Spherical Simplexes in n-dimensions.
By R. N. Sex.
(Received 20th July 1929, Read 1st November 1929.)

1. All points in an n-space equidistant from a fixed point (the
centre) constitute what may be called a spherical continvum of the
nth order,—the continuum being of n—1 dimensions ((»—1)-dimensional
spread) and of the 2nd degree. Any region of this spherical con-
tinuum bounded by » (n — 1)-dimensional linear continua or primes
(spaces of n — 1 dimensions), passing through the centre shall be
called a spherical simplex of the nth order. This spherical simplex is
bounded by = faces, spherical simplexes of the (n — 1)% order,
each of which in turn is bounded by =» — 1 spherical simplexes
of the (n — 2)th order, and so on till we reach spherical triangles,
arcs and lastly points, the vertices. The total number of spherical
simplexes of different orders connected with one of the ntbh order
is 2» — 2. The n spherical continua of the (» — 1)th order which
contain the faces of the spherical simplex of the ntt order determine
a set of 2» spherical simplexes of the same order, 271 pairs, the
two spherical simplexes of a pair being symmetrically situated with
respect to the centre and therefore congruent.!

Let every n — 1 of the » primes intersect one another in lines
which meet the spherical continuum in the vertices denoted by the
numerals 1, 2, .., n; and let (12..m) denote a spherical simplex of
the mth order lying on the spherical continuum A (12..m) of the same
order in which the m-dimensional linear continuum P (12..m) passing
through the centre intersects K (12..m); alsolet (12..m, u.. v, y..w)
denote the angle between the spaces P(12..mu ..v) and P(12..my ..w)
in the space P (1 ..mu..vy..w) in which they lie.

Without loss of generality we shall regard the radius as of unit
length. Then let

1 cos (12) cos(13) . . . cos(lm) f
om) |

, cos (12) ! cos (23) . . . c.os'('..m.) | =A(12..m) =sin¥(12..m),
cos (lm) cos(2m) . . . .. ... 1 i

1The subject has been studied by Schlifli in the second chapter of his book
Theorie der wvielfuchen Kontinuitat. The tield of his investigation is different from
that of the present paper and the method adopted is totally different.

Also vide Coolidge, Non Euclidean Geometry.
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denoting the square of m! times the content of the join of the points
1. 2, .., m and the centre.l

Also, as in the ordinary geometry, with each face are associated
two poles; and hence 2" spherical simplexes can be formed, having
for their vertices poles of these faces; and among them there is one
(I'2"..»n") whose vertices lie on the same side of the corresponding
faces of the original spherical simplex as the latter’s opposite vertices.
Now (I..n — 1) and (1..n — 2. n) intersect one another in (1..n — 2).
In P(1..n — 1) and P(1..n — 2n) let Op and Og be drawn respec-
tively, through the centre O, perpendiculars to P (1..n — 2) to meet
K(L..n) in p and ¢: then (pg) measures the angle (1..n —2, n —1, n).
And the faces of (1’..»') of which 1, 2,.., n — 2 are the poles inter-
sect one another in ((n — 1)'n');: let this arc intersect K(1..n—1)
and K(1..n —2n) in p and g respectively. Then it may be seen
that (pg) + ((n —1)n)=m,0r ((n =1y n)=mw—(1..n—2, n—1, n);
similarly for others. So the relation between the spherical simplexes
is of a dual character; and this gives rise to a duality between
theorems relating to a spherical simplex.

In what follows we shall suppose that all di-spherical simplexes,
i.e. circular arcs, (mn) are less than n. Also we shall use N to denote
the set of numbers from 1 to n, N, to denote all of these but the
number p, N,q, all but p and ¢ and so on.

