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Abstract. Igive the necessary and sufficient conditions for the existence of Unitary local systems

with prescribed local monodromies on P! — S where Sis a finite set. This is used to give an algo-

rithm to decide if a rigid local system on P! — S has finite global monodromy, thereby answering
a question of N. Katz. The methods of this article (use of Harder—Narasimhan filtrations)
are used to strengthen Klyachko’s theorem on sums of Hermitian matrices. In the Appendix,
I give a reformulation of Mehta—Seshadri theorem in the SU(n) setting.
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1. Introduction

The following question of N. Katz [7] is the starting point of this article. Let L be a
rigid local system on P! — {p|, ..., p,} (see the section on rigid local systems for
the definitions) with finite monodromies at the punctures. When does the local sys-
tem L have finite global monodromy (in terms of the Jordan canonical forms of
the local monodromies around the punctures)? Clearly the local monodromies
should be of finite order. But of course there are more conditions.

The above problem is related to the following problem concerning SU(n): Let
Ay, Ay... A, be conjugacy classes in SU(n). When can we lift to matrices 4; in
SU(n) with conjugacy class of 4; = A; and so that 414, ... A, = I? We will see that
an affirmative answer for all Gal(@/ Q) conjugates of the local monodromies for
the second problem is what is needed for the first problem.

The SU(n) problem is related to quantum cohomology as was independently
observed by Agnihotri and Woodward [1] and the author (with help from Pandhari-
pande on quantum cohomology). I. Biswas [3] had previously considered and solved
this problem for SU(2).

Firstly, by the theorem of Mehta and Seshadri (modified to the SU(n) setting) the
existence problem for lifting is the same as the existence of a semistable parabolic
vector bundle with prescribed local weights on P'. Using the openness of
semi-stability, this is reduced to checking if the trivial vector bundle with generic
flags and the prescribed weights is semistable. This means that no subbundle should
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contradict semi-stability. The subbundles of a given rank and degree of the trivial
vector bundle of rank » form a open subset of a Quot scheme and also of the moduli
space of maps from P! to an appropriate Grassmann variety. Now the question of
existence of a subbundle is translated into existence of a map from P! to a
Grassmann variety, such that the prescribed points on P! go to appropriate generic
Schubert cycles. The existence is (with a little bit more work) realized as the
nonvanishing of certain Gromov-Witten numbers. The Harder—Narasimhan
filtration is used to conclude that only inequalities corresponding to intersections
which are numerically one need to be considered.

The above problem is related to one considered by Klyachko [9]. Using the
Harder—Narasimhan filtration in that context lets us conclude that only intersections
which are numerically one need to be considered. The reduction to this restricted set
of inequalities in various contexts was triggered by an electronic message from C.
Woodward to the author in which Woodward noticed this (and proved it) in a special
case of Klyachko’s problem.

In the following article, to make consistent the subscripts and superscripts, I have
adopted the following rule. The points of the curve are always subscripts and the
indices of the filtration are superscripts. For example, an element of a filtration
of a fiber of a vector bundle ¥ at a point x is denoted as V.. A basepoint u on
P! is chosen and fixed throughout this article. The weights are always taken to
be nonincreasing (except in the Appendix where we recall the definition used by
Mehta and Seshadri in their paper [10]).

2. A Precise Formulation of the SU(n) Problem

Conjugacy classes in SU(n) form a simplex of dimension n — 1. We call two matrices
A, B in SU(n) conjugate if there is a g € SU(n) so that A = gBg~'. The equivalence
classes under conjugation of SU(n) has a natural structure of a simplex realized
as A(n) ={(d',...,d"):a' >a® - >d" >a' —1,) 1, d = 0} where the correspon-
dence takes (@) to the conjugacy class of the diagonal matrix with exp(2ria’) on
the diagonal. This map from the points of the simplex to conjugacy classes is a
homeomorphism (quotient topology on conjugacy classes).

Denote by I',(s) the subset of A(n)* consisting of conjugacy classes Ay, ..., A,
which can be lifted to matrices A4y, ..., As; so that conjugacy class of 4; = A; for
all iand 4,... 4, =1.

GEOMETRIC PICTURE 1. n(P! = {p1, ..., ps}, u) = free group on generators
Vis -,V With the relation y, - -y, = I where the y; are loops around each puncture
(appropriately chosen and oriented). Then we are asking if there is a representation
p:mi(PY = {p1, ..., ps}, u) = SU®) so that the local monodromies (being the con-
jugacy classes of p(y;)) are the prescribed ones.
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We provide a description of I',,(s) in terms of inequalities controlled by Quantum
Schubert calculus in Section 6.

3. The Theorem of Mehta and Seshadri

The theorem of Narasimhan and Seshadri gives bijective correspondence between
irreducible unitary representations of the fundamental group of a compact Riemann
surface and the set of stable vector bundles of degree 0. For punctured curves, the
space of irreducible unitary representations is also in correspondence with certain
algebraic objects on the curve, called stable parabolic bundles of degree 0 (theorem
of Mehta and Seshadri). We first set up some notations. Note that we state the
theorem for SU(n) representations, which follows from the original form of Mehta
and Seshadri by rescaling. (A proof is included in the Appendix.)

We will assume for the definition that X is a projective smooth curve over C and
that py, p2 ..., ps are distinct points on X.

DEFINITION 1. A ‘complete’ parabolic vector bundle on a curve X with s marked
points (the p;’s) consists of a vector bundle V' of rank n on X and the following
additional data:

(1) Forallx € {py, ..., ps}afiltration of the fiber V,: Vy = V" > V"1 5...5 V0 =
{0} by vector subspaces with strict inclusions.
(2) Weightsal>d®2> --- >d' >al — 1.

