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Abstract
Network models, which abstractly are given by lax symmetric monoidal functors, are used to construct
operads for modeling and designing complex networks. Many common types of networks can be modeled
with simple graphs with edges weighted by a monoid. A feature of the ordinary construction of network
models is that it imposes commutativity relations between all edge components. Because of this, it cannot
be used to model networks with bounded degree. In this paper, we construct the free network model on a
given monoid, which can model networks with bounded degree. To do this, we generalize Green’s graph
products of groups to pointed categories which are finitely complete and cocomplete.
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1. Network Models
One way to combine two graphs is to identify the vertices of one with some of the vertices of the
other in a one-to-one way, then gluing the two graphs together at the identified vertices. We can
decompose such a combination into a sequence of simpler operations of three types: disjoint union
of any two graphs, gluing two graphs together which have the same vertex set, which we call over-
lay, and permutation of vertices. In previous work, network models were introduced to formally
encode these operations (Baez et al. 2018). The algebras of a network operad can serve as tools for
designing complex multi-agent networks. Network operads are constructed from network mod-
els, which are certain symmetric lax monoidal functors. There is a functorial construction of a
network model from a monoid, which we call the ordinary network model for weighted graphs.
In this paper, we provide a different construction in order to realize a larger class of networks as
algebras of network operads, which we call the free varietal network model for weighted graphs.
In Section 4, we give an example of a family of networks which cannot form an algebra for any
ordinary network model for weighted graphs, but does for a varietal one.

The reader is assumed to be familiar with basic notions from category theory (Mac Lane 1998),
especially symmetric monoidal categories and lax symmetric monoidal functors (Joyal and Street
1993). Let S be the symmetric groupoid, that is, the category with objects n= {1, . . . , n} (including
the empty set for 0) and bijections formorphisms. LetMon denote the category ofmonoids. A one-
colored network model is a symmetric lax monoidal functor

(F,�) : (S,+)→ (Mon,×),
where� is the laxator of F, that is, a natural transformation with components

�x,y : Fn× Fm→ F(n+m).
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We call the monoids F(n) the constituent monoids of the networkmodel F. There is a more general
notion of network model which replaces the category S with a free symmetric monoidal category.
We do not consider this generalization here, so we always mean a one-colored network model
when we say network model. Let NetMod denote the category of network models with monoidal
natural transformations as morphisms.

Essentially, a network model is a family of monoids {Mn}n∈N each with a group action of the
corresponding symmetric group Sn, such that the product of any two embed into the one indexed
by the sum of their indices equivariantly, that is, in a way which respects the group action:Mm ×
Mn ↪→Mm+n.

Example 1. For a set X and k ∈N, let (Xk) denote the set of k-element subsets of X. A simple graph
on n is a subset of

(n
2
)
. The set n is the set of vertices, and each two-element subset is an edge. Let

SG(n) be the monoid whose underlying set is 2(
n
2), the set of all simple graphs with vertex set n,

and whose monoid operation is union.

The group Sn acts on SG(n) by permuting the vertices, so we have a functor SG : S→Mon.
Disjoint union of graphs defines a family of monoid homomorphisms �: SG(m)× SG(n)→
SG(m+ n). These maps form a natural transformation which acts as the laxator, making
(SG, �) : (S,+)→ (Mon,×) a lax symmetric monoidal functor, thus a network model.

The simple graph network model is the motivating example for network models. Since the
operation in the constituent monoids of SG is defined by union, we use ∪ to denote the operation
in all the constituent monoids for all network models. Since the elements of the monoids SG(n)
are graphs, for a general networkmodel F, the elements of themonoids F(n) are called F-networks.
Since a network model is a lax symmetric monoidal functor, we can apply a symmetric monoidal
variant of the Grothendieck construction to obtain a symmetric monoidal category. From this, we
obtain the underlying operad. The main result on networkmodels is that given any networkmodel
F : S→Mon, there is an N-typed operad OF with F-networks as its operations (Baez et al. 2018).

This gives us a method of obtaining operads that are useful for modeling complex networks of
various sorts. We start with a suitable network model and then apply this theorem to obtain an
operad. This leads to the question: which kinds of network can be described by network models?

One large class of network models comes from monoids (Baez et al. 2018). Indeed, for any
monoid M, there is a network model for which the networks are simple graphs weighted by M.
In the simple graphs example, SG(n) is the monoid whose underlying set was 2(

n
2) and whose

monoid operation was union. This could be said more succinctly by letting B be the boolean
monoid, ({T, F},∨) and then defining SG(n)=B(

n
2). We interpret an element of SG(n), which

is a function g : (n2)→B, as a graph on n with an edge between u ∈ n and v ∈ n if and only
if g({u, v})= T. For a given monoid, let �M be the network model defined by �M(n)=M(

n
2),

and everything else defined as with simple graphs. As with SG(n), an element of �M(n) should
be thought of as a simple graph, but with edges weighted by values in M. This construction is
functorial:

Theorem 2 (c.f. Baez et al. 2018, Theorem 22). There is a functor � : Mon→NetMod sending any
monoid M to the network model �M and any homomorphism of monoids f : M→M′ to the mor-
phism of network models �f : �M→ �M′ . The network model �M is called the ordinary network
model forM-weighted graphs or the ordinaryM network model.
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This construction is designed to model networks which carry information on the edges. For
example, with N a monoid under addition, �N is a network model for loopless undirected multi-
graphs where overlaying is given by adding the number of edges. A similar example is �B = SG.
There is a monoid homomorphism N→B which sends all but 0 to T. This induces a map of net-
work models �N→ �B. Essentially, this map reduces the information of a graph from the number
of connections between each pair of vertices to just the existence of any connection.

