∶ V ∈ Vn}. Deûne

hn+1 = hn ∪ ⋃
V∈Vn

hV ,

and observe that hn+1∶ En+1 → Fn+1 is a bijection. Now extend hV to a bijection
fV ∶V → ψn(V) for every V ∈ Vn , and let fn = hn ∪⋃V∈Vn fV . Clearly, fn ∶ 2ω → 2ω

is a bijection that extends hn+1 ⊇ hn and respects ψn . Since Kn = ⟨Vn ,Wn ,ψn⟩
is a KR-cover for ⟨2ω ∖ En , 2ω ∖ Fn , hn⟩, it follows that hn+1 is continuous on En
and h−1

n+1 is continuous on Fn . On the other hand, it is straightforward to check that
hn+1 is continuous on En+1 ∖ En = ⋃{EV ∶ V ∈ Vn} and h−1

n+1 is continuous on
Fn+1 ∖ Fn = ⋃{FV ∶ V ∈ Vn}. In conclusion, hn+1 is a homeomorphism.
Finally, we deûne Kn+1 = ⟨Vn+1 ,Wn+1 ,ψn+1⟩. Let Vn+1 = ⋃{VV ∶ V ∈ Vn} and

Wn+1 = ⋃{WV ∶ V ∈ Vn}. By further reûning Vn+1 andWn+1, we can assume that
mesh(Vn+1) ≤ 2−(n+1) and mesh(Wn+1) ≤ 2−(n+1). Let ψn+1 = ⋃V∈Vn ψV . Using
the fact that ⟨VV ,WV ,ψV ⟩ is a KR-cover for ⟨V ∖ EV ,W ∖ FV , hV ⟩ for each V ∈ Vn
together with condition (c), it is easy to realize that Kn+1 is a KR-cover for ⟨2ω ∖
En+1 , 2ω ∖ Fn+1 , hn+1⟩.

8 Infinite Powers and λ′-sets

_emain result of this section is _eorem 8.4, which simultaneously answers Ques-
tion 1.6 and the ûrst part of Question 1.8, and shows that _eorem 4.5 is sharp.
_e idea of looking at (the complements of) λ′-sets is inspired by a recent article of
Hernández-Gutiérrez,Hrušák, and van Mill (more precisely, by [10,_eorem 4.5]).

Wewill need a few preliminary results. _e straightforward proofs of the following
two propositions are le� to the reader.

Proposition 8.1 Let I be a countable set. If X i is h-homogeneously embedded in Z i
for every i ∈ I, then∏i∈I X i is h-homogeneously embedded in∏i∈I Z i .
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Proposition 8.2 Let I be a countable set. If X i is countably controlled for each i ∈ I,
then∏i∈I X i is countably controlled.

Proposition 8.3 _ere exists a λ′-set of size ω1 that is h-homogeneously embedded in
2ω .

Proof Fix a (countable) π-base B for 2ω consisting of clopen sets and homeomor-
phisms ϕU ∶ 2ω → U for U ∈ B. Let X0 be a λ′-set of size ω1 (whose existence is
guaranteed by _eorem 2.7) and, given Xn for some n ∈ ω, deûne

Xn+1 = ⋃{ϕU[Xn] ∶ U ∈ B} ∪⋃{ϕ−1
U [Xn ∩U] ∶ U ∈ B}.

In the end, let X = ⋃n∈ω Xn . Using induction and Lemma 2.6, it is easy to see that each
Xn is a λ′-set of size ω1. _erefore, X is a λ′-set of size ω1. Finally, the construction
of X ensures that ϕU[X] = X ∩U for every U ∈ B.

_eorem 8.4 _ere exists a subspace X of 2ω with the following properties.
● X is not Polish.
● Xω is CDH.
● IfMA+¬CH + ω1 = ωL

1 holds, then X is analytic.