Also, define the parabolic degree of V as
n
Par(V) = deg(V) + Z Z a.
x =l
Define the slope pu = (Par(V))/ (rank(})).

A subbundle W of V gets an induced parabolic structure by intersecting the above
filtration of V, with the fibers of W, looking at breaks in the sequence

We=WnV'2W,nV"='>...0 W, NV ={0}.

and assigning the highest weight possible. That is we get from the sequence above a
complete flag on W, and assign to W' the weight b’ = &, where j is the smallest
number satisfying Wi = W, N V..

We can now state the form of the Mehta—Seshadri theorem useful for our purposes
Let @), be numbers satisfying a},j > aﬁj e zay > a},j — 1,1, a, =0 for each p;.
THEOREM 1 (Mechta-Seshadri [10]). There exists an irreducible representation
p:mi(PY = {p1,....ps}, u) = SU®) with the conjugacy class of p(y;) given by
(a[l?j, A a;j)forj =1,2,...,sifandonly if there is a stable parabolic bundle of degree
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0 with the weights again given by (alj_, R a;j) for j=1,2,...,s. Moreover, there
exists a semistable vector bundle with these weights if and only if there is a (possibly
reducible) representation of the fundamental group in SU(n) with the corresponding
conjugacy classes (as before).

Recall that a bundle of parabolic degree 0 is called stable (resp. semistable) if all its
subbundles have negative (resp. nonpositive) parabolic degree.

The above is not the form given in [10] but can be obtained from it. This is done in
the Appendix.

4. Some Elementary Reductions and Gromov—Witten Invariants

Let T',,(s)™ be the set of points in I',(s) which are in the interior of A(n)’. This cor-
responds to Jordan canonical forms with distinct eigenvalues. The first lemma is that

LEMMA 1. The (topological) closure of T,(s)™ in A(n)* is Tu(s).

Proof. We use the fact that in a connected semi-simple group, any nonempty open
subset (in the usual topology) of a maximal compact subgroup is Zariski dense.

Let G=SL(n) ' and K = SU®m)* . Let T = {(g1,...,g,-1):gi € G, the g’s have
characteristic polynomials with distinct eigenvalues, and also the product
g1 ...gs—1 has characteristic polynomial with distinct eigenvalues}. T is nonempty
and Zariski dense because T is an intersection of nonempty Zariski open subsets.

I',(s) is closed in A(n)’ because it is the continuous image of the compact set K. The
map sends g1, ..., g1 to the point (of conjugacy classes) (g1, g2, - - ., 51, &) Where
gs = (g1-+-gs—1)~ L. It suffices to show that if U is an open (in the usual topology)
subset of K containing (gy, ..., gs_1), then U intersects T. This follows from Zariski
density of U and the Zariski-openness of T. O

It is also useful to show that elements of I',(s) which come from irreducible
representations are dense in it. This follows, since in G (as in the proof above),
the elements which have a common eigenspace is a Zariski closed set. That is, if
we look at the subset of G formed by (gi,...,gs_1) such that g; leave a nonzero
subspace of C" invariant, then this subset is Zariski closed and not all of G. Sub-
stitute the complement of this set for T in the above proof and we obtain the assertion
above.

The conclusion from the above discussion is that we can restrict ourselves to
elements of I',(s) which have distinct eigenvalues and correspond to irreducible
representations. The closure of the subset we obtain this way will exactly equal
I',(s). This problem algebraizes by the Mehta—Seshadri theorem. But for technical
reasons we will consider semistable bundles too.

Our problem now is therefore, given aziy with sum over i for each p; zero and

a[]?i Z - za, > a},j — 1, we want to know if there is a stable parabolic vector bundle
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on P' with the a;,j as the parabolic data. The openness of (semi)stability implies that

we may assume the vector bundle to be trivial and with general flags:

THEOREM 2. If there is a (semi)stable parabolic bundle with the given data, then
there is also a (semi)stable parabolic vector bundle with the same data and so that
the underlying vector bundle is trivial and the flags at the points p; are generic.
Proof. The degree of the vector bundle is 0. It is well known that (Theorem 6.) a
vector bundle on P! sits in a family where the generic member decomposes as
(O(@)@---® O(d") and the distance between ' and & is less than or equal
to 1. In our situation the degree =0 forces the a' to be all zero. We can
now vary our original stable vector bundle in such a family with the flags also
varying. The openness of stability in families, then, gives us the statement of
the theorem. O

THEOREM 3 (Harder and Narasimhan). Suppose E is a parabolic vector bundle on a
curve X. Let pdenote sup{(u(V') : V'is subbundle of E}. Let V be a subbundle of maxi-
mum rank among subbundles with slope . Then V is unique, that is, any subbundle of

the same rank as V has smaller parabolic slope.
Proof. See the paper of Mehta and Seshadri [10]. O

We set up some notation for future use.

DEFINITION 2. (1) Let Q(d, r,n) = the Quot Scheme of degree d, rank n—r
quotients of O". The set of degree —d, rank r subbundles of " is a subscheme
of this subscheme (by dualizing).

(2) Let M(d, r, n) =moduli space of maps from P! to Gr(r, n) of degree d

We set up notation for certain subvarieties of Grassmann varieties which generate
the cohomology of these varieties [5].

DEFINITION 3. For a conjugacy class A of SU(n),and a subset 1 of {1, 2, ..., n} of
cardinality r, define A;(4) =) ;.; 4i(4) where 4 = (4i,..., ) € A(n).