Example 3 (Algebra for range-limited communication). Consider a communication network
where each node represents a boat and an edge between two nodes represents a working commu-
nication channel between the corresponding boats. Some forms of communication are restricted
by the distance between those communicating. Assume that there is a known maximal distance
over which our boats can communicate. Networks of this sort form an algebra of the simple graphs
operad in the following way.

Let (X, d) be a metric space, and 0≤ L ∈R. Our boats will be located at points in this space.
The operad OSG has an algebra (Ad,L, α) defined as follows. The set Ad,L(n) is the set of pairs (h, f )
where h ∈ SG(n) is a simple graph and f : n→ X is a function such that if {v1, v2} is an edge in
g then d( f (v1), f (v2))≤ L. The number L represents the maximal distance over which the boat’s
communication channels operate. Notice that this condition does not demand that all connections
within range must be made. An operation (σ , g) ∈OSG(n1, . . . , nk; n) acts on a k-tuple (hi, fi) ∈
Ad,L(ni) by

α(σ , g)((h1, f1), . . . , (hk, fk))= (g ∪ σ (h1 � · · · � hk), f1 � · · · � fk).
Elements of this algebra are simple graphs in the space X with an upper limit on edge lengths.
When an operation acts on one of these, it tries to put new edges into the graph, but fails to when
the range limit is exceeded (Baez et al. 2018).

A characteristic of the construction given in Theorem 2 is that elements of the resulting
monoids that correspond to different edges automatically commute with each other. For example,
for a monoidM, the fourth constituent monoid of the ordinaryM network model is �M(4)=M6.
Then, the element (m1, 0, 0, 0, 0, 0) represents a graph with one edge with weight m1 ∈M, the
element (0,m2, 0, 0, 0, 0) represents a graph with a different edge with weightm2 ∈M, and

(m1, 0, 0, 0, 0, 0)∪ (0,m2, 0, 0, 0, 0)= (m1,m2, 0, 0, 0, 0)
= (0,m2, 0, 0, 0, 0)∪ (m1, 0, 0, 0, 0, 0).

This commutativity between edges means that networks given by ordinary network models
cannot record information about the order in which edges were added to it. The ability to record
such information about a network is desirable, for example, if one wishes tomodel networks which
have a limit on the number of connections, each agent can make to other agents.

The degree of a vertex in a simple graph is the number of edges which include that vertex. The
degree of a graph is the maximum degree of its vertices. A graph is said to have degree bounded by
k, or simply bounded degree, if the degree of each vertex is less than or equal to k. Let Bk(n) denote
the set of networks with n vertices and degree bound k. One might guess that the family of such
networks could form an algebra for the simple graphs operad.

Question 4. Does the collection of networks of bounded degree form an algebra of a network
operad? If so, is there such an algebra which is useful in applications?

Specifically, can networks of bounded degree form an algebra of OSG, the simple graph operad?
Setting two graphs next to each other will not change the degree of any of the vertices. Overlaying
them almost definitely will, which makes defining an action of SG(n) on Bk(n) less obvious.
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Ordinary network models are not sufficient to model this type of network because the graph
monoids it produced could not remember the order that edges were added into a network. Even
ifM is a noncommutative monoid, since �M is a product of several copies ofM, one for each pair
of vertices, it cannot distinguish the order that two different edges touching v1 were added to a
network if their other endpoints are different.

Instead of taking the product of
(n
2
)
copies of M, we consider taking the coproduct, so as

not to impose any commutativity relations between the edges. Since the lax structure map
�: F(m)× F(n)→ F(m+ n) associated with a network model F : S→Mon must be a monoid
homomorphism, then

(a � b)∪ (c � d)= (a∪ c) � (b∪ d).
In particular, if we let ∅ denote the the identity of F(n) for any n, then

(a � ∅)∪ (∅ � b)= (a∪ ∅) � (∅ ∪ b)
= (∅ ∪ a) � (b∪ ∅)
= (∅ � b)∪ (a � ∅).

This is reminiscent of the Eckmann–Hilton argument, but notice that the domains of the oper-
ations ∪ and � are not the same. This equation says that elements which correspond to disjoint
edges must commute with each other. Simply taking the coproduct of

(n
2
)
copies ofM cannot give

the constituent monoids of a network model.
For a collection of monoids {Mi}i∈I , elements of the product monoid which come from dif-

ferent components always commute with each other. In the coproduct, they never do. A graph
product (in the sense of Green (1990)) of such a collection allows one to impose commutativity
between certain components and not others by indicating such relations via a simple graph. The
calculation above shows that the constituent monoids of a network model must satisfy certain
partial commutativity relations. We use graph products to construct a family of monoids with the
right amount of commutativity to both answer Question 4 and satisfy the conditions of being a
network model. The following theorems are proven in Section 3.

Theorem. The functor NetMod→Mon defined by F 
→ F(2) has a left adjoint �−,Mon : Mon→
NetMod.

The fact that this construction is a left adjoint tells us that the network models constructed
are ones in which the only relations that hold are those that follow from the defining axioms of
network models.

A variety of monoids is the class of all monoids satisfying a given set of identities. For example,
Mon has subcategories CMon of commutative monoids and GMon of graphic monoids which are
varieties of monoids satisfying the equations ab= ba and aba= ab, respectively. Given a variety of
monoids V , let NetModV be the subcategory of NetMod consisting of V-valued network models.
We recreate graph products in varieties of monoids to obtain a more general result.

