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Abstract Let G be a locally compact group, A a continuous trace C∗-algebra, and α a pointwise unitary
action of G on A. It is a result of Olesen and Raeburn that if A is separable and G is second countable,
then the crossed product A ×α G has continuous trace. We present a new and much more elementary
proof of this fact. Moreover, we do not even need the separability assumptions made on A and G.
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1. Introduction

Let A be a C∗-algebra. Let T (A+) be the set of all a ∈ A+ such that the trace function
π → trπ(a) is finite and continuous on Â. We know by [3, 4.5.2] that the linear hull
T (A) of T (A+) is a two-sided self-adjoint ideal in A such that T (A)+ = T (A+). We
denote the closure of T (A) by J(A). Following [3] we say that A is a C∗-algebra with
continuous trace if J(A) = A.

Let (A, G, α) be a covariant system. That is, G is a locally compact group, A is a
C∗-algebra and α : G → Aut(A) is a strongly continuous homomorphism of G into
the automorphism group Aut(A) of A. Here, ‘strongly continuous’ means that, for each
a ∈ A, the map G → A, s 7→ αs(a) is continuous. We shall also say that α is an action of
G on A. Let π be a non-degenerate representation of A on a Hilbert space H, and let u

be a unitary representation of G on the same Hilbert space H. The pair (π, u) is called
a covariant representation of (A, G, α) if

π(αs(a)) = Usπ(a)U∗
s for all a ∈ A, s ∈ G.

The crossed product A ×α G is the enveloping C∗-algebra of a certain Banach-∗-algebra
L1(G, A) (see, for example, [8, Chapter 7.6]). For abbreviation we shall sometimes also
write A × G instead of A ×α G. There is a canonical ∗-homomorphism iA of A into
M(A ×α G) and there is a canonical group homomorphism iG of G into M(A ×α G)
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with the following property. For each covariant representation (π, u) of (A, G, α) there
exists a non-degenerate representation π × u of A ×α G such that (π × u) ◦ iA = π and
(π × u) ◦ iG = u. Conversely, for each non-degenerate representation ρ of A ×α G, the
pair (π, u) := (ρ◦ iA, ρ◦ iG) is a covariant representation of (A, G, α) such that ρ = π ×u

(see [8, Theorem 7.6.4]).
As in [8, Chapter 7.1] we denote by C∗(G) the (full) group-C∗-algebra of G, which can

also be regarded as the crossed product of the covariant system (C, G, id). Thus, in partic-
ular, each unitary representation u : G → U(H) defines a non-degenerate representation
of C∗(G) on H. This representation shall also be denoted by u.

Now a covariant system (A, G, α) is called pointwise unitary if, for each π ∈ Â, there
exists a unitary representation u : G → U(H) such that (π, u) is a covariant representation
of (A, G, α) (see [9]). Pointwise unitary actions of abelian second countable groups on
separable C∗-algebras with continuous trace were studied in great detail by Olesen and
Raeburn in [6]. For example, they showed that the crossed product A ×α G of such a
system has Hausdorff spectrum and that the dual action α̂ of Ĝ on A ×α G induces an
action on (A ×α G)∧, which is free and proper in the sense of [7]. Furthermore, they were
able to identify A ×α G with the pull-back Res∗ A, where Res : (A ×α G)∧ → Â is the
map which sends π × u ∈ (A ×α G)∧ to π ∈ Â. In particular, it follows that A ×α G has
continuous trace.

To prove that A×α G has Hausdorff spectrum, Olesen and Raeburn used an important
result of Rosenberg which says that a pointwise unitary action of a compactly generated
abelian group H on a continuous trace C∗-algebra A is automatically locally unitary
(see [10]). In our paper we give a much more elementary proof of the fact that A ×α G

has continuous trace. We mainly use the fact that the map Res : (A ×α G)∧ → Â as
described above is well defined and continuous (see [9, Proposition 2.1]). Of course the
arguments used in our Theorem 2.1 below do not apply to the other two important
results described above, namely that Ĝ acts properly on (A ×α G)∧ and that A ×α G is
isomorphic to Res∗ A. For a more general treatment of this topic see, for example, [4],
where pointwise unitary subgroup bundles are considered, or [1], where pointwise unitary
coactions are considered.

2. Proof of Theorem 2.1

Theorem 2.1. Let (A, G, α) be a pointwise unitary covariant system such that G is
abelian and A has continuous trace. Then the crossed product A×αG also has continuous
trace.

Proof. Let A×α G be represented faithfully and non-degenerately on a Hilbert space
H. Then the pair (iA, iG) becomes a covariant representation of (A, G, α). In particular,
iG defines a non-degenerate representation of C∗(G) on H. Furthermore, A ×α G is
generated by elements of the form iA(a)iG(f) with a ∈ A and f ∈ C∗(G) (cf. the proof
of Theorem 7.6.6 in [8]).
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Define

TM (A ×α G+)

:= {z ∈ M(A ×α G)+ : ρ 7→ tr ρ(z) is finite and continuous on (A ×α G)∧}.