The subsets I above also correspond to Schubert subvarieties of the Grassmann
variety:

DEFINITION 4. Let I ={ij <ih <---<1i}. Let F* be a complete flag in a
n-dimensional vector space E. Now let Q;(F°*) = {L € Gr(r, E) | dim(L N Fi") > ¢
for 1 <t <r}. We denote the cohomology class of this subvariety by o;. The

codimension of this subvariety is the number of pairs (j, i) with i < j.

We note the following theorem:
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THEOREM 4. Let 0 > § — 0" — Q — 0, where S is the universal subbundle of
rank r and Q the quotient be the universal sequence on the Grassmann variety
Gr(r, n). Then

(1) The dual of \" S is ample on Gr(r, n).
(2) Pic(Gr(r, n)) is generated by —ci(S)
(3) If p: P' — Gr(r, ). then deg(p*S) = p,[P']N (=1(S))

Note that —p*[Pl] N (—c1(S)) is called the degree of the map p.

Proof. The first statement is clear because under the Pliicker embedding A”S is the
pullback of O(—1).

The second is standard [5].

The third follows from the projection formula

p. [P'1Nc1(S) = p((P'1N €1 (p*S)).

Note that p, on dimension 0 cycles is the identity (numerically) and that
[P'1N ¢1(p*S) = deg(c1(p*(S)) numerically. ]

The inequalities defining I',,(s) can be written in terms of Gromov—Witten numbers
of the Grassmannian. Let I}, I», . .., I; be subsets of {1, 2, ..., n} of cardinality r and
P1. ..., ps general points of P'. The Gromov-Witten number (a1, . .., ass)4 is defined
to be, for generic flags Fp", (i=1,2,...,5), the number of maps P! — Gr(r, n) of
degree d such that the image of p; is in the Schubert variety Q;(F;). We define
the number to be zero if this number is infinite (note the genericity assumption
on the flags).

The Gromov—Witten invariants also have an interpretation in terms of vector
bundles on P'. Let ¥/ = 0" be a vector bundle on ' . We have a universal sequence
of vector bundles on Gr(r, n)

0-S—-0"->90—-0

where S is the universal subbundle of rank r and Q the quotient. It is now easy to
verify that degree d maps p: P' — Gr(r,n) are in 1-1 correspondence with
subbundles of rank r and degree —d of V by pulling back the universal sequence
via the map p. Also, the image of point p; under this map is exactly the fiber of
this subbundle at p;. It is useful to fix an n-dimensional space 7" and identify all
fibers of the bundle V with T. To obtain the other direction of this correspondence
note that subbundles S correspond to a family of r dimensional subspaces of T(over
Ph.

The number defined above, therefore counts the number (zero if infinite) of
subbundles E of V of degree —d and rank r such that the fiber E, as a subset
of T lies in the Schubert variety Q(F).

The Gromov-Witten invariants are computable. We mention two important
properties which makes their calculation a finite process: the factorization formula
and the associativity of the small quantum cohomology ring. We refer to the
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Mittag—Leffler notes [11]. A. Bertram gives an effective description of the quantum
cohomology ring of Grassmann varieties [2].

5. Some Genericity Statements

We collect a few standard facts and supply proofs.

THEOREM 5. Let S be a scheme over C. Let V be a vector bundle over P' x S. Let
s € S be a geometric point such that Vs decomposes as a direct sum of O(a) and
O(a + 1). Then V, decomposes in the same way fot t varying in a neighborhood of s.

Proof. Twist by O(—a — 1) to reduce to the case a = —1. Then h(P', 0),
(P!, O(=1)) and K°(P', O(—1)) are zero. The semicontinuity theorem [H] tells
us that A'(P', ¥,) and #°(P', V,(~1)) are 0 in a neighbourhood of s. Also, V; is
a direct sum of O(i) for various i. The vanishing of the ' and the 4° of the twisted
sheaf forces the i’s appearing to be either 0 or —1. Hence, the statement.

LEMMA 2 (Serre). Let X be a smooth complete curve over an algebraically closed
field k. Let V be a vector bundle on X generated by its global sections. There is
an exact sequence:

0— 0%V s det(V)—0.

Proof. Let x € X. We have a surjective map H°(X, V) — V,. The kernel has
dimension #°(V) —n. Let P = P(H°(X, V)) and consider the kernel as a subspace
of P. As x varies over X the union of these subspaces form a subvariety K of P
of codimension n — 1.

Since P has a transitive action of PGL(4"), we can find a linear subspace of
dimension n — 2 which does not intersect the set K. We lift this to a subspace K’
of H(X, V) of dimension n — 1. This gives an injection K’ ® c Oy — V of vector
bundles. The quotient is easily seen to be det(V). O

THEOREM 6. Let V be a vector bundle on P'. Then there is a family containing V of
vector bundles over an irreducible base whose generic member breaks up as direct sum
of O(a) such that the distance between any two a’s appearing is at most 1.

Proof. Let us assume that V' is the direct sum of O(«;) fori =1, ..., n. Assume (by
twisting) that all the a;’s are positive. Then V' is generated by its global sections.

Letd = Z]’LI a;. Also write d = ng + r where 0 < r < n. Let W be the direct sum of
n — r copies of O(q) and r copies of O(g + 1). Then det(V) = det(W). W is generated
by its global sections.