Proof By Proposition 8.3, we can ûx a λ′-set Y of size ω1 that is h-homogeneously
embedded in 2ω . Let X = 2ω ∖ Y . By _eorem 8.5, if MA+¬CH + ω1 = ωL

1 holds
then X is analytic. It is straightforward to verify that X is is h-homogeneously em-
bedded in 2ω . By Proposition 8.1, it follows that Xω is h-homogeneously embedded
in (2ω)ω ≈ 2ω . Furthermore, the deûnition of λ′-set immediately implies that X is
countably controlled. By Proposition 8.2, it follows that Xω is countably controlled.
In conclusion, Xω is CDH by _eorem 7.3.
Assume, in order to get a contradiction, that X is Polish. _is means that X is a

Gδ subspace of 2ω , so Y is an Fσ . Since Y is uncountable, it follows that Y contains a
copy of 2ω , which contradicts the fact that Y is a λ-set.

Observe that, by the remark that follows _eorem 1.5, the analytic counterexample
given by _eorem 8.4 could not have been constructed in ZFC.

_e following is a classical result (see [28, _eorem 23.3]). For a new topological
proof, based on a result of Baldwin and Beaudoin, see [22,_eorem 8.1].

_eorem 8.5 (Martin, Solovay) AssumeMA+¬CH+ω1 = ωL
1 . _en every subspace

of 2ω of size ω1 is coanalytic.

9 A Sufficient Condition

_e main result of this section is _eorem 9.4, which shows that being countably
controlled is by itself a suõcient condition on a zero-dimensional space X for the
countable dense homogeneity of Xω . It is easy to realize that _eorem 8.4 could have
been proved using Corollary 9.5. However, since the proof of _eorem 9.4 relies on
deep results such as [4,_eorem 1] and_eorem 9.2, we preferred to make the rest of
the paper more self-contained.
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_e following result is inspired by [19, Proposition 24], where the proof of the
equivalence (i) ↔ (iii) ûrst appeared. Recall that a space X is h-homogeneous (or
strongly homogeneous) if C ≈ X for every non-empty clopen subspace C of X.

Proposition 9.1 Let X be zero-dimensional space such that ∣X∣ ≥ 2. _en the following
are equivalent.
(i) Xω ≈ Yω for some space Y with at least one isolated point.
(ii) Xω can be h-homogeneously embedded in 2ω .
(iii) Xω is h-homogeneous.

Proof In order to prove the implication (i) → (ii), assume that Xω ≈ Yω , where Y
is a space with at least one isolated point. Assume without loss of generality that Y is
a subspace of 2ω , and let z ∈ 2ω be an isolated point of Y . Let K = cl(Y), where the
closure is taken in 2ω , and notice that z remains isolated in K. Also notice that Kω is
crowded because ∣X∣ ≥ 2 and Yω ≈ Xω . It follows that Kω ≈ 2ω , so it will be enough
to show that Yω is h-homogeneously embedded in Kω .

Let [ω]<ω = {F ⊆ ω ∶ F is ûnite}. Given any F ∈ [ω]<ω , deûne

UF = {x ∈ Kω ∶ x(n) = z for all n ∈ F},

andnotice that eachUF is a clopen subset ofKω . Furthermore, it is clear that {UF ∶ F ∈
[ω]<ω} is a local base for Kω at ⟨z, z, . . . ⟩. By [4,_eorem 1], given any x ∈ Yω , there
exists a homeomorphism hx ∶Kω → Kω such that hx[Yω] = Yω and hx(⟨z, z, . . . ⟩) =
x. Fix a countable dense subset D of Yω . It is easy to realize that the collection

B = {hx[UF] ∶ x ∈ D, F ∈ [ω]<ω}

is a countable π-base for Kω consisting of clopen sets.
For every F ∈ [ω]<ω , ûx a bijection πF ∶ω ∖ F → ω, then deûne hF ∶Kω → UF by

setting

hF(x)(n) =
⎧⎪⎪⎨⎪⎪⎩

z if n ∈ F,
x(πF(n)) if n ∈ ω ∖ F

for every x ∈ Kω and n ∈ ω. One can easily check that each hF is a homeomorphism
such that hF[Yω] = Yω ∩ UF . Given any U ∈ B, where U = hx[UF] for some x ∈ D
and F ∈ [ω]<ω , let ϕU = hx ○ hF . It is straightforward to verify that each ϕU ∶Kω → U
is a homeomorphism such that ϕU[Yω] = Yω ∩U .