Theorem. The functor NetModV→ V defined by F 
→ F(2) has a left adjoint �−,V : V→
NetModV.

In particular, if V = CMon, since products and coproducts are the same in CMon, the ordinary
M network model and the CMon varietalM network model are also the same. Note that this does
not indicate that �−,V is a complete generalization of �− from Theorem 2, since �M is not an
example of �−,V whenM is not commutative.

The ordinary construction for a network model given a monoid M has constituent monoids
given by finite cartesian powers of M. To include the networks described in Question 4 into the
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theory of network models, we must construct a network model from a given monoid which does
not impose asmuch commutativity as the ordinary construction does, specifically among elements
corresponding to different edges. The first attempt at a solution is to use coproducts instead of
products. However, in this section, we saw that we cannot create the constituent monoids of a net-
workmodel simply by taking them to be coproducts ofM instead of products. Theremust be some
commutativity between different edges, specifically between edges which do not share a vertex.

Given a monoidM, we want to create a family of monoids indexed byN, the nth of which looks
like a copy of M for each edge in the complete graph on n, has minimal commutativity relations
between these edge components, but does have commutativity relations between disjoint edges.
Partial commutativity like this can be described with Green’s graph products, which we describe in
Section 2.1. The type of graph which describes disjointness of edges in a graph as we need is called
a Kneser graph, which we describe in Section 2.2. Besides concerning ourselves with relations
between edge components, sometimes we also want the constituent monoids in a network model
to obey certain relations which M obeys. In Section 2.3, we describe varieties of monoids and a
construction which producesmonoids in a chosen variety. In Section 3, we prove this construction
is functorial, and in Section 4, we use this construction to give a positive answer to Question 4.

2. Graphs
This section is dedicated to constructing the constituentmonoids for the networkmodels we want.
In this section, there are two different ways that graphs are being used. It is important that the
reader does not get these confused. One way is the graphs which are elements of the constituent
monoids of the network models we are constructing. The other way we use graphs is to index
the Green product (which we define in Section 2.1) to describe commutativity relations in the
constituent monoids of the network models we are constructing.

A network model is essentially a family of monoids with properties similar to the simple graphs
example, so we think of the elements of these monoids as graphs, and we think of the operation
as overlaying the graphs. These monoids have partial commutativity relations they must satisfy,
as we see in Section 1. The graphs we use in the Green product, the Kneser graphs, are there to
describe the partial commutativity in the constituent monoids.

2.1 Green products
Given a family of monoids {Mv}v∈V indexed by a set V , there are two obvious ways to com-
bine them to get a new monoid, the product and the coproduct. From an algebraic perspective, a
significant difference between these two is whether or not elements that came from different com-
ponents commute with each other. In the product, they do. In the coproduct, they do not. Green
products, or commonly graph products, of groups were introduced in 1990 by Green (1990) and
later generalized to monoids by Veloso da Costa (2001). The idea provides something of a sliding
scale of relative commutativity between components. We follow Fountain and Kambites (2009) in
the following definitions.

By a simple graph G= (V , E), wemean a setV which we call the set of vertices, and a set E⊆ (V2),
which we call the set of edges. Amap of simple graphs f : (V , E)→ (V ′, E′) is a function f : V→V ′
such that if {u, v} ∈ E, then {f (u), f (v)} ∈ E′. Let SimpGph denote the category of simple graphs
and maps of simple graphs.

For a set V , a family of monoids {Mv}v∈V , and a simple graph G= (V , E), the G Green product
(or simply Green product when unambiguous) of {Mv}v∈V , denoted G(Mv), is

G(Mv)=
(∐
v∈V

Mv

)
/RG,
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where RG is the congruence generated by the relation

{(mn, nm)|m ∈Mv, n ∈Mu, u, v are adjacent in G},
where the operation in the free product is denoted by concatenation. If G is the complete graph
on n vertices, then G(Mv)∼=∏Mv. If G is the n-vertex graph with no edges, then G(Mv)∼=∐Mv.

We call each Mv a component of the Green product. Elements of G(Mv) are written as expres-
sions as in the free product, mv1

1 . . .m
vk
k ∈G(Mv) where the superscript indicates that mi ∈Mvi .

We often consider Green products of several copies of the same monoid, so this notation allows
one to distguish elements coming from different components of the product, even if they happen
to come from the same monoid. The intention and result of the imposed relations are that for an
expression mv1

1 . . .m
vk
k of an element, if there is an i such that {vi, vi+1} ∈ E, then we can rewrite

the expression by replacingmvi
i m

vi+1
i+1 withmvi+1

i+1m
vi
i . This move is called a shuffle, and two expres-

sions are called shuffle equivalent if one can be obtained from the other by a sequence of shuffles.
An expression mv1

1 . . .m
vk
k is reduced if whenever i< j and vi = vj, there exists l with i< l< j and

{vi, vl} /∈ E. If two reduced expressions are shuffle equivalent, they are clearly expressions of the
same element. The converse is also true.

Theorem 5 (Fountain and Kambites 2009, Theorem 1.1). Every element of M is represented by a
reduced expression. Two reduced expressions represent the same element of M if and only if they are
shuffle equivalent.

In this section, we use a categorical description of Green products to define a similar construc-
tion in a more general context. The relevant property of Mon that we need for this generalization
is that Mon is a pointed category.