By the lemma of Serre above, we have exact sequences

0— %"=V 1 det(V)—0,
0—> O~V w—s det(W)—0.
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Hence, we see that 7 and W are members of the connected irreducible family of
extensions Ext(det(V), O®"=D) of det(V) = det(W) by ©O®"~D, 0

We now make explicit the genericity assumptions. The following moving lemma is
well known.

LEMMA 3 (A Moving lemma). Let X be a smooth variety over C, G a connected
algebraic group acting transitively on X, {z;}ic; and {y;};e; two finite collections of
locally closed subvarieties of X. Then there exists a dense open subset U of G so that
for every 6 € U

(1) all the intersections oy; N z; are proper,
(2) if yjand z; are smooth then oy; N z; is tranverse.

Proof. For a proof see Kleiman [8]. O

In our situation X =[], Gr(r, n), G =[], SL(n). Fix flags at each point. Let the
set {yj}je; consist of all the products of Schubert varieties Q;, x --- x Q; and the
singular locus of each product.

Next we choose the z;’s as follows: If V is a parabolic bundle of degree zero on P!
with parabolic structures at py, ..., p, with the weights summing to 0 at each point,
and W is a subbundle with par(/) > 0 then it is easy to see that deg(W) < ns. Now,
for every d < ns let ¢,: M(d, r,n) — X be the product of the evaluation maps at p;
and choose a proper closed subset Z; of im(¢,) containing the singular locus of
im(¢,) and the complement of im(¢,) (such a Z; exists by a theorem of Chevalley).
Then let {z;};; be the collection of im(¢;)’s and Z;’s for d < ns.

The ¢’s obtained by the theorem have the property that whenever any oy; N z; is
zero-dimensional, each point of intersection has multiplicity one (the intersection
is transverse, since it takes place on the smooth parts of y;’s and z;’s, by dimension
arguments). For each r we thus get an open subset U, of G. The intersection U
of all U,’s is a nonempty open subset of G such that if ¢ € U and oy;, N z;, has
dimension zero, then all the the multiplicities are one.

6. The Main Theorem

THEOREM 7 (The Main Theorem). Let (41, Ay, ..., A;) € A(n)’. Then there exist
Ay, ..., Ay € SU(n) with conjugacy class of A; = A; and A1 A, --- A, = I if and only

if:
Given any 1 <r < n and any choice of subsets I, I, . . ., I; of cardinality r and if

(01,,...,01)q =1 then the following inequality Z};l 41,(4j) —d < 0 is valid.
Remarks:

(1) Notice that if the Gromov—Witten number is nonzero, the following dimension
equality
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> ;-1 codim(ay) = nd + r(n —r) should hold.
This follows from zero dimensionality of intersection in the moduli space of
maps P! — Gr(r, n) of degree d.

(2) More inequalities are valid for I',(s). The inequalities are valid even if the
intersection numbers are greater than 1. This is a consequence of the above
inequalities.

(3) The main theorem is stronger than the form previously obtained by the author
and independently Agnihotri and Woodward [1] in that we are able to reduce
the set of inequalities to the ones coming from intersections that are numerically
one. The same improvement also holds for Klyachko’s theorem.

(4) In the above, there exists an irreducible representation p:m;(P'—
{p1,...,ps}, u) - SU(n) with the given conjugacy classes above, if and only if
the inequalities above are strict. Note that irreducible is the same as there being
no subspace fixed by all 4;.

Proof. The proof will be in three steps

(1) By the work of Mehta and Seshadri and the modification for SU(n) represen-
tations (I have included a proof of the modification in the Appendix), the problem
is the same as existence of parabolic vector bundle on P! with the corresponding
weights. By Theorem 2 we know that there exists such a bundle if and only if there
is an open dense subset of points on the (product of ) complete flag varieties on the
fibers of V' = (" at the p;, which give a semistable parabolic structure on'V (with
the weights coming from the A,-’s).

(2) We first show the validity of the inequalities on the set I',,(s). Suppose we are given
Ay, ..., A, which lift to Ay, ..., A, which product to 1 (in that order). Then, we
find a parabolic vector bundle with the weights given by eigenvalues of A, as
in the Mehta—Seshadri theorem. Now, suppose one of the inequalities is not valid.
Say the one corresponding to gy, . .., o;, of rank r and degree d. Move to generic
flags at p; using openness of stability (Theorem 2). Since the intersection number
(01, ...,01,)q 1s not zero we will find a semistable bundle with a subbundle of
degree —d and rank r whose fibers at p; are in Q;(F}).

Now, the left side of the inequality is less than or equal to the parabolic degree of
this subbundle which should be less than or equal to zero. Hence the inequality is
valid. It is clear that in any situation where we are assured of the existence of such
a subbundle (not just nonempty zero-dimensional family of these) generically, we
find that the corresponding inequality is valid.

(3) We now show the sufficiency of the inequalities stated in the theorem. Suppose we
have the data so that the inequalities are valid but there are no matrices A; such
that the conclusion of the theorem holds. This means that the generic parabolic
structure on ¥ = " with weights dictated by the A; is not semistable. Fix a gen-
eric parabolic structure. (Genericity means that that there are no special
subbundles of any rank and degree (see the discussion on Genericity).) There
is then a best candidate for a subbundle of V' which contradicts semistability
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(Theorem 4.3). Let W be this subbundle and let its degree be —d and rank r. Let
I, be the set of cardinality r consising of i; where i is the least number with
Fy N W, is k (for k=1,2,....7.

Note that the Gromov Witten number (oy,, ..., 075), = 1. This is because W
exists and there are no other subbundle of degree —d and rank r with fibers
in Q;(F;). This is so because any other M in the intersection will have degree
—d , rank r and the parabolic part of the degree at least as much as that of
W. Hence, u(W) < u(M). Recalling the definition of 1, we see that equality holds
and we reach a contradiction to the uniqueness of W.

