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A FUNCTIONAL ANALYTIC DESCRIPTION 
OF NORMAL SPACES 

E. BINZ AND W. FELDMAN 

Throughout the paper, X will denote a completely regular (Hausdorff) 
topological space and C(X) the R-algebra of all real-valued continuous functions 
on X. When this algebra carries the continuous convergence structure [1], we 
write CC{X). We note that CC(X) is a complete [5] convergence R-algebra [1]. 

Our description of normality reads as follows. A completely regular topo­
logical space X is normal if and only if C C(X) j J (endowed with the obvious 
quotient structure ; see § 1) is complete for every closed ideal / C CC(X). 

1. Residue class algebras. For a closed non-empty subset A C X, let 1(A) 
denote the ideal in C(X) consisting of all functions in C(X) vanishing on A. 
Since the kernel of the restriction map 

r: C(X) - C(A), 

sending each / £ C(X) into its restriction/ |A, is 1(A), we have the following 
commutative diagram of R-algebra homomorphisms: 

C(X)—r-^C{A) 

(I) \ / * 

C(X)/I{A) 

where w is the natural projection map and f the unique map factoring r. A filter 6 
converges to zero in CC(X) if and only if, for each point p £ X and each positive 
real number e, there is an element F in 6 and a neighborhood U of p with 

for every x G U and every f £ F. With Ce(X)/I(A) we denote C(X)/I(A) 
endowed with the natural quotient structure (in the category of convergence 
spaces) of CC(X) with respect to TT. This means that a filter converges to zero in 
CC(X)/1(A) if and only if it is finer than the image (under ir) of a filter converging 
to zero in CC(X). Endowing C(X) and C(A) with the continuous convergence 
structure, all the maps in diagram (I) are continuous. 

PROPOSITION 1. The R-algebra monomorphism f is a homeomorphism from 
CC(X)/I(A) onto a sub space of CC(A). 
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Proof. All we have to show is that a filter 6 on C(X)/I(A) for which f(0) 
converges to zero in CC(A) also converges to zero in CC(X)/I(A). That is, we 
must construct a filter 6 on CC(X) converging to zero with the property that 
ir(6) is coarser than 0. 

Let 6 be a filter on C(X)/I(A) with f (0) convergent to zero in CC(A). Hence, 
for each p G A and each positive real number e, there is a neighborhood UPytoip 
in X and an F'Pie G f(0) contained in r(C(X)) with 

I/'(<Z)| ^ *, 

for all / ' G -F'̂ .e and all g G UPltr\ A. Without loss of generality, we can 
assume that each Up,e is a cozero-set in X. To facilitate the construction of our 
filter, we choose inside of each UPf€ a zero-set neighborhood Ûp,e in X of £. 
Furthermore, to each 3; in X\^4 there exists, disjoint from A, a cozero-set 
neighborhood Vy of y in X inside of which we fix a zero-set neighborhood Vy of 3/ 
in X. We intend to show that all the sets of the form 

(*) FPtV,t= {/G C(X):f\A G F'p,e,f(ÛP,e) C [-2e, 2e], 

and/ ( f , ) = {OH, 

for £ G 4 , 3> G X\A, and e a real number greater than 0, generate the desired 
filter. We first demonstrate that 

I n \ n 
(**) A n *•„.„.•.«) D n J^.«„ 

where £ *, 3^, and ê  are as above. To this end, let 

/ ' e n ^...-
and j be a fixed integer between 1 and n. We now choose an element/ G C(X) 
for which r ( / ) = / ' and associate to this function the sets 

Pj= {<Z€ UPj,ej: \f(q)\ ^ 2 e , } , and 
Qj= [qeX:\f(q)\ ^ ej} KJ (X\Upj,€j). 

It is clear that Qj D A and, furthermore, that Pj and Q3 are disjoint zero-sets 
in X. Hence, there is a function hj G C(X) separating Pj and Qj\ that is, 

X̂<Z) = 0 for all g G Pj, and 

(̂<Z) = 1 f° r all g G Çj-

Without loss of generality, we may assume that hj(X) C [ — 1, 1]. Similarly, we 
pick a function kj G C{X) with the property that 

kj(g) = 0 for all q G Vyj, and 

*,fe) = 1 for all g G X\Vyj, 

and kj(X) C [ — If !)• The function g = f • hi - Jt2 • . . . • hn - ki - . . . - kn is an 
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element of Pi?=i FpiiVitii and extends/ ' . Now the filter 6 generated on C(X) by 
all the sets of the form (*) obviously converges to zero in CC(X). Because (**) is 
satisfied, w(0) is coarser than 0, and thus the proof is complete. 

