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Abstract. Using bi-contact geometry, we define a new type of Dehn surgery on an Anosov
flow with orientable weak invariant foliations. The Anosovity of the new flow is strictly
connected to contact geometry and the Reeb dynamics of the defining bi-contact structure.
This approach gives new insights into the properties of the flows produced by Goodman
surgery and clarifies under which conditions Goodman’s construction yields an Anosov
flow. Our main application gives a necessary and sufficient condition to generate a contact
Anosov flow by Foulon–Hasselblatt Legendrian surgery on a geodesic flow. In particular,
we show that this is possible if and only if the surgery is performed along a simple
closed geodesic. As a corollary, we have that any positive skewed R-covered Anosov flow
obtained by a single surgery on a closed orbit of a geodesic flow is orbit equivalent to a
positive contact Anosov flow.
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1. Introduction
The use of surgery has tremendously advanced our understanding of Anosov flows on
3-manifolds. In the groundbreaking work of Handel and Thurston [19], the first example
of non-algebraic transitive Anosov flow was constructed performing surgery on a geodesic
flow. Inspired by Handel and Thurston’s work, Goodman [17] defined a Dehn type surgery
near a closed orbit and constructed the first examples of an Anosov flow on a hyperbolic
3-manifold.

In the present work, we introduce a new type of Dehn surgery on Anosov flows using
a supporting bi-contact structure. Mitsumatsu [25] first noticed that the generating vector
field of an Anosov flow belongs to the intersection of a pair of transverse contact structures
(ξ−, ξ+) rotating towards each other along the flow and asymptotic to the stable and
unstable foliations. These pairs are called bi-contact structures and the associated flows
are called projectively Anosov flows. Projectively Anosov flows are more abundant than
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2 F. Salmoiraghi

FIGURE 1. On the left, the surgery annulus C in Goodman surgery near a closed orbit γ . The intersecting
surfaces are the weak stable and unstable leaves containing γ . The left and the right edge of every strip are
identified. The trajectories of the Anosov flow (black curves) are transverse to C. After surgery, the endpoints of
the semi-trajectories that hit the annulus are identified with the staring points of the semi-trajectories on the other
side of the annulus. This identification is achieved by a shear map that is a Dehn twist (in the picture, this map
identifies the vertical segment on one side of C with the curve on the other side of C). On the right, the surgery
annulus A0 used in the bi-contact surgery. The solid black lines are the trajectories of the new Anosov flow, while
the dashed lines are those of the original flow. Note that while C is transverse to the Anosov flow, A0 is tangent

to the flow (colour online).

Anosov flows: it can be shown indeed that every closed 3-manifolds admits a projectively
Anosov flow, while not every 3-manifold admits an Anosov flow.

A knot K in a bi-contact structure is called Legendrian-transverse if its tangents are
contained in one of the contact structures and they are transverse to the other one. There
are plenty of Legendrian-transverse knots in a bi-contact structure supporting an Anosov
flow. Recently, Hozoori [20] has shown that if a flow is Anosov with orientable weak
invariant foliations, there are supporting bi-contact structures such that near any periodic
orbit γ , there is always a Legendrian-transverse knot isotopic to γ . Additionally, there are
many Legendrian-tranverse knots that are not isotopic to any closed orbit. Examples of
these knots can be found on the torus fibre of an Anosov suspension flow or considering
the circles of the Seifert fibration on the unit tangent bundle of an hyperbolic surface.

Let M be a 3-manifold equipped with a bi-contact structure (ξ−, ξ+) defining an Anosov
flow and let K be a knot that is Legendrian for ξ− and is transverse to ξ+. For a q ∈ Z,
we introduce a bi-contact surgery, which is a special type of (1, q)-Dehn surgery along
an annulus A0 tangent to the flow and containing K (see Figure 1 for a comparison with
Goodman surgery). More precisely, this operation consists in cutting the manifold M along
A0 and gluing back the two sides of the cut adding a (1, −q)-Dehn twist along the core of
the annulus. (See remark Theorem 5.7 for the minus sign ahead of the coefficient q.) This
operation produces a new manifold M̃ and a pair of plane field distributions (ξ̃−, ξ̃+) on
the new manifold. In general, the new plane field distributions does not define a bi-contact
structure. However, we have the following theorem.

THEOREM 1.1. (See Theorem 5.11 for the proof) For q ∈ N, the bi-contact surgery
produces a new pair (ξ̃−, ξ̃+) of plane field distributions which is a bi-contact structure.