Since the intersection is 1, we have the corresponding inequality in the set of
inequalities which our data satisfies. But u(W) > 0 since the bundle W is one
that contradicts semistability of V. But rank(W)u(W) = par(W) < 0 is one of
the inequalities on our list. So we reach a contradiction. Hence, the sufficiency
is proved. ]

7. Some Computations

Some computations were done in the rank 2,3 and 4 cases with s = 3.

Consider roots of unity {;,{, and {3 of order n so that {{{,{3 = 1. Let B; be the
diagonal matrix with all the diagonal entries equal to {; etc. Then By B,B; = I. Hence
the conjugacy classes of these elements give elements of I',(s). One can ask if the
convex hull of these is I',(s).

This is true in the case n = 2, 3, but is false in the case n = 4.

The following matrix equation

1 0 0 O -1 0 0 0 -1 0 0 O 1 0 00
0 -1 0 0 0 -1 0 0 0 1 0 o _JO 1 0O
0 0 -1 0 0 0 1 0 0 0 -1 0] |0 0O 1 O0
0 0 0 1 0 0 01 0 0 0 1 0 0 0 1

shows that the matrices on the left hand side give an element of I'4(3) which we prove
is not in the convex hull of the vertices considered above. The above point gives an
vertex of the polyhedron I'4(3) as verified by a computer check using the Porta
package.

LEMMA 4. Consider the point in T'4(3) given by the above matrix equation. Then this
is not in the convex span of the representation of the center of SU(4).

Proof. We think of conjugacy classes in SU(4) as 4-tuples (a1, a2, a3, as) so that
ay+ay+a3+ays=0anda; = ay > a3 = a4 = a; — 1. For the purposes of this proof
it is useful to think of the corresponding 4-tuple (b, by, b3, b4), where

by =a — ay, by =ar — a3, by = a3 — ay, by=as —(ar —1).

Then the conditions on a; are the same as b; > 0,b; +by + b3 + by = 1.
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All the three matrices on the left-hand side in the above matrix equation are con-
jugate and correspond to C = (%, 0,%, 0). The central elements correspond to
(1,0,0,0),(0,1,0,0),(0,0,1,0), and (0,0,0,1) which correspond to diagonal

matrices with
exp <@> exp <@) Xp <@) and exp <@)
4 ) 4 ) 4 ) 4

respectively. To simplify a long argument let us notice that the 2nd and 4th members
of C are 0. So to write C as a convex combination of the central element we can use
only (1, 0, 0,0) and (0, 0, 1, 0). There is no way of finding 3 of these type multiplying
to 1. The two elements are { and {* where { = i.

It is natural to pose the question of determining the vertices of the polyhedron
I',(s). The simplest guess is wrong as the above computation shows. A knowledge
of the vertices is sufficient to determine the polyhedron. O

8. Remarks on Klyachko’s Theorem

Let H be a Hermitian operator on C". Let
MH) = GNH) = 22(H) > -+ = 2'(H))

be the eigenvalues of H. Now, suppose we are given s sequences of real numbers
denoted 4;. Assume s > 3. Then Klyachko proved:

THEOREM 8. (Klyachko). There are Hermitian n x n matrices Hy, ..., Hy with
MH;) = 4; for all i and ", H; = c1 a scalar if and only if the following conditions
are satisfied (where r € {1,...,n— 1} and card(l;) =r)

S n

DI B BT

i=1 jel; i=1 j=1

whenever oy, - ... - oy isanonzeromultiple of the class oy, (the class of a point) in the
cohomology of Gr(r, n).

THEOREM 9 (Shortened list of inequalities). By the Harder—Narasimhan theorem,
we can shorten the set of inequalities to only those (x) for which oy, - ... - gy, is equal
to (not just a multiple of) the class oy 5 (the class of a point).

Hence, the inequalities as stated by Klyachko are not independent. We do not

know if the restricted set of inequalities above are independent.
To prove this, it is useful to set up the notation of a parabolic vector space:
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DEFINITION 5. A ‘complete’ parabolic vector space with s filtrations consists of a
vector space V' of rank n and the following additional data:

(1) Forall x e {1,2,...,s}afiltration: V= V"> V"' 5... 5 VY = {0} by vector
subspaces with strict inclusions.
(2) Weights al >a? > ... > d".

X

1 n .
Also define the parabolic slope of V as u(V) = |- a.
p p u(v) (n> Z ; g
A subspace W of V gets an induced parabolic structure by intersecting with the
fibres and looking at breaks in the sequence Wy =W NV' 2 W, NV"'>...D
W, N VY ={0} and assigning the highest weight possible. That is, we get from
the sequence above a complete flag on W, and define the weight ' = &/ where j
is the smallest number satisfying Wi = W, N V..
We want to modify the existence of Harder—Narasimhan filtrations in this setting.
The proof is standard.

LEMMA 5 (Harder—Narasimhan). If' V is not a semistable vector space then let yu =
maximum slope of subspaces W of V (trivially finite). Let E be a subspace of slope
u and maximum dimension possible (any subspace containing it has smaller slope).
Then E is unique.

Proof. Suppose E, E; are two such subspaces. Let S be the image of E| in V/E,.
We can give a parabolic structure on S via the surjective map from FE). Call this
structure Sj.