Next, we will investigate the universal representation [2] of CC(X)/I(A), i.e., 
the R-algebra Cc(Homc CC(X)/I(A)) and the R-algebra homomorphism 

d: CC(X)/I(A) -> Cc(Homc CC(X)/I(A)), 

where Homc CC(X)/I(A) denotes the space of all continuous R-algebra homo-
morphisms from CC(X)/I(A) onto R together with the continuous convergence 
structure. The map d sends each element/ G CC(X)/I(A) to the function defined 
by d(f)(h) = h(f), for each h G Home CC(X)/I(A). 

We intend to establish a relationship between Homc CC(X)/I(A) and A. The 
homomorphism -K induces a continuous map 

7T*: Homc CC(X)/I(A) -*Homc CC(X), 

sending each h G Homc CC(X)/I(A) to h o T. By Homc CC(X) we mean the 
collection of all continuous R-algebra homomorphisms from CC(X) onto R 
together with the continuous convergence structure. As pointed out in [3], the 
map 

ix: X ->Honic CC(X), 

defined by the relation ix(P)U) = f(P), for a l l / G C(X) and all p G X, is a 
homeomorphism. Hence, the map ix~

l o 7r* maps Homc CC(X)/I(A) con­
tinuously intoX. In fact, the range of this map is in A, since (ix~

l o ir*)(h) for 
any h G Homc CC(X)/I(A), is sent to zero by all the functions in 1(A), and A is 
a closed subset of a completely regular space. Next, we show that ix~

l o 7r* is 
actually a bijection onto ^4. Because ir is surjective, the map ix~

l o 7r* is clearly 
injective. For the surjectivity, choose a point p ^ A. The homomorphism 
ix(P)> CC(X) —> R annihilates all the functions in 1(A), and therefore can be 
factored to a continuous homomorphism h on CC(X)/I(A). It is clear that 
(ix-lCTT*)(h) =P. 

PROPOSITION 2. The map 

ix-* o 7T*: Homc CC(X)/I(A) -> 4 

w a homeomorphism. 

Proof. Since ix
_ 1 o 7r* is a continuous bijection, it remains to verify that 

fe_1,o 7T*)-1 is also continuous. We have the commutative diagram 

A^Homc CC(A) 

(ix~i o 7 T * ) - \ / * 

HomcCc(X)/I(A), 
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where r* sends each h £ Homc CC(A) to h or. Since both iA and r* are continu­
ous, the proposition is established. 

2. Closed C-embedded subsets. A closed non-empty subset A of a space X 
is said to be C-embedded if every continuous real-valued function defined on A 
has a continuous extension to X, that is to say 

r: C(X) -> C(A) 

is surjective. For example, every compact subset of X is C-embedded. 

THEOREM 1. A closed non-empty subset A of a completely regular topological 
space X is C-embedded if and only if CC(X)/I(A) is complete. 

Proof. If A is a C-embedded subset of X, then the map f is surjective. Since 
CC(A) is complete and f is a homeomorphism (see Proposition 1), CC(X)/I(A) 
is complete. Conversely, assume that CC(X)/I(A) is complete. Proposition 1 
implies that f (CC(X)/I(A)) is a closed subalgebra of CC(A). By a type of Stone-
Weierstrass theorem proved in [5], which states that a closed subalgebra of 
Cc( Y) that contains the constant functions and determines the topology 
(see [6, p. 39]) of the completely regular topological space Y is all of C( F), we 
conclude that the map f is surjective. Thus, A is C-embedded. 

PROPOSITION 3. A closed non-empty subset A of a completely regular topological 
space X is compact if and only if CC(X) /1(A) is normable. 

Proof. For A compact, CC(A) is a normed algebra under the supremum norm 
(this can be verified directly from the definition of the continuous convergence 
structure). It follows from Proposition 1 that CC(X)/I(A) is normable. On the 
other hand, if CC(X)/I(A) is normable, then Homc CC(X)/I(A) is a compact 
topological space (see [7]) and, hence, A is compact by Proposition 2. 

COROLLARY. Let A be a closed non-empty subset of a completely regular topo­
logical space X. If CC(X)/I(A) is normable, then it is complete. 

3. Normal spaces. A completely regular topological space is normal if and 
only if every non-empty closed subset is C-embedded (see [6, p. 48]). In view of 
Theorem 1, we know that the space X is normal if and only if CC(X)/I(A) is 
complete for every non-empty closed subset A C X. Since every closed ideal in 
CC(X) is of the form 1(A) for a non-empty closed subset A of X (see [4]), we 
state 

THEOREM 2. A completely regular topological space X is normal if and only 
if CC(X)/J is complete for every closed ideal J C CC(X). 
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