Proceedings of the Edinburgh Mathematical Society (2001) 44, 215–218 ©

THE CROSSED PRODUCT BY A POINTWISE UNITARY ACTION ON A $C^*\mbox{-}ALGEBRA$ WITH CONTINUOUS TRACE

KLAUS DEICKE

Universität-Gesamthochschule Paderborn, Fachbereich Mathematik-Informatik, Warburger Straße 100, D-33095 Paderborn, Germany (deicke@uni-paderborn.de)

(Received 26 February 2000)

Abstract Let G be a locally compact group, A a continuous trace C^* -algebra, and α a pointwise unitary action of G on A. It is a result of Olesen and Raeburn that if A is separable and G is second countable, then the crossed product $A \times_{\alpha} G$ has continuous trace. We present a new and much more elementary proof of this fact. Moreover, we do not even need the separability assumptions made on A and G.

Keywords: continuous trace C^* -algebra; action; crossed product; pointwise unitary

AMS 2000 Mathematics subject classification: Primary 46L55

1. Introduction

Let A be a C^* -algebra. Let $T(A^+)$ be the set of all $a \in A^+$ such that the trace function $\pi \to \operatorname{tr} \pi(a)$ is finite and continuous on \hat{A} . We know by $[\mathbf{3}, 4.5.2]$ that the linear hull T(A) of $T(A^+)$ is a two-sided self-adjoint ideal in A such that $T(A)^+ = T(A^+)$. We denote the closure of T(A) by J(A). Following $[\mathbf{3}]$ we say that A is a C^* -algebra with continuous trace if J(A) = A.

Let (A, G, α) be a covariant system. That is, G is a locally compact group, A is a C^* -algebra and $\alpha : G \to \operatorname{Aut}(A)$ is a strongly continuous homomorphism of G into the automorphism group $\operatorname{Aut}(A)$ of A. Here, 'strongly continuous' means that, for each $a \in A$, the map $G \to A$, $s \mapsto \alpha_s(a)$ is continuous. We shall also say that α is an action of G on A. Let π be a non-degenerate representation of A on a Hilbert space \mathcal{H} , and let u be a unitary representation of G on the same Hilbert space \mathcal{H} . The pair (π, u) is called a covariant representation of (A, G, α) if

$$\pi(\alpha_s(a)) = U_s \pi(a) U_s^* \quad \text{for all } a \in A, \quad s \in G.$$

The crossed product $A \times_{\alpha} G$ is the enveloping C^* -algebra of a certain Banach-*-algebra $L^1(G, A)$ (see, for example, [8, Chapter 7.6]). For abbreviation we shall sometimes also write $A \times G$ instead of $A \times_{\alpha} G$. There is a canonical *-homomorphism i_A of A into $M(A \times_{\alpha} G)$ and there is a canonical group homomorphism i_G of G into $M(A \times_{\alpha} G)$

K. Deicke

with the following property. For each covariant representation (π, u) of (A, G, α) there exists a non-degenerate representation $\pi \times u$ of $A \times_{\alpha} G$ such that $(\pi \times u) \circ i_A = \pi$ and $(\pi \times u) \circ i_G = u$. Conversely, for each non-degenerate representation ρ of $A \times_{\alpha} G$, the pair $(\pi, u) := (\rho \circ i_A, \rho \circ i_G)$ is a covariant representation of (A, G, α) such that $\rho = \pi \times u$ (see [8, Theorem 7.6.4]).

As in [8, Chapter 7.1] we denote by $C^*(G)$ the (full) group- C^* -algebra of G, which can also be regarded as the crossed product of the covariant system ($\mathbb{C}, G, \mathrm{id}$). Thus, in particular, each unitary representation $u: G \to \mathcal{U}(\mathcal{H})$ defines a non-degenerate representation of $C^*(G)$ on \mathcal{H} . This representation shall also be denoted by u.

Now a covariant system (A, G, α) is called *pointwise unitary* if, for each $\pi \in \hat{A}$, there exists a unitary representation $u : G \to \mathcal{U}(\mathcal{H})$ such that (π, u) is a covariant representation of (A, G, α) (see [9]). Pointwise unitary actions of abelian second countable groups on separable C^* -algebras with continuous trace were studied in great detail by Olesen and Raeburn in [6]. For example, they showed that the crossed product $A \times_{\alpha} G$ of such a system has Hausdorff spectrum and that the dual action $\hat{\alpha}$ of \hat{G} on $A \times_{\alpha} G$ induces an action on $(A \times_{\alpha} G)^{\wedge}$, which is free and proper in the sense of [7]. Furthermore, they were able to identify $A \times_{\alpha} G$ with the pull-back Res^{*} A, where Res : $(A \times_{\alpha} G)^{\wedge} \to \hat{A}$ is the map which sends $\pi \times u \in (A \times_{\alpha} G)^{\wedge}$ to $\pi \in \hat{A}$. In particular, it follows that $A \times_{\alpha} G$ has continuous trace.