We can let 7 be the map from V' to V' /E,. Then we can give S a parabolic structure
from 7n'(S) (a subspace of V). Call this S». We have maps:

(I) S} — S, a map preserving filtrations,
(2) A sequence

0—K—FE;—>S;—>0.
(3) A sequence

0— E— 71 '(S)— S,—0.

From the first statement, u(S;) < u(S,). From the second we get u(Sy) = w(Er)
since the kernel has no greater slope. And from the third statement we get
u(S2) < u(E) since the middle term strictly contains E, (we may assume this or
the one with E; and E, interchanged). The net result is u(E>) > u(E;) which is a
contradiction to our assumption.

THEOREM 10 (Klyachko). There are Hermitian n x n matrices Hy, ..., Hy with
MH;) = Jiforalliand”; H; = c 1 ascalar if and only if there is a semistable parabolic
vector space V with s filtrations and weights dictated by the A;’s.

Proof. This is just a reformulation of Klyachko’s theorem as in [4]. O

We now give the proof of Theorem 5.2:
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Proof. Suppose that the modified set of inequalities is wrong. Then we find s
sequences of real numbers denoted /; as above for which the the restricted
inequalities are satisfied but there are no Hermitian matrices satisfying the con-
ditions of the theorem. This implies that the generic parabolic structure on
V= C" with the weights given by the 4; is not semistable. Let E; for
i=1,...,sbe the filtrations (assumed general). Let W be a subspace with maximum
slope and maximal dimension as in the above lemma. Let rank(W) = r. Assume that
W lies in the open cell in (V') with respect to the filtration E? for =1, ..., s. Then,
W is the only element in the intersection of Q, (V) for =1, ...,s. (Note card(/,)=
dim(W)). For if Z were another element in the intersection, then u(Z) > u(W) which
is not possible by the lemma since Z would have the same rank as W. So we find that,
since intersections are transversal with generic flags, oy, - ... - g5, is equal to the class
o1, (the class of a point) in the cohomology of Gr(r, n). Hence the inequality
w(W) < u(V) is a member of the restricted set of inequalities. But since W is a con-
tradiction to semistability of V we should have u(W) > u(V) and that leads to a
contradiction. So the restricted set of inequalities suffices. O

9. Application to a Problem on Rigid Local Systems

Let S = {pi, ..., ps} be a collection of distinct points on P! and let U = P! — S. A
local system F of C vector spaces on U is called physically rigid (Katz [7] ) if it
is irreducible and given any other local system G on U with isomorphic local
monodromies at points of S as F then G is isomorphic to F. Recall that the local
monodromy of F at p € S is determined by the Jordan canonical form of the mon-
odromy transformation at p (moving around p in the counterclockwise direction).

In our earlier language if F arises from p:m;(P' —S,u) - GL(n) and
m (P! — S, u) = free group on y,, ..., 7, modulo the relation y, ...y, = I where 7,
are loops around each puncture (appropriately chosen and oriented in counter-
clockwise direction), then the local monodromies are Jordan canonical forms of
p(y)-

Katz in his book [7] posed the following problem: Given the numerical data which
is known to arise from (a unique) rigid local system, can one determine if the global
monodromy is finite? We show that the solution to the SU(n) problem leads to
an algorithm for this.

The numerical data for a rigid local system on P! — S consists of Jordan canonical
forms 4,, € GL(n, C) for p; € S so that the following combinatorial condition (x) is
satisfied.

(%) (2 —s)m* + Z d;Cm(Z(Ap,)) =2,
i

where Z(A4,,) are matrices which commute with A4,,,.
Clearly all the 4, have to be of finite order (and hence diagonalizable) for there to
exist a local system of finite global monodromy with 4, as the Jordan classes of the
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monodromy transform at p;. So we assume to start with that this is the case and let K
be the field obtained by adjoining to Q the eigenvalues of all the A, (this is a Galois
extension) and let G = Gal(K/Q). Note that G is a finite group. It is a theorem of
Katz that the representation (if it exists) is defined over K, but we will not use this
fact.

For each g € G one gets a new set of Jordan canonical forms A5 = g4, by
applying g to the entries of A4,,’s. If there exists a local system giving rise to 4,
then there is such a representation landing in the unitary group (tensor with an
nth root of the dual of the determinant representation to get to the special unitary
group) and the same is true for all Galois conjugates of the original data. For rigid
local systems this is sufficient as the following theorem shows (using at a crucial
stage a result of Katz).

THEOREM 11. Let A, satisfy the numerical requirement for rigidity (*). Then there
exists an irreducible rigid local system of finite global monodromy on P' — S with
Jordan canonical form of the monodromy transformation at p; = A, (counter-
clockwise orientation) if and only if for every g € G there is a irreducible represen-
tation pg: n(P' — S, u) — U(n) with the monodromy transform at p; being A3

Remark. We may assume by tensoring with the the dual of a nth root of the deter-
minant representation that the 4, are of determinant 1.

Proof. (Standard). The ‘only if” part is clear. Let us fix for each g € G a complex
vector space V, of dimension n with a nondegenerate Hermitian form H, and a
representation p, as in the statement of the theorem. Denote the fundamental group
of P! — S by I'. Among the representations V4 choose a subset V71, ..., V, consisting
of distinct representations of I'. Note that the muliplicity of each V; in the set
{Ve:g € G} is the same. Let W be the direct sum of V;. I' acts on W and preserves
a nondegenerate Hermitian form. The trace of each element of I under this rep-
resentation is in Q. This is because the trace is Galois invariant (we have summed
over all Galois conjugates).