2. Consider the perpendicular A, let fall from p on P(XN,).
Equating the values of A, we have the n — 1 quantities
(1) sin (pq) sin (g, p, N,,) all equal to one another for the same value
sin ()
{;in(l\7p)

have the n — 1 quantities

of p. Again, since h, = , equating the values of sin (N) we

(2) sin (pg) sin (p, ¢, Np,) equal to one another for the same value of .
Also, from above,

sin (V) sin(p, ¢, V)

sin (Vg ) sin (é“, P, Npg) )

In general, let M denote any set of m numbers (m < n) containing
a particular number p, and consider the perpendiculars let fall from

1This is in accordance with the nomenclature used by Prof. von Staudt, who has

called the function ~/A(123) the sine of the solid angle that the spherical triangle
subtends at the centre of the sphere. Crelle 24 (1842), 252.
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, ) ‘ (n — 1!

p on P(My,)s. Then for all values of M the (m — 1)1 (n — m)!
quantities

sin (M) . .
(4) W) sin (M,, p, Ny) are equal to one another for the same
value of p. It follows that, for a particular value of M denoting
a set of m numbers pgr .., the m quantities

sin (&V;) —

(5) W; sin (M; . ¢, Ny) are equal to one another for i =p,q,r,..,

obtained by equating the values of sin (V).
In particular, when m =»n — 1, the n — 1 quantities

.osin (V) . — .
(8) sin (V) sin (&V,,, p, q) are equal for the same value of p.
Consequently we have the n(n — 1), 2 quantities

sin (N)
1I sin ()

o 0 0
sin (Ny,) 11 sin (N;)
II denotes the continued product for

equal to one another and to , where

j=L2,..,p—1,p+1, ...¢—-1,¢+1, ..,nande=1,2, .., n
Tt immediately follows that

sin (W poa) o 1
Tsn(N,) sin (N, ) sin (N,), for all values of pand g¢.

(8) sin(N) =

Again substituting in (6) the value of sin (N',) from (8) which is

oy SNy p )
sin (N,) = —W)-— sin (V) sin (N ,,),

we have

sin (N, p, q) __sin (N p, 7) __sin (N, q.7)

sin (N, p, q) sin(N,,. p. 1) sin(N,,. q,7)

sin(V,) . o
i (N;_T) from (1) in (6), we

—_
=)
~—

Similarly substituting the values of

1 Schlafli, loc. eit §20 (4), who has given only one of these forms. The formula
is also proved by the consideration of a parallelochesm of the nth order whose content
is equal to the product of the contents of two of its adjacent faces (parallelochesms of
(n - 1)th order) multiplied by the sine of the angle between the faces and divided by the
content of the parallelochesm of (n — 2)th order in' which the faces intersect.
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have, for fixed values of ¢ and r, the (n — 2) quantities
(10) sin (g, 7, Ny,,) sin (N, p, g) equal for all values of p.

Proceeding in this way we may have a number of formulae
connecting the elements of a spherical simplex, e.g. equating corre-
sponding terms from (1), (4), (6) we shall have a number of other
formulae. But we have given above only the more fundamental
which we shall have occasion to use hereafter. It may be seen that
from (6), when n = 4,

. sin (12,3,4) sin(34,1,2) sin(13,2,4) sin(24,1,3)
an sin (12) sin (34)  sin(13) sin (24)

_ sin(14,2,3) sin (23,1, 4)
sin (14) sin (23)

B sin? (1234)
" sin (123) sin (124) sin (134) sin (234)

AW, ) AN, ) — ANy AWN)
A(Np)A(N,)

A2<ZNM>
A(Ny)A(W,)

§3. From (8), cos¥ (N, p,q)=

3

where A (*7112..n — 2)

cos(n—1n) cos{(ln—1) cos(Zn—1)....cos(n—2n—1)
cos (1n) 1 cos(12) ........ cos (1n — 2)

= | cos(2n) cos (12) 1 cos (2n — 2)
cos(n—2mn) cos(ln—2) cos(2n —2)........ 1

It may therefore be seen that
A <p NM> = __17’“ [A(Np) A (25 Npgr) — A(2,Npy) A(4,N,,,) ]
q A (Npgr) 7 77
__sin?(Ny,) sin (V) sin (N,,)
o sin2 (N )

X [cos (Z_VM,, P, q) — cos (JVM,, p, ) cos (ZVM,, g 7).