To prove that $A \times_{\alpha} G$ has Hausdorff spectrum, Olesen and Raeburn used an important result of Rosenberg which says that a pointwise unitary action of a compactly generated abelian group H on a continuous trace C^* -algebra A is automatically locally unitary (see [10]). In our paper we give a much more elementary proof of the fact that $A \times_{\alpha} G$ has continuous trace. We mainly use the fact that the map Res : $(A \times_{\alpha} G)^{\wedge} \to \hat{A}$ as described above is well defined and continuous (see [9, Proposition 2.1]). Of course the arguments used in our Theorem 2.1 below do not apply to the other two important results described above, namely that \hat{G} acts properly on $(A \times_{\alpha} G)^{\wedge}$ and that $A \times_{\alpha} G$ is isomorphic to Res^{*} A. For a more general treatment of this topic see, for example, [4], where pointwise unitary subgroup bundles are considered, or [1], where pointwise unitary coactions are considered.

2. Proof of Theorem 2.1

Theorem 2.1. Let (A, G, α) be a pointwise unitary covariant system such that G is abelian and A has continuous trace. Then the crossed product $A \times_{\alpha} G$ also has continuous trace.

Proof. Let $A \times_{\alpha} G$ be represented faithfully and non-degenerately on a Hilbert space \mathcal{H} . Then the pair (i_A, i_G) becomes a covariant representation of (A, G, α) . In particular, i_G defines a non-degenerate representation of $C^*(G)$ on \mathcal{H} . Furthermore, $A \times_{\alpha} G$ is generated by elements of the form $i_A(a)i_G(f)$ with $a \in A$ and $f \in C^*(G)$ (cf. the proof of Theorem 7.6.6 in [8]).

216

Define

$$T^{M}(A \times_{\alpha} G^{+})$$

:= { $z \in M(A \times_{\alpha} G)^{+} : \rho \mapsto \operatorname{tr} \rho(z)$ is finite and continuous on $(A \times_{\alpha} G)^{\wedge}$ }.

It follows from the properties of the trace function tr that $T^M(A \times_{\alpha} G^+)$ is closed under addition and that $zz^* \in T^M(A \times_{\alpha} G^+)$ implies that $z^*z \in T^M(A \times_{\alpha} G^+)$. Suppose that $w \in M(A \times_{\alpha} G)^+$ is dominated by an element $z \in T^M(A \times_{\alpha} G^+)$ (that is, there exists a $\lambda \in \mathbb{R}^+$ such that $w \leq \lambda z$). Since $(A \times_{\alpha} G)^{\wedge}$ is clearly an open subset of $(M(A \times_{\alpha} G))^{\wedge}$, the arguments used in the proof of Lemma 4.4.2 (i) in [3] show that $w \in T^M(A \times_{\alpha} G^+)$. Now it follows from Lemma 4.5.1 in [3] that the linear span $T^M(A \times_{\alpha} G)$ of $T^M(A \times_{\alpha} G^+)$ is a self-adjoint two-sided ideal in $M(A \times_{\alpha} G)$ such that $T^M(A \times_{\alpha} G)^+ = T^M(A \times_{\alpha} G^+)$.

We claim that $i_A(T(A^+)) \subset T^M(A \times_{\alpha} G^+)$. Let $a \in T(A^+)$, and suppose that $\pi_{\lambda} \times \mu_{\lambda} \to \pi \times \mu \in (A \times_{\alpha} G)^{\wedge}$. Since A is of type I and G is abelian, we know by Proposition 2.1 in [9] that $\pi_{\lambda} \to \pi$. Since $a \in T(A^+)$, this implies that

$$\operatorname{tr}(\pi_{\lambda} \times \mu_{\lambda})(i_A(a)) = \operatorname{tr}\pi_{\lambda}(a) \to \operatorname{tr}\pi(a) = \operatorname{tr}(\pi \times \mu)(i_A(a)).$$

Thus $i_A(a) \in T^M(A \times_{\alpha} G^+)$, and $i_A(T(A^+)) \subset T^M(A \times_{\alpha} G^+)$, as claimed. Now let $L := \{i_G(f) \ i_A(a) \ i_G(f) : f \in C^*(G)^+, \ a \in T(A^+)\}$. Then

$$L \subset T^M(A \times_{\alpha} G^+) \cap A \times_{\alpha} G = T(A \times_{\alpha} G^+) \subset J(A \times_{\alpha} G).$$

Since $J(A \times_{\alpha} G)$ is an ideal in $A \times_{\alpha} G$ and hence in $M(A \times_{\alpha} G)$, and since $i_G(C^*(G)) \subset M(A \times_{\alpha} G)$, it follows that

$$Li_G(C^*(G)) := \{ab : a \in L, b \in i_G(C^*(G))\} \subset J(A \times_{\alpha} G).$$

But $A = \overline{T(A)}$, and therefore $A \times_{\alpha} G$ is generated by elements of the form $i_A(a)i_G(f)$ with $a \in T(A^+)$ and $f \in C^*(G)$. Furthermore, $i_G : C^*(G) \to M(A \times_{\alpha} G) \subset \mathcal{L}(\mathcal{H})$ is a non-degenerate representation. Thus, using an approximate identity for $C^*(G)$ and the fact that $C^*(G)$ is abelian, we see that $A \times_{\alpha} G$ is generated by $Li_G(C^*(G))$. Thus $A \times_{\alpha} G = J(A \times_{\alpha} G)$. It follows that $A \times_{\alpha} G$ has continuous trace.