Now, let Q:T" — U(W). and denote the map to GL(W) by the same symbol. Let
Az (resp. Ag and Ac) be the Z- (resp. (O and C) algebra generated by the image
of I' in End(W). I' acts on Az and, hence, on Ap and Ac on the left.

(I) The set A7 contains a complex basis of @End(V;). This is because W is a faithful
semisimple representation of 4A¢ and the endomorphisms of W over A¢ is
C’ (the V; are pairwise distinct irreducible representations). The endomorphisms
of W over the ring C" are precisely @End(V;). Thus, by Wedderburn,
Ac = @End(V)).

(2) The trace form on A¢ (which is the sum of the trace forms on End(V;)) is hence
nondegenerate. At this stage we do not know if Ag is finitely generated as a
Q- vector space. Select among members of A7 a basis uy, u, ..., u; of Ac.
We have a map Az — Z' by v i— (tr(vuy), . . ., tr(vuy)). This is injective because
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trace is nondegenerate on A¢ and integral because each element of I' has an
algebraic integer as trace on each V; by a theorem of Katz (any quasiunipotent
rigid local system on P! — S is motivic [7]). Since on W all traces of elements
of T" are rational numbers (we have added all Galois conjugates), the traces
are integers. Clearly A7 is torsion free and has rank / (it has rank at least / since
it contains uj, ..., u; and rank atmost / since it is contained in Zl). It follows
that Az is a lattice in A¢ (the natural map Az @ C — A is an isomorphism).
(3) Consider the left action of I" on A¢. This preserves the lattice 47 and the rep-
resentation V7 appears with multiplicity dim(77) times. So it suffices to show
that this representation has finite image. Also notice that I' preserves the
hermitian form tr(4B’) which is nondegenerate. Hence the image is the
intersection of a compact group and a discrete group (preserves a lattice, etc.)
hence finite. [

Appendix: A Variant of the Mehta—Seshadri Theorem for SU(n)
Representations

The theorem of Mehta and Seshadri in its original form is one about unitary
representations. A slight variant of this is required in this article. Namely we want
to study SU(n) representations of the fundamental group of a punctured curve
and want our weights to correspond to the the simplex corresponding to the con-
jugacy classes in SU(n).

The author has not found an adequate reference to the above variant. For com-
pleteness we include a proof of this fact.

First we recall the original version of the Mehta—Seshadri theorem. Let C be a
smooth projective curve over C and S = {p1, ps, ..., ps} be a finite set of distinct
points on C.

DEFINITION 6. A parabolic vector bundle on a curve C with s marked points (the
pi’s) consists of a vector bundle V of rank n on C and the following additional data:

() For all xe€{pi,...,ps} a filtration of the fiber Vy: Vy=VID>V2>...D
V' ={0} by vector subspaces with strict inclusions where r = r(x) depends
on Xx,

(2) Weights 0<dl <a¥ <...<d <1,

(3) Let k. = dim(V/Vi). Call this the multiplicity of d’.

Also, define the parabolic degree of V as
I‘(X) ..
Par(V) = deg(V) + Y Y k.d..
x =l

A subbundle W of V gets an induced parabolic structure by intersecting with the
fibres and looking at breaks in the sequence
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We=WnVow,nV:o>...2 W,NV'"™ =10} and assigning the highest
weight possible, That is we get from the sequence above a flag on W, and the weight
bi = & where j is the largest number satisfying Wi = W, N V..

The definition of stability is made in the usual way.

Suppose we are given for each x € S weights 0 < al <a! <. <a™ < 1. Let us
consider the set of parabolic bundles on C with fixed parabolic points being the

points in S and fixed numerical structure of the flags (the weights and muliplicities).

THEOREM 12 (Mechta—Seshadri). There exists an irreducible (resp. possibly
reducible) representation p:mi(C' — {py, ..., ps}, u) = U(n) with Jordan canonical
forms given by the tuples (aI',/, cee, a};f.pj)) with the associated muliplicities being given
and fixed if and only if there is a stable (resp. semistable) parabolic bundle of
parabolic degree 0 with the weights again given by (alf, cee ag.pj)) forj=1,2,...,s.

Recall that a bundle of parabolic degree 0 is called stable (resp. semistable) if all its
subbundles have negative (resp. non positive) parabolic degree.

We have to make the transition to our definitions. The differences are that in our
numeration the @'’s are nonincreasing and sum to zero (at each point), the distance
between any two of them (at a point) is less than or equal to 1, we are allowing
them to be equal, and the flags are complete.

Let us recall our definition:

DEFINITION 7. A ‘complete’ parabolic vector bundle on a curve C with s marked
points (the p;’s) consists of a vector bundle V' of rank n on C and the following
additional data:

(1) For all x e {p1,...,ps} a filtration of the fiber V,: V. =VID ij’l DD
1% = {0} by vector subspaces with strict inclusions.

(2) Weightsal > > .- >da" >d' — 1.

The first remark is that in the Mehta—Seshadri definition we can extend the flag to a
complete flag at each point of S and assign the lowest weight among the possibilities.
That is, we change the Mehta—Seshadri definition by insisting on a complete flag but
allowing weights to coincide. Then, in their theorem we cannot assert that irreducible
unitary representations correspond uniquely to stable parabolic bundles of degree 0.
The uniqueness is lost. But we can say that a stable (resp. semistable) bundle exists if
and only if there is an irreducible unitary representation (resp. reducible unitary
representation) with the given weights.

Next, when we are looking at SU(n) representations, the weights at each point have
to add up to an integer. This is because all the Jordan canonical forms in this case
have eigenvalues multiplying to 1. We will assume henceforth that this the case.