Let C be a category. An object of C which is both initial and terminal is called a zero object. If
C has such an object, C is called a pointed category (Quillen 1967). For any two objects A, B of a
pointed category, there is a unique map 0 : A→ Bwhich is the composite of the unique map from
A to the zero object, and the unique map from the zero object to B. If C is a pointed category with
finite products, then for two objects A, B of C, the objects admit canonical maps A→A× B.

So, we have the following maps

satisfying the following properties.

πAiA = 1A πBiB = 1B
πBiA = 0 πAiB = 0.

This is suggestive of a biproduct, but in a general pointed category A× B is not necessarily
isomorphic to A+ B.
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In Section 3, we use a generalized Green product to construct network models. A generalized
Green product is a colimit of a diagram whose shape is derived from a given graph. We describe
the shapes of the diagrams here with quivers.

We assume the reader is familiar with directed multi-graphs. We refer to them here as quiv-
ers to help distinguish them from other variants of graphs and the role they play in this work. A
quiver is a pair of sets E,V , respectively, called the set of edges and set of vertices, and a pair of func-
tions s, t : E→V assigning to each edge its starting vertex and its terminating vertex, respectively.
Amap of quivers is a pair of functions

such that the s-square and the t-square both commute.
We will use the word cospan to refer to the quiver with the following shape.

•→•←•
Define a functor IC : SimpGph→Quiv which replaces every edge with a cospan (IC stands for
“insert cospan”). Specifically, given a simple graph (V , E) where E⊆ (V2), define the quiver Q1 ⇒
Q0 where Q0 =V � E and Q1 = {(v, e) ∈V × E| v ∈ e}, then define the source map s : Q1→Q0
by projection onto the first component, and the target map t : Q1→Q0 by projection onto the
second component. For example, the simple graph

gives the quiver

Let G= (V , E) and G′ = (V ′, E′) be simple graphs, and f : G→G′ a map of simple graphs.
Define a map of quivers ICf : IC(G)→ IC(G′) by ICf0 = fV � fE and ICf1(v, e)= ( fV (v), fE(e)).

This construction gives a coproduct preserving functor IC : SimpGph→Quiv.
Let F : Quiv→ Cat denote the free category (or path category) functor (Mac Lane 1998). Since

F is a left adjoint, it preserves colimits. Notice that any quiver of the form IC(G) would never
have a path of length greater than 1. Thus, the free path category on IC(G) simply has identity
morphisms adjoined.
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The objects in the category F(IC(G)) come from two places. There is an object for each vertex
of G, and there is an object at the apex of the cospan for each edge in G. We call these two subsets
of objects vertex objects and edge objects. We abuse notation and refer to the object given by the
vertex u by the same name, and similar for edge objects.

If {Mv}v∈V is a family of monoids indexed by the set V , that means that there is a functor
M : V→Mon from the set V thought of as a discrete category. Notice that if G is a simple graph
with vertex set V , then the discrete category V is a subcategory of F(IC(G)). We can then extend
the functorM to

D : F(IC(G))→Mon

in the following way. Obviously, we let D(u)=Mu for a vertex object u. If {u, v} is an edge in G,
thenD({u, v})=Mu ×Mv. Themorphism (u, {u, v}) is sent to the canonicalmapMu→Mu ×Mv.
For example, for a family of monoids {M1, . . . ,M4}, we have the following diagram.

Since there are no non-trivial pairs of composable morphisms in categories of the form F(IC(G)),
nothing further needs to be checked to confirm D is a functor.

Despite the way we are denoting these products, we are not considering them to be ordered
products. Alternatively, we could have used a more cumbersome notation that does not suggest
any order on the factors.

Theorem 6. Let V be a set, {Mv}v∈V be a family of monoids indexed by V, and G= (V , E)
be a simple graph with vertex set V. The G Green product of Mv is the colimit of the diagram
D : F(IC(G))→Mon defined as above

G(Mv)∼= colimD.

Proof. We show that G(Mv) satisfies the necessary universal property. The vertex objects in the
diagram have inclusion maps into the edge objects iu,v : Mu→Mu ×Mv, and all the objects
have inclusion maps into G(Mv), ju : Mu→G(Mv) and ju,v : Mu ×Mv→G(Mv) such that
ju,v ◦ iu,v = ju. Note that due to the fact that we have unordered products for objects, there is some
redundancy in our notation, namely, ju,v = jv,u. If we have a monoidQ and maps fu : Mu→Q and
fu,v : Mu ×Mv→Q such that

fu,v = fv,u
fu,v ◦ iu,v = fu,

then we define a map φ : G(Mv)→Q by φ(mv1
1 . . .m

vk
k )= fv1 (m1) . . . fvk(mk). Since this map is

defined via expressions of elements, Theorem 5 tells us that to check this map is well-defined,
we only need to check that the values of two expressions that differ by a shuffle are the same.
Letmv1

1 . . .m
vk
k be an expression, and i such that {vi, vi+1} ∈ E.

φ(mvi
i m

vi+1
i+1 )= fvi(mi)fvi+1 (mi+1)
= fvi,vi+1 (mi,mi+1)
= fvi+1 (mi+1)fvi(mi)
= φ(mvi+1

i+1m
vi
i )
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It is clear that
φ(mv1

1 . . .m
vk
k )= φ(mv1

1 . . .m
vi−1
i−1 )φ(m

vi
i m

vi+1
i+1 )φ(m

vi+2
i+2 . . .m

vk
k ),

so two shuffle equivalent expressions have the same value under φ, and φ is well-defined. It is
clearly a monoid homomorphism, and has the property φ ◦ ju = fu and φ ◦ ju,v = fu,v. To show
this map is unique, assume there is another such map ψ : G(Mv)→Q. Since ψ ◦ ju = fu, then
ψ(mu)= f (u), and

ψ(mv1
1 . . .m

vk
k )=ψ(mv1

1 ) . . . ψ(mvk
k )

= fv1 (m1) . . . fvk(mk)
= φ(mv1

1 . . .m
vk
k ).