It follows from the properties of the trace function tr that TM (A ×α G+) is closed under
addition and that zz∗ ∈ TM (A ×α G+) implies that z∗z ∈ TM (A ×α G+). Suppose that
w ∈ M(A ×α G)+ is dominated by an element z ∈ TM (A ×α G+) (that is, there exists a
λ ∈ R

+ such that w 6 λz). Since (A ×α G)∧ is clearly an open subset of (M(A ×α G))∧,
the arguments used in the proof of Lemma 4.4.2 (i) in [3] show that w ∈ TM (A ×α G+).
Now it follows from Lemma 4.5.1 in [3] that the linear span TM (A×αG) of TM (A×αG+)
is a self-adjoint two-sided ideal in M(A×α G) such that TM (A×α G)+ = TM (A×α G+).

We claim that iA(T (A+)) ⊂ TM (A×αG+). Let a ∈ T (A+), and suppose that πλ×µλ →
π × µ ∈ (A ×α G)∧. Since A is of type I and G is abelian, we know by Proposition 2.1
in [9] that πλ → π. Since a ∈ T (A+), this implies that

tr(πλ × µλ)(iA(a)) = trπλ(a) → trπ(a) = tr(π × µ)(iA(a)).

Thus iA(a) ∈ TM (A ×α G+), and iA(T (A+)) ⊂ TM (A ×α G+), as claimed.
Now let L := {iG(f) iA(a) iG(f) : f ∈ C∗(G)+, a ∈ T (A+)}. Then

L ⊂ TM (A ×α G+) ∩ A ×α G = T (A ×α G+) ⊂ J(A ×α G).

Since J(A ×α G) is an ideal in A ×α G and hence in M(A ×α G), and since iG(C∗(G)) ⊂
M(A ×α G), it follows that

LiG(C∗(G)) := {ab : a ∈ L, b ∈ iG(C∗(G))} ⊂ J(A ×α G).

But A = T (A), and therefore A ×α G is generated by elements of the form iA(a)iG(f)
with a ∈ T (A+) and f ∈ C∗(G). Furthermore, iG : C∗(G) → M(A ×α G) ⊂ L(H)
is a non-degenerate representation. Thus, using an approximate identity for C∗(G) and
the fact that C∗(G) is abelian, we see that A ×α G is generated by LiG(C∗(G)). Thus
A ×α G = J(A ×α G). It follows that A ×α G has continuous trace. �

Remark 2.2. Let A be an arbitrary C∗-algebra. By transfinite induction, there exists
a minimal ordinal number γ and an increasing family (Jβ)06β6γ of closed ideals in A

such that

J0 = 0, J(A/Jγ) = 0, Jβ+1/Jβ = J(A/Jβ) for 0 6 β < γ,

and Jβ′ =
⋃

β<β′
Jβ if β′ is a limit ordinal.




(2.1)

Following [2] we say that A is a C∗-algebra with generalized continuous trace if Jγ = A.
For example, if A is a type I C∗-algebra such that the points in Â are separated, then
A has generalized continuous trace (see [2]). In particular, each type I C∗-algebra with
Hausdorff spectrum has generalized continuous trace.
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Now suppose that (A, G, α) is a pointwise unitary covariant system such that G is
abelian and A has generalized continuous trace. Let (Jβ)06β6γ be an increasing family
of closed ideals in A such that Jγ = A and such that condition (2.1) holds. Since α

is pointwise unitary, it follows that each closed ideal I is α-invariant in the sense that
αs(I) = I for all s ∈ G. In particular, for each β, α induces an action αJβ

on Iβ

and an action αJβ on A/Iβ . By the results of Green [5] we obtain an increasing family
(Jβ × G)06β6γ of closed ideals in A ×α G such that J0 × G = 0, Jγ × G = A ×α G and

Jβ′ × G =
⋃

β<β′
(Jβ × G) if β′ is a limit ordinal.

Moreover, it also follows from [5] that (A ×α G)/(Jβ × G) = (A/Jβ) × G for each β and
it is clear that the action αJβ of G on A/Jβ is still pointwise unitary.

Since A is of type I by Proposition 4.3.4 in [3], the proof of the theorem above (applied
to the action of G on A/Jβ) shows that

(Jβ+1 × G)/(Jβ × G) = (Jβ+1/Jβ) × G

⊂ J((A/Jβ) × G) = J((A ×α G)/(Jβ × G))

for each 0 6 β < γ. But, by Proposition 11 in [2], this suffices to conclude that A ×α G

has generalized continuous trace.
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