To prove the form of the Mehta—Seshadri theorem that we require we are going to
prove:
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(I) Given a Mehta—Seshadri parabolic bundle, we will show that there is a parabolic
bundle in the sense of this article. This association is not one to one.

(2) Given a parabolic vector bundle in our sense we show how to construct a
Mehta—Seshadri bundle out of this.

(3) These constructions preserve stability and semistability.

We will carry out the constructions in the case of one parabolic point. The exten-
sion to more than one parabolic point presents only notational difficulties (but
we will make remarks on that at the end of the constructions).

Let us start with a Mehta—Seshadri vector bundle with parabolic structure at the
point P. We extend the flag at P to a complete flag and revert to our numeration
(decreasing weights). Let the flagbe Vp = V3 D V3! 5 ... 5 V) = {0}. Notice that
stability and semi-stability of subbundles is not altered.

LEMMA 6. Let a vector space V have a strict increasing filtration: V' > V"1 5

DV =0and i(r) > i(r —1) > ... > i(1) be a set of numbers so that each i(j)
salzsﬁes 1 <i(j) <n. Let d) be given for j=1,...,r. Let W be a vector subspace
of V. Let b¥ = ') where j is the smallest number satisfying V'V 2 V*. Then

W n v W NV
2: i) _ E:
dim (Wﬂ | 4% 1>) dim (Wm Vi- 1>b

Proof. It suffices to show that the coefficient of ¢’ on both sides is the same. This
is clear since any element 7/ of the flag contained in V() and strictly containing
10— has been assigned the weight a'?). O

We define suitable shifts of the bundles. Define V7 to be the sheaf (a bundle) which
coincides with V" outside of P and whose sections over an open subset containing P
are the sections of ¥ which whose fiber at P are in V. Also fix a parameter ¢
of the curve at P. Define V7[i] to be sheaf which coincides with V outside of P,
but whose stalk at P is V7.

We have a parabolic structure on V/[k] coming from the following inclusions of
sheaves: V/[k] D VIl k] D - D VK] D V' k+1] D --- D VI [k +1] D Vik + 1].

With associated weights: ¢, +k<a1+k< - <ar+k<a,+k+1<a1+
k+1<a+k+1.

It is easy to see that these are strict inclusions. An easy calculation shows

(1) deg(V/[k]) = deg(V’) — kn

(2) par(Vi[k]) = deg( VIKD) + (O, d) + (n — j) + kn = deg(V7)+
m=N+Q L d)

(3) deg(V’) =deg(V") — (n—))

Hence from the statements above one sees that par(V/[k]) = par(V). Notice also
that sum of weights of V/[k] =" ,da +kn+ (n—j). Hence for an appropriate
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choice of k andj this sum is zero (for as we decrease j by 1, the sum increases by 1, and
a change in k by 1 affects the sum by n).

We have to study the effect of subbundles. We first give a natural procedure of
going from subbundles of V7[k] to subbundles of some other V/[m]. Let W be a
subbundle of V/[k] and Wy be the generic fiber of W. Then let W be the subsheaf
Wy N V'[m] where Wy is regarded as a constant sheaf (on the Zariski topology).
We prove the following lemmas which prove finally the Mehta—Seshadri theorem
in the SU(n) setting:

LEMMA 7. W is a subbundle of V'[ml].

Proof. We have to show V'[m]/ W is torsionfree. There is no problem outside P
because V/[m] = V ouside of P. Let s € V/[m] map to torsion in V’[m]/W. Then
s € W for some d > 0. But this implies that s € W by our definition. So the image
of s in V/[m]/W is zero. O

LEMMA 8. Assume W is a subbundle of V. Then par(W) = par(W) where W is
considered a subbundle of the parabolic bundle VI[k].
Proof. Note that
q
() par(W)deg(W) + 37, dim( wnv )aq

W N Vel

y y - Wk
(2) par( W) = deg( W) + Zj —1 dlm (m) (aq + k)+
" o W Vik+1]
+ Zq:j+1 dim (m) (@ +k+1).

We first compute deg( W). We use the exact sequence (assume for definiteness that
k <0)

9

0—W— VVV—>%—>O

where the last term is a skyscraper sheaf at P. The dimension of this space is to be
computed. Call this sheaf P(k). We first compute the dimension of P(—1). Note that

Wi Nt Vi

PED = a

which is the same as Wx N V//t(Wx N V™). But this is Wp N Vé, (the last term is the
intersection of the stalk of W at P with the jth element of the flag). If k < —1, then
P(k)/P(k + 1) is the same as *(Wx N V/)/t*"\(Wx N V7) and that has dimension
dim(W). Putting these together one gets by induction that

dim(P(k)) = dim(Wp N V%) + dim(W)(k — 1).
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This gives
deg(W) = deg(W) — dim(Wp N V4) — dim(W)(k + 1).

We still have to calculate the parabolic degree of W. For this we note

. ( WNVe . Wik
dim(~——— ) = dim| —————
W Nyl W N Va-lk]

for all k. Hence looking at the parabolic contributions in (1) and (2) above we see that

S W nve k]
& (W1,
q:jZH d1m<—W AVt 1]>(a +k+1)
— k(dim(W)) + dim(W) — dim(Wp N V). O

The proof of the modified Mehta—Seshadri theorem (3.2) is now complete. For all
the V7[k] are simultaneously stable or semistable if 7 has parabolic degree 0. Also
one of the V7[k] will have the sum of parabolic weights at P equal to zero.

The extension to more than one point is by working at one point at a time. In the
course of our constructions above we did not change anything except at P.
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