In order to prove the implication (ii) → (iii), assume that X is h-homogeneously
embedded in 2ω . In particular, X has a π-base consisting of clopen sets that are
homeomorphic to X. If X is compact, then Xω ≈ 2ω , which is well known to be h-
homogeneous. On the other hand, if X is non-compact then it is non-pseudocompact
by [5, Proposition 3.10.21 and_eorem4.1.17], so the desired result follows from a the-
orem of Terada (see [30,_eorem 2.4] or [19,_eorem 2 and Appendix A]).

In order to prove the implication (iii)→ (i), assume that Xω is h-homogeneous. It
will be enough to show that Xω and (X ⊕ 1)ω are both homeomorphic to the space
C = (X ⊕ 1)ω × Xω , where X ⊕ 1 denotes the space obtained by adding one isolated
point to X. Notice that Xω can be partitioned into two non-empty clopen subsets,
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because ∣X∣ ≥ 2. _erefore,

Xω ≈ Xω ⊕ Xω ≈ (X × Xω)⊕ Xω ≈ (X ⊕ 1) × Xω .

By taking the ω-th power of both sides, one sees that Xω ≈ C. On the other hand, we
know that (X ⊕ 1)ω is h-homogeneous by the implication (i)→ (iii). Since

(X ⊕ 1)ω ≈ (X ⊕ 1) × (X ⊕ 1)ω ≈ (X × (X ⊕ 1)ω)⊕ (X ⊕ 1)ω ,

it follows that (X ⊕ 1)ω ≈ X × (X ⊕ 1)ω . By taking the ω-th power of both sides, one
sees that (X ⊕ 1)ω ≈ C.

_e following result has been obtained independently by vanEngelen (see [31,_e-
orem 4.4]) andMedvedev (see [24, Corollary 6]).

_eorem 9.2 (van Engelen,Medvedev) Let X be a zero-dimensional space. If X has
a dense Polish subspace, then Xω is h-homogeneous.

Corollary 9.3 Let X be a zero-dimensional space such that ∣X∣ ≥ 2. If X has a dense
Polish subspace, then Xω can be h-homogeneously embedded in 2ω .

Proof Apply Proposition 9.1.

_eorem 9.4 Let X be a zero-dimensional countably controlled space. _en Xω is
CDH.

Proof _e case ∣X∣ = 1 is trivial, so assume that ∣X∣ ≥ 2. Clearly, the fact that X is
countably controlled implies that X has a Polish dense subspace. _erefore, Xω can
be h-homogeneously embedded in 2ω byCorollary 9.3. Furthermore, Proposition 8.2
shows that Xω is countably controlled. In conclusion, Xω isCDH by_eorem 7.3.

Corollary 9.5 If Y is a λ′-set, then (2ω ∖ Y)ω is CDH.

It seems natural to wonder whether, in the above theorem, it would be enough to
assume that X has a dense Polish subspace, instead of assuming that X is countably
controlled. _e following simple proposition shows that this is not the case.

Proposition 9.6 _ere exists a zero-dimensional space X such that X has a dense
Polish subspace while Xω is not CDH.

Proof Fix z ∈ 2ω . Let D = 2ω × (2ω ∖ {z}), and ûx a countable dense subset Q of
2ω × {z}. Deûne

X = Q ∪ D ⊆ 2ω × 2ω .
It is clear thatD is a dense Polish subspace of X. Furthermore, X is not Polish, because
Q is a closed countable crowded subspaceof X. Since X is a coanalytic subspaceof 2ω×
2ω ≈ 2ω (actually, it is σ-compact), if follows that Xω is notCDH by_eorem4.5.

Finally, we remark that, by _eorem 1.7, it is not possible to prove in ZFC that
being countably controlled (or even having a dense Polish subspace) is a necessary
condition for the countable dense homogeneity of Xω .
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