Accordingly, for all n — 2 values of r
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(12), (13) cos (N, p, 9)
sin® (Ny,)

- .sin (N,) cot (N0, p, §)—sin (N,) sin (N, ) cot (N pgr, p, 7) €0t (Npgr, g, 1)
_sin (N 47)

sin (V) sin (I,

__cos (N pyrs D, g) — cos (N 347, p,_r) cos (N, q, 7)1
sin (NZ’W" V4 r) sin (N/’W'f q, 7') '

Also, since A <;’ NM) = sin (V) sin (&y,) cot (FM, P, 9), we have

(14) sin (N) =sin (N) = A (‘Z Ny,) tan (N, p q) cosec (Ny,), for all values
of p and q.

Moreover, as in the ordinary geometry, if the three angles in the
numerator of (13) be denoted by A4, B, C and their sum by 28, we
shall express the usual 2+/{sin S sin (8 — 4) sin (S — B) sin (S — O)}
by sin (ZVM,-, pgr) and regard the angle as the spherical trihedroidal
angle at (N,,) formed by the spherical continua K (Ny), K (V) and
K (N,). Then,

sin (N,) sin (N,) sin (N, pqr)

sin (V) = , from (8)

" sin (Ny,) sin (Np», p, 7) sin (N0, g, 1)

sin (Ny)sin (Ny ) sin (Nyy . —
(15) - = M)sinz((zv;)) o) sin (N0, pgr), from (8a)

= sin (Ny,) sin (Ny) sin (Nyy) sin (Ng) sin (Mg, 7, 8)
sin (K}m, q, 8) sin (N, p, 8) sin (A—TM,., pqr) [ sin® (N pgrs)

Proceeding thus it may be seen ultimately, taking p =n,g=n—1, ..,
that

! Owing to the importance of formula (13) we append another proof by the method
of projection : Let a be the projection of n on P(Nxn), b and ¢ the projections of a on
P(Nnn-2) and P(Nyn-_1) respectively, d the projection of b or ¢ on P(Nun-1n-2),
e the projection of ¢ on bd and f that of a on ce.

Then db=de+eb. But db=nd cos(l—\_’;mq a9, n—1,n);

de=cdcos(Nnn-1n-2, -2, n -~ )=ndcos(Nan-1n-2,n—2,1) cos(Nnn—-1n-2,1 - 2,0 —1);
b =fa = cacos(3m— (Nun—1n-2,n - 2, n — 1))

=mnecos (Nnn-1,m —1, ) sin (Nan-1n-2,n -2, n - 1)

=nd sin (Nyn-1n-2 2 -2 n)sin (Non_1n-2 n—2, n—1) cos(lTY»n n-1, ® -1, n).
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(16) sin (N) = sin (12) sin (13) .. sin (1n) sin (1, 2, 3) sin (1, 2, 4)
.sin (1, 2, ») sin (12, 3, 4)..sin (12, 3, n) sin (123, 4, 5)
. sm(l .on—4,n—3,n)sin(l..n — 3, n—2,n—1,n),
We shall express the coefficient of sin (12). .sin (1n) by sin (1,23. .n)

and regard the angle as a spherical polyhedroidal angle at 1 formed
by the arcs (12), .., (1n).

§4. From (13),
c0s (N, p, g) + €08 (Ny, p, 7) 008 (N, g5 7)
sinz(ﬁmm pq_r) cos (Xfmr, p,ﬁ)
sin® (Npr, P, q) SI0 (Npgr, P, 1) 80 (Npgr, g, 7)
_ sin? (V) sint (V) cos (N pgrs D q)
sin? (l\m) 8in?(N,,) sin? (N ,,) sin? (NM,.,p,q) 8in (N sy, P, 7) 8IN(N 55, ¢, 1)

sin? (N) sin (Ny,) cos (J_VM,., »s q)
" sin (N,) sin (N,) sin (N,) sin (Npgr, 2, q)

= COS (WM,A, P, q) sin (;\7;5,, P, r) sin (:\E,‘, q, 7).