Remark 2.2. Let A be an arbitrary C^* -algebra. By transfinite induction, there exists a minimal ordinal number γ and an increasing family $(J_\beta)_{0 \leq \beta \leq \gamma}$ of closed ideals in A such that

$$J_{0} = 0, \quad J(A/J_{\gamma}) = 0, \quad J_{\beta+1}/J_{\beta} = J(A/J_{\beta}) \quad \text{for } 0 \leq \beta < \gamma,$$

and $J_{\beta'} = \overline{\bigcup_{\beta < \beta'} J_{\beta}} \text{ if } \beta' \text{ is a limit ordinal.}$
$$\left. \right\}$$
(2.1)

Following [2] we say that A is a C^{*}-algebra with generalized continuous trace if $J_{\gamma} = A$. For example, if A is a type I C^{*}-algebra such that the points in \hat{A} are separated, then A has generalized continuous trace (see [2]). In particular, each type I C^{*}-algebra with Hausdorff spectrum has generalized continuous trace. K. Deicke

Now suppose that (A, G, α) is a pointwise unitary covariant system such that G is abelian and A has generalized continuous trace. Let $(J_{\beta})_{0 \leq \beta \leq \gamma}$ be an increasing family of closed ideals in A such that $J_{\gamma} = A$ and such that condition (2.1) holds. Since α is pointwise unitary, it follows that each closed ideal I is α -invariant in the sense that $\alpha_s(I) = I$ for all $s \in G$. In particular, for each β , α induces an action $\alpha_{J_{\beta}}$ on I_{β} and an action $\alpha^{J_{\beta}}$ on A/I_{β} . By the results of Green [5] we obtain an increasing family $(J_{\beta} \times G)_{0 \leq \beta \leq \gamma}$ of closed ideals in $A \times_{\alpha} G$ such that $J_0 \times G = 0$, $J_{\gamma} \times G = A \times_{\alpha} G$ and

$$J_{\beta'} \times G = \overline{\bigcup_{\beta < \beta'} (J_{\beta} \times G)}$$
 if β' is a limit ordinal.

Moreover, it also follows from [5] that $(A \times_{\alpha} G)/(J_{\beta} \times G) = (A/J_{\beta}) \times G$ for each β and it is clear that the action $\alpha^{J_{\beta}}$ of G on A/J_{β} is still pointwise unitary.

Since A is of type I by Proposition 4.3.4 in [3], the proof of the theorem above (applied to the action of G on A/J_{β}) shows that

$$(J_{\beta+1} \times G)/(J_{\beta} \times G) = (J_{\beta+1}/J_{\beta}) \times G$$

$$\subset J((A/J_{\beta}) \times G) = J((A \times_{\alpha} G)/(J_{\beta} \times G))$$

for each $0 \leq \beta < \gamma$. But, by Proposition 11 in [2], this suffices to conclude that $A \times_{\alpha} G$ has generalized continuous trace.

Acknowledgements. We thank Siegfried Echterhoff, who gave us a hint needed for the proof of the theorem.

References

- 1. K. DEICKE, Pointwise unitary coactions on C*-algebras with continuous trace, J. Operator Theory 43 (2000), 295–327.
- 2. J. DIXMIER, Traces sur les C*-algèbres, Ann. Inst. Fourier 13 (1963), 219–262.
- 3. J. DIXMIER, C^{*}-algebras (North-Holland, New York, 1977).
- 4. S. ECHTERHOFF, Crossed products with continuous trace, Memoirs of the American Mathematical Society, no. 123 (1996).
- 5. P. GREEN, The local structure of twisted covariance algebras, *Acta. Math.* **140** (1978), 191–250.
- D. OLESEN AND I. RAEBURN, Pointwise unitary automorphism groups, J. Funct. Analysis 93 (1990), 278–309.
- R. S. PALAIS, On the existence of slices for actions of non-compact Lie groups, Ann. Math. 73 (1961), 295–323.
- 8. G. K. PEDERSEN, C*-algebras and their automorphism groups (Academic, London, 1979).
- 9. J. PHILLIPS AND I. RAEBURN, Crossed products by a locally unitary automorphisms groups and principal bundles, J. Operator Theory **11** (1984), 215–241.
- J. ROSENBERG, Some results on cohomology with Borel cochains, with applications to group actions on operator algebras, *Operator Theory Adv. Appl.* 17 (1986), 301–330.

218