This result makes it reasonable to generalize Green products in the following way.

Definition 7. Let C be a pointed category with finite products and finite colimits, V a set, {Av}v∈V
a family of objects of C indexed by V, and G a simple graph with vertex set V. Let D : F(IC(G))→ C
be the diagram defined by v 
→Av, {u, v} 
→Au ×Av, and the morphism (u, {u, v}) is mapped to the
inclusion Au→Au ×Av as above. The G Green product of {Av}v∈V is the colimit of D in C,

GC(Av)= colimD.
If C =Mon, we denote the Green product simply as G(Av).

In Section 3, we use this general notion of graph products in varieties of monoids to con-
struct network models whose constituent monoids are in those varieties. Note that since F ◦ IC
is a functor, the group Aut(G) of graph automorphisms of G naturally acts on GC(Av).

2.2 Kneser graphs
We focus here on a special family of simple graphs known as the Kneser graphs (Lovász 1978).
The Kneser graph KGn,m has vertex set

(n
m
)
, the set of m-element subsets of an n-element set,

and an edge between two vertices if they are disjoint subsets. Since a simple graph is defined as a
collection of two-element subsets of an n-element set, the Kneser graphKGn,2 has a vertex for each
edge in the complete graph on n, and has an edge between every pair of vertices which correspond
to disjoint edges. So, the Kneser graph KGn,2 can be thought of as describing the disjointness of
edges in the complete graph on n. For instance, the complete graph on 4 is

and the corresponding Kneser graph KG4,2 is
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where we label the node with uv if it corresponds to the edge {u, v}. One can see that an edge in the
second graph corresponds exactly to a pair of disjoint edges in the first graph. For another exam-
ple, KG5,2 is the Petersen graph. For sets X, Y and a function f : X→ Y , let f [U]= {f (x)| x ∈U}
for U ⊆ X. Let FinInj denotes the category of finite sets and injective functions.

Lemma 8. For k ∈N, there is a functor
(−
k
) : FinInj→ FinInj which sends X to

(X
k
)
the set of

k-element subsets of X, and injections f : X→ Y to the functions
(f
k
) : (Xk)→ (Y

k
)
defined by(f

k
)
(U) = f [U].

Note that this result holds for Inj the category of sets and injective functions, but we only require
FinInj for our purposes.

Proof. If f : X→ Y is an injection, then |f [U]| = |U| for U ⊆ X. It then makes sense to restrict
the induced map on power sets to subsets of a fixed cardinality. The map

(f
k
) : (mk)→ (n

k
)
defined

by
(f
k
)
(U)= f [U] is then well-defined. If f [U]= f [V] and x ∈U, then f (x) ∈ f [U]= f [V], which

implies there is a y ∈V such that f (y)= f (x). Since f is injective, then x= y ∈V . Thus, U =V by
symmetry.

Let iX and iY denote the following inclusion maps.

Since these maps are injective, they induce maps
(iX
k
)
,
(iY
k
)
and we get a map �X,Y :

(X
k
)+ (Yk)→(X+Y

k
)
by the universal property in the following way.

Lemma 9. The functor
(−
k
)
is made lax symmetric monoidal((−
k

)
,�, φ

)
: (FinInj,+, ∅)→ (FinInj,+, ∅)

where the components of� are defined as above.

Proof. The family of maps {�X,Y} is clearly a natural transformation. There is no choice for the
map φ : ∅→ (∅

k
)
. The left and right unitor laws hold trivially. Checking the coherence conditions

for the associator and the symmetry are straightforward computations.

For n, k ∈N, the simple graph KGn,k has vertex set V = (nk) and edge set
{{u, v} ⊆ (V2)| u∩ v=∅}. If f : m→ n is injective, then we get a map

(f
k
)
between the ver-

tex sets of KGm,k and KGn,k. Let {u, v} ∈
(V
2
)
be an edge in KGm,k. Then f [u]∩ f [v]=∅ by

injectivity, so {f [u], f [v]} is an edge of KGn,k. An injection f then induces a map of graphs,
denoted KGf ,k : KGm,k→KGn,k. Since

(f
k
)
is injective, KGf ,k is an embedding. Nothing about
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this construction requires finiteness of the sets involved, but our applications only call for finite
graphs.

Proposition 10. For k ∈N, there is functor KG−,k : FinInj→ SimpGphwhich sends n to KGn,k and
f : m→ n to KGf ,k.

Not only does KGm,k embed into KGn,k when m< n but also KGm,k +KGn,k embeds into
KGm+n,k. We construct the embedding KGm,k +KGn,k→KGm+n,k by using the lax structure map
from Lemma 9 for the vertex map, �m,n :

(m
k
)+ (nk)→ (m+n

k
)
. Restricting this map to either

(m
k
)

(resp.
(n
k
)
) gives the map

(im
k
)
(resp.

(in
k
)
) which we already know induces a map of graphs. Thus,

�m,n induces a map of graphs, which we call
m,n.

Proposition 11. The functor KG−,k is made lax (symmetric) monoidal
(KG−,k,
) : (Inj,+)→ (SimpGph,+),

where the components of
 are defined as above.

Proof. All the necessary properties for
 are inherited immediately from�.