Therefore

008 (Nyg» 2, §) + €08 (Np, p, 7) 008 (Noy 9, 7)
sin (N, p, 7) sm(Aq,, q,7)

(17) cos(Npor0.q) =

Moreover, as in the ordinary geometry, if the three angles in the
numerator of (17) be denoted by A, B, C and their sum by 28, we
shall express the usual 24/{— cos § cos (§ — A4) cos (S — B) cos (§ — C)}
by sin (p' ¢’ '), in accordance with what has been said at the end of §1.
It may then be seen that
sin (V,) sin (N,) sin (V,) sin (p' ¢ 7)

o sin (Np,,) :

(18) sin?(N) =

= —Y)T——)) _sin2 (N,,) sin2(N,,) sin?(N,,) sin (N0, 9, q)

sin (IVM,, p, 1) sin (A_TM,., q, 1)

Proceeding thus it may be seen ultimately, taking p =n,
g=mn—1, .. that

(19) sin (X) = sin (12) sin (13) .. sin (1n) sin (1, 2, 3) .. sin (1, 2, n)

sin (12, 3, 4)..sin (12,3, »)..sin (1..n — 4, n — 3, n) sin*((n—2)’

(n—1)'n") /sin (1, 1..n—2,n—1,w)sin(l..n —3n—1,n — 2, n)

sin(l1..n —3n,n—2,n—1).
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Comparing (16} with (19),

(20) sin*(p’ ¢’ r')=sin (N, p,q) sin (Nyy, p, 7) 8in (N, g, 7) sin (N pgr-, pgr)
Also from (18), for all sets of values of p, ¢, 7, the quantities
sin (p' ¢’ r’)
1) a0 T sin ()
for i+ p, q, r.

are equal, I denoting the continued product

§5. (i) The arc (pu) drawn from a vertex p to meet the opposite
face (N,) orthogonally in u is an altitude of (N).

X ) ] sin (N, u) _ 8in (Ngru) ]
Since in this case Sin (Npw) — 8 (Nppw) — 0" = sin (pu),
we have
. sin (V,) . .-
sin (pu) = (v, Sin(Na, p, g), from (6) and = sin (pq) sin (g, p, Np,),

sin (I,)
from (1). Accordingly

sin (V) _ — .

(22) sin (pu) = Smj\’;_) ==gin (pq) sin (¢, p, ) sin (g7, p,s). .sin (N, p, t)

(ii) Let  be any point on (). Then from (13),

sin (Npgr, ¢, 7) €08 (Npgr, p,u)

=sin (Nyyr, q, u) €08 (Nppr, P, 7) + sin (N pgrs 75 1) €08 (Npory P, q)-
Or
(23) sin (N,) sin (N, %) cot (Npgr, p, u) =
sin (N,) sin (Ng-u) cot (N, p, ) + sin (N, ) sin (Ny, u) cot (Nper, P, 9)-
(iii) Let u be any point in (¢r). If we multiply the known formula
in the ordinary geometry
sin (23) cos (1u) = sin (2u) cos (13) + sin (3u) cos (12)
successively by sines of the altitudes from (4) to (23), from (5) to (234)
and so on, we shall have ’
cos (pu) sin (N, ) = cos (pg) sin (N, u) 4 cos (pr) sin (N u).

Now divide both sides by sin (pu) sin(N,) and multiply and

divide the right side by sin (u, p, . s¢) and apply (3) to the numerator.
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We shall have

cot (pu)
1 P T . .=
= sin (&) (08 (pg) sin (g ) sin (p,u, Np,)+ cos (pr) sin (N, ) sin (p, %, Np)}
~ sin () jeos (pq) sin (p, u, Ny cos (pr) sin (p, u, Ns) )
sin (N,,, ¢, 7) | sin (N,) sin (N,) J

_ sin (Ngrs) {cos (pg) sin (p, u, Ny,)  cos (pr) sin (p, u, Np))
 sin (1\ ors ¢,7) sin (IV,;) sin (N ors» 8, q)  sin (V) sin (7\74,3,8,7‘)[

Proceeding thus we have ultimately, taking
p=l,g=nr=n—1,s=n—2,..