Let (L,�) : (Inj,+)→ (Cat,+) be the composite L= F ◦ IC ◦KG−,2 with the obvious laxator.
Let M be a monoid. Then from the construction given in the previous subsection, for each n, we
get a diagram Dn : L(n)→Mon which sends all vertex objects to M, all edge objects to M×M,
and all nontrivial morphisms to inclusionsM→M×M. Taking the colimit of Dn then gives the
Green product KGn,2(M).

Note that we identify constituent monoids with the corresponding submonoid of the graph
product when this can be done without confusion.

Proposition 12. Let Mp,q be a
(m+n

2
)
family of monoids, and G1 and G2 be graphs with m and

n vertices, respectively. Let a1 ∈Mp1,q1 with p1, q1 ≤m and a2 ∈Mp2,q2 with p2, q2 >m, and let
a1, a2 be their values under the canonical inclusions Mp,q ↪→ (G1 �G2)(Mp,q). Then a1a2 = a2a1 in
(G1 �G2)(Mp,q).

Proof. By assumption, there is an edge in KGm+n,2 between the vertices p1, q1 and p2, q2.

2.3 Varieties of monoids
A finitary algebraic theory or Lawvere theory is a category T with finite products in which every
object is isomorphic to a finite cartesian power xn =∏n x of a distinguished object x (Adámek et
al. 2003; Lawvere 1963). An algebra of a theory T, or T-algebra, is a product preserving functor
T→ Set. Let TAlg denotes the category of T-algebras with natural transformations for mor-
phisms. We are primarily concerned with monoids in this paper. The theory of monoids TMon
has morphismsm : x× x→ x and e : x0→ x, which makes the following diagrams commute.

A variety of T-algebras is a full subcategory of TAlgwhich is closed under products, subobjects,
and homomorphic images. Birkhoff ’s theorem implies that this is equivalent to the category T′Alg
of algebras of another theory T′ which has the same morphisms, but satisfies more commutative
diagrams (Burris and Sankappanavar 1981). For example, commutative monoids are given by
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algebras of the theory of commutative monoids TCMon, which has morphismsm, e as in TMon, not
only satisfies the same commutative diagrams as TMon but also satisfies the following commutative
diagram

where b : x2→ x2 is the braid isomorphism. We only use varieties of monoids in this paper, so we
give these “extra” conditions by equations, for example, commutative monoids are those which
satisfy the equation ab= ba for all elements a, b. We call the extra equations the defining equations
of the variety.

A graphic monoid is a monoid which satisfies the graphic identity: aba= ab for all elements a, b.
Graphic monoids are algebras of a theory TGMon. A semigroup obeying this relation is known as
a left regular band (Margolis et al. 2015). The term graphic monoid was introduced by Lawvere
(Lawvere 1989). LetM be a graphic monoid. If we let b be the unit ofM, then the graphic relation
says that a2 = a. Every element of M is idempotent. If a, c ∈M, then ca= c if c already has a as a
factor.

Graphic monoids are present when talking about types of information where a piece of infor-
mation cannot contain the same piece of information twice. A simple example can be seen in the
powerset of a given set X, given the structure of a monoid by union. Of course, this example is
overly simple because the operation is commutative idempotent, which is stronger than graphic.
A more interesting example can be seen by considering the following simple graph.

We will define a monoid structure on the set M= {1, a, b, c, x, y} in the following way. First, 1 is
a freely adjoined identity element. For p, q ∈M \ {1}, define pq as follows. Pick a generic point f
in p and a generic point g in q. Then, move a small distance along a straight line path from f to g.
We define the product pq to be the component of the graph you land in. Here are some example
computations:

ab= x aa= a
bc= y xb= x
ac= x ca= y

The last two demonstrate that this monoid is not commutative. More complicated examples can
be constructed by using the same idea for the operation, but applying it to different spaces.

Our motivation for using graphic monoids is that we use the graphic relation to model “com-
mitment” in the following way. Let M be a graphic monoid, where we think of an element of
M as a task or list of tasks. If we first commit to doing task x, and then commit to doing task
y, then we have the element xy as our task list, indicating that we committed to x before y. If
we then try to commit to doing x, the graphic relation saves us from recording this informa-
tion twice. The relation also preserves the order in which we committed to x and y: if x is a
task list of the form x= ab, and we have committed to xy, and then try to commit to bc, we get
(xy)(bc)= (aby)(bc)= a(byb)c= a(by)c= abyc= xyc.

We want to construct a network model from a monoid in a variety V which has constituent
monoids that are also in V . IfM is a monoid in a variety V , then each constituent monoid �M(n)
is a product of several copies of M, and so is also in V by definition. Thus, the ordinary network
model (given in Theorem 2) restricted to a variety gives a functor V→ NetModV , whereNetModV
denotes the category of V-valued network models.
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The free product of twomonoids is a monoid,M+N an element of which is given by a list with
entries in the setM �N such that if two consecutive entries of a list are either both elements ofM
or both elements of N, then the list is identified with the list that is the same everywhere except
that those two entries are reduced to one entry occupied by their product. Note that the empty list
is identified with both the singleton list consisting of the identity element ofM, and the singleton
list consisting of the identity element of N. Free products of monoids gives the coproduct in the
category of monoids Mon. Free products of monoids are very similar to free products of groups,
which can be found in most books introducing group theory (Hungerford 1974).

If two monoids M and N are in a variety V , taking their free product will not necessarily pro-
duce a monoid in V , that is, varieties are not necessarily closed under the coproduct of Mon. It is
easy to find an example demonstrating this. Consider IMon, the variety of idempotent monoids,
that is, monoids satisfying the equation x2 = x for all elements x. The boolean monoid B is an
object in IMon. The free product of B with itself B+B can be generated by elements a and b
which correspond to the element 1 in each copy of B. The element ab ∈B+B is not idempo-
tent, as abab �= ab. However, every variety V does have coproducts. The coproduct in a variety of
monoids is the quotient of the free product by the congruence relation generated by the variety’s
defining equations. In Section 3, we give a construction V→ NetModV which uses colimits in
order to impose minimal relations.

We need the following fact for the main construction of this paper. It follows immediately from
the definitions.

Lemma 13. Every variety of monoids is a pointed category and has finite colimits.

This lemma tells us that it makes sense to talk about Green products in a variety, which we call
varietal Green products. In the next section, we use varietal Green products with Kneser graphs to
construct network models.

3. Functorial Network Models
In this section, we state and prove the main result of this paper. It says that given a monoid M
in a variety V , we can construct a network model whose constituent monoids are also in V , while
avoiding to impose commutativity relations when possible. In the following section, we see how
this construction resolves the dilemma presented in Question 4.

LetM be a monoid in a variety V . Define �M,V (n) to be the KGn,2 Green product of
(n
2
)
copies

ofM.

Theorem 14. For V a variety of monoids, �−,V : V→ NetModV is a functor, as given above. The
network model �M,V is called the V-varietal network model for M-weighted graphs, or just the
varietalM network model.

In order to prove this, we must first show that a monoidM gives a network model, that is, a lax
symmetric monoidal functor. The laxator for �M,V is canonically defined, but perhaps it is not as
immediate as the one for the ordinary M network model. We treat this first before returning to
the proof of the main theorem.

Let A and B be objects in a pointed category with finite products and coproducts. Let pA : A×
B→A and pB : A× B→ B denote the canonical projections, and iA : A→A+ B and iB : B→
A+ B the canonical inclusions. The category CMon of commutative monoids is such a category.
Recall that the operation of a monoid is a monoid homomorphism if and only if the monoid is
commutative. We have
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where ∗ denotes the operation in the commutative monoid A+ B and the dashed arrow is
< iApA, iBpB > given by universal property. The composite of the two maps going down the
middle is the inverse to the canonical map A+ B→A× B. The operation in a noncommuta-
tive monoid is not a monoid homomorphism, but all the above maps still exist as functions. Recall
that we let ∪ denote the operation in the monoids �M,V (n). There is always a homomorphism
φm,n : �M,V (m)+ �M,V (n)→ �M,V (m+ n) by universal property of coproducts. Let

γ : (�M,V (m)+ �M,V (n))× (�M,V (m)+ �M,V (n))→ �M,V (m)+ �M,V (n)
denote the monoid operation of the coproduct.

The monoids �M,V (n) are constructed specifically so that φ ◦ γ ◦< i1 ◦ p1, i2 ◦ p2 > is a monoid
homomorphism despite the fact that γ is not.

In the proof of the following theorem, we utilize a string diagrammatic calculus suited for
reasoning in a symmetricmonoidal category.We refer the reader to Selinger’s thorough exposition
of such string diagramatic languages and their use in category theory (Selinger 2011).

Lemma 15. The function �M,V (m)× �M,V (n)→ �M,V (m+ n) given by φ ◦ (i1 ◦ p1 ∪ i2 ◦ p2) is a
monoid homomorphism. Moreover, the family of maps of this form gives a natural transformation,
denoted �.

Proof. We have the following actors in play:

• the monoid operations ∪k : �M,V (k) for k=m, n,m+ n (we leave off the subscripts below);
• the monoid operation of the coproduct

γ : (�M,V (m)+ �M,V (n))× (�M,V (m)+ �M,V (n))→ �M,V (m)+ �M,V (n);
• the canonical inclusion maps i1 : �M,V (m)→ �M,V (m)→ �M,V (n) and i2 : �M,V (n)→
�M,V (m)→ �M,V (n);

• the canonical map φ : �M,V (m)+ �M,V (n)→ �M,V (m+ n).

We represent these string diagramatically (read from top to bottom) as follows. Note that these
are digrams in Set with its cartesian monoidal structure because the monoid operations ∪k and γ
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are not necessarily monoid homomorphisms.

We define �: �M,V (m)× �M,V (n)→ �M,V (m+ n) as follows.

(1)

Proposition 12 gives the following equation.

(2)

Since φ is a homomorphism, we get the following equation.

(3)

Since i1 and i2 are homomorphisms, we get the following equations.

(4)
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We want to show that (g � h)∪ (g′ � h′)= (g ∪ g′) � (h∪ h′). We compute:

Let σ ∈ Sm and τ ∈ Sn. Then
�M,V (σ + τ )(g � h)= �M,V (σ + τ )φ(i1(g)∪ i2(h))

= �M,V (σ )φ(i1(g))∪ �M,V (τ )φ(i2(h))
= �M,V (σ (g)) � �M,V (τ (h)),

so the following diagram commutes.

�M,V (m)× �M,V (n) �M,V (m+ n)

�M,V (m)× �M,V (n) �M,V (m+ n)

�

�M,V (σ )×�M,V (τ ) �M,V (σ+τ )

�
Thus, � is a natural transformation.
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Proof of Theorem 14. Checking the coherence conditions for � to be a laxator is a straightfor-
ward computation. Let f : M→N. Then define the natural transformation fV : �M,V→ �N,V
with components ( fV )n : �M,V (n)→ �N,V (n) given by the universal property. Composition is
clearly preserved.