(24) sin(l..n—2,n — 1, n) cot (1lu)

cot (In — 1) sin(l, »,2..n~—2n)
) -

(
sin (T, 2,n—1) sin(1_2, 3,n—1

.8in(l..n—3,n—~2,n—1)

cot (1n) sin (1, %, 2..n — 1)
sin (1, 2, n) sin(1_2, 3,n)..sin(l..n —3,n—2,n) )

§6. The content of a simplex (linear) with n 4 2 vertices in a
space of n dimensions vanishes. Therefore the relation between
the arcs joining a point n + 1 with » other points N on K () is
(25) sin(12..n+1)=0. Or, squaring,

% cost(i, n+ 1) A (N5 ) —A(N)—2 £ cos (3, n41) cos (j, n+1) A(-;“. Ny) =0,

Li=L2,..,m; 1%
or
X cos? (i, n + 1) sin2 (N, ) — sin? (V)
= 2Z cos (t,n + 1) cos (j,n + 1) sin (N, ) sin (N )cos(7\,/, %, ).

Now if the n points N lie on a spherical continuum of (n — 1)tk
order, sin (N) = 0 and it is seen that the above relation reduces to
(26} Z cos(tn+1)sin{N;)=0,
which is the relation between the arcs joining any point » 4+ 1 with »
other points N on a spherical continuum of (n — 1)th order.

Again if the arcs (n -+ 1¢) be produced to meet the spherical
continuum of (n — 1)tk order of which n- 1 is the pole in points
1,2,..,n/, then
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(27) T sin (¢¢') sin (N;) = 0,

which is the relation between the arcs drawn perpendicular to one
spherical continuum of (n — 1)th order from n points on another of
the same order.

2 2 —2
Also, if in (25) we substitute £ T2 +gn+2 —D4 forcos (p9);
2pn+2 gn + 2

where pg is the distance joining p and ¢, we obtain

0 1 1 1.... 1
2 2 2
1 0 12 13....01n+ 2
.2 _ 2 2

(28) 1 12 0 23 ....9n42 |=0
..... e
11n+2 2n+2.......... 0

which is the identical relation connecting the distances between n + 2
points in an n-space.
2

And if in (25) we substitute 1 — 2L for cos(pg) and V denotes

2R?
the content of the simplex with the » -4 1 points as vertices, we
obtain
_ 2 2 2

0 12 13 ..1n+1

2 2 2
(29) (—1)22++1(Rn! V)2 = 12 0 23 ..2n+1 J

In+1 2041 ooeun.. 0 [

giving the radius of a spherical continuum of nth order circum-
seribing a simplex whose vertices are the n + 1 points.

Moreover, if the » + 1 points lie on a spherical continuum of
(n — 1)th order, ¥ = 0 and substituting 2 Rsin} (pg) for pg in (29)

we have
0 sin®4(12)  sin%}(13)....sin%}(1ln4- 1)
(30)1 sin?1 (12) 0 sin?4 (23)....sin24 (2n-+1) —0,
T S S S

which is the relation between the arcs joining # + 1 points on a
spherical continuum of (n — 1)t order.
Finally, put (1n+1)=(2n+1)=.. =(rn+ 1) =r in (25); r is
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then the spherical radius of the small (in the ordinary sense) spherical
continuum of (n — 1)th order circumseribing (V). Accordingly,

(31) sec? sin?(N) = Zsin?(N;) — 2 Zsin (N, ) sin (N;) cos (N, 1, 9).

Also from (29) we have

0 1 1 1.. 1 1
_2 2 2
1 0 12 13 ....1n+1 R?
2 2 R
1 12 0 23....2n+ R: | =0
SORRARERE S
1 Im41 2n4+1........ 0 R2
1 R R ... R? 0
This, on substitution of 2Rsin} (pq) for pg and R for (pn 4 1),
gives us
0 1 1 1 ... 1
1 0 sin?} (12) sin?}(13)..sin%2} (1n)
(32) sin%?r|1 sin%2i(12) 0 sin?}(23)..sin%} (2n)
1 sin?}(1n) sin?}(2n) .......... 0
0 sin?} (12) sin?{(13)..sin%} (1n)
— 9 sin? 1 (12) 0 sin? (23). .sin%} (2n)
sin? (In) sin?1(2n) .......... 0 v
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