Theorem 16. The functor �−,V is left adjoint to E : NetModV→ V where E(F)= F(2) for
(F,�) : (S,+)→ (V ,×) a V-network model.

Because of this, we call �M,V the free V-valued network model on the monoid M or the free V
network model on M.

Proof. By construction, �M,V (2)=M, so let the unit η= 11V : 1V→ �−,V (2).
We use the universal property of �M,V to construct the counit. We define a map F(2)→ F(n)

for each vertex in KGn,2, and a map F(2)× F(2)→ F(n) for each edge in KGn,2.
If i, j≤ n, then F((1 i)(2 j)) : F(n)→ F(n). If e is the unit of the monoid F(n− 2), andm ∈ F(2),

then�2,n−2(m, e) ∈ F(n). Define maps ci,j : F(2)→ F(n) by

ci,j = F((1 i)(2 j))(�2,n−2(m, e)).

The intuition here is thatm is a value on one edge of the graph, and e is a graph with n− 2 vertices
and no edges. Then, �(m, e) is the graph with n vertices, and just one m-valued edge between
vertices 1 and 2. Then, the permutation (1 i)(2 j) permutes this one-edge graph to put m between
vertex i and vertex j. So, the map ci,j places the one-edge monoid M at the i, j-position in the
n-vertex monoid.

Define maps ci,j,p,q : F(2)× F(2)→ F(n) by ci,j,p,q(m,m′)= ci,j(m)cp,q(m′). The second gives a
monoid homomorphism precisely because (F,�) is a network model.

Then, we get a map (εF)n : �F(2),V (n)→ F(n) by universal property, which gives a monoidal
natural transformation automatically. That these maps form the components of a natural trans-
formation can be seen by a routine computation.

Notice that

(ε�−,V )M = ε�M,V = 1�M,V ,
(�−,Vη)M = �1M ,V = 1�M,V ,

(Eε)F = E(εF)= (εF)2 = 1F(2),
(ηE)F = ηF(2) = 1F(2).

Thus, checking that the snake equations hold is routine.

Example 17. In CMon, products and coproducts are isomorphic. In particular, for a commutative
monoidM, �M,CMon ∼= �M .

Note that this does not indicate that varietal network models completely encompass ordinary
network models. IfM is a noncommutative monoid, then �M,CMon is not defined, but �M is.

4. Commitment Networks
The motivating example of network models in general is SG, the network model of simple graphs.
By Example 17, this network model is an example of the main construction of this paper, SG=
�B,CMon. The boolean monoid is not only an object in CMon but is also an object in GMon, the
variety of graphic monoids. Then, we can consider the network models �B,Mon and �B,GMon.
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Example 18. Elements of the monoid �B,Mon(n) are words ep1,q1 . . . epk,qk . These words are
interpreted as graphs with edges that look like they were built with popsicle sticks, and if two
edges lie directly on top of each other, they are identified. Besides that relation, you can stack edges
as high as you want by placing them between different pairs of vertices, but sharing one vertex.

There are networks one could imagine building with this popsicle stick intuition which are
not allowed by this formalism. For instance, consider a network with three nodes and an edge
for each pair of nodes, each overlapping exactly one of its neighbors, forming an Escher-esque
ever-ascending staircase. This sort of network is not allowed by the formalism, since networks
are actually equivalence classes of words, where letters have a definite position relative to each
other. This is an important feature for this network model as it is necessary to guarantee that
the procedure in the following example is well-defined, giving an algebra of the related network
operad. What this means in terms of popsicle stick intuition is that allowed networks are built by
placing popsicle sticks one at a time.

Example 19. Elements of the �B,GMon(n) are similar to those in the previous example, except that
they must obey the graphic identity, xyx= xy for all x, y ∈ �B,GMon(n). What this means in the
graphical interpretation is that all edges can be identified with the lowest occurring instance of
an edge on the same vertex pair. This means that these networks in reduced form have at most
as many edges as the complete simple graph with the same number of edges. Essentially these
networks are simple graphs with a partial order on the edges which respects disjointness of edges.

The networks in the previous example have exactly what we need in a network model to realize
networks of bounded degree as an algebra of a network operad.

Example 20 (Networks of bounded degree, revisited). The degree of a vertex in a simple graph
is the number of edges in the graph which contain that vertex. For k ∈N, we say that a simple
graph is k-bounded if all vertices have degree less than or equal to k. Then, we can consider the
set Bk(n) of k-bounded simple graphs. We can define an action of �B,GMon(n) on Bk(n) in the
following way. Let g = e1 . . . el ∈ �B,GMon(n) and h ∈ Bk(n). Choose a graph h′ ∈ �B,GMon(n) which
has the same edges as h. Define h0 = h′, then define hi = hi−1ei if that is k-bounded, else hi = hi−1.
Let hg denote hl, which is a k-bounded element of �B,GMon(n). Let �k

B,GMon(n) denote the set of
k-bounded elements of �B,GMon(n). There is a function s : �k

B,GMon(n)→ Bk(n). So, we define hg
to be s(hl). This is independent of the choice of h′ and defines an action of �B,GMon on Bk(n).

The networks in Question 4 can be represented by simple graphs with vertex degrees bounded
by k. Then, Bk(n) gives an algebra of the operad OB,GMon.

This resolves the conflict encountered in Question 4. Ordinary network models could not
record the order in which edges were added to a network, which was necessary to define a sys-
tematic way of attempting to add new connections to a network which has degree limitations on
each vertex.
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