Since being defined by a bi-contact structure is not a sufficient condition to be Anosov,
it is not immediately clear if the bi-contact structures produced in Theorem 1.1 support
an Anosov flow. The following result shows that the Anosovity of the new flow is strictly
connected to bi-contact geometry.
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Surgery on Anosov flows using bi-contact geometry 3

THEOREM 1.2. (See Theorem 5.11) Let φt be a volume preserving Anosov flow. There
is a bi-contact structure (ξ−, ξ+) defining φt such that if a bi-contact surgery along a
Legendrian-transverse knot K yields a new bi-contact structure (ξ̃−, ξ̃+), then (ξ̃−, ξ̃+)
defines an Anosov flow.

In particular, in the hypothesis of Theorem 1.2, a (1, q)-bi-contact surgery yields new
Anosov flows for every q ∈ N.

The construction of Theorem 1.1 naturally fits into the framework set up by Hozoori
in [21], where the author gives a contact geometric characterization of the bi-contact
structures that define Anosov flows. Using this characterization, we give a proof of
Theorem 1.2 that relies only on the properties of the Reeb dynamics of an underlying
bi-contact structure. (In particular, we do not use the cone field criterion of hyperbolicity.)

The construction of Theorem 1.1 gives new insight into the properties of the flows
produced by Goodman surgery in virtue of the following equivalence.

THEOREM 1.3. (See Theorem 7.1 for a more precise statement) Let K be a Legendrian-
transverse knot in a bi-contact structure defining an Anosov flow. Suppose also that K is
isotopic and close to a closed orbit of the Anosov flow. Any Anosov flow generated by
a (1, q)-bi-contact surgery along a tangent annulus A0 containing K is orbit equivalent
to an Anosov flow generated by (1, q)-Goodman surgery along a transverse annulus C
containing K.

Goodman’s operation consists in cutting an Anosov flow along a transverse annulus
C in a neighbourhood of a closed orbit and gluing back the two sides of the cut adding a
(1, q)-Dehn twist (Figure 1). Goodman proved that such an annulus comes with a preferred
direction in the sense that there is a sign of the twist that always produces hyperbolicity.
For example, along an annulus with positive preferred direction, a (1, q)-Goodman surgery
produces an Anosov flow for every integer q > 0.

For a fixed transverse annulus with positive preferred direction, it is not known in gen-
eral if a (1, q)-Goodman surgery with q < 0 generates hyperbolicity. Theorems 1.2 and 1.3
allow us to study the Anosovity of the flows generated by surgeries performed in the direc-
tion opposite to the preferred one using tools from contact geometry. Let C be an embedded
transverse annulus with positive preferred direction centred on a Legendrian-transverse
knot K (non-necessarily isotopic to a closed orbit). To a flow-box neighbourhood � of C
(� is constructed by flowing the transverse annulus C using the Anosov flow), we associate
a positive real number k depending just on the behaviour of the contact structure ξ+ on ∂�.
This number k can be interpreted as the slope of the characteristic foliation induced by ξ+
on ∂�. For a volume preserving Anosov flow, we have the following theorem.

THEOREM 1.4. (Theorem 6.3) Let k > 0 be the slope of the characteristic foliation
induced by ξ+ on ∂�. For every q > −k, a (1, q)-Goodman surgery along C produces
an Anosov flow.

Let φt be a volume preserving Anosov flow with weak orientable invariant foliations.
Suppose that there is an embedded quasi-transverse annulus C−∞ bounded on one side by
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a Legendrian-transverse knot K and on the other side by a closed orbit γ of the flow. We
have the following corollary of Theorem 1.4.

COROLLARY 1.5. (See Corollary 7.3.) There is a sequence of nested annuli C−1 ⊂ C−2 ⊂
· · · ⊂ Cp ⊂ · · · ⊂ C−∞ with p ∈ Z

−. Each Cp is transverse to the Anosov flow and
bounded on one side by the Legendrian-transverse knot K. An annulus Cp of the sequence
has the property that a (1, q)-Goodman surgery alongCp yields an Anosov flow for q ≥ p.
The annulusC−∞ is quasi-transverse, and it is bounded by K on one side and by the closed
orbit γ on the other side.

In particular, given an annulus Cp, p ∈ Z
− of the sequence, if we want to construct an

annulus Cp−1 such that a (1, p − 1)-Goodman surgery produces an Anosov flow, we need
to extend Cp towards the closed orbit γ (see Figure 12).

We use Theorem 1.4 and its corollaries to study surgeries in the context of contact
Anosov flows that are Anosov flows preserving a contact form. The condition of being
contact Anosov has a number of remarkable geometric consequences (see [13, 18, 22])
including exponential decay of correlations. In the context of 3-manifolds, Barbot has
shown that every contact Anosov flow is skewed R-covered. (An Anosov flow is R-covered
if the stable (or the unstable) weak foliation lifts to a foliation in the universal cover which
has leaf space homeomorphic to R.) The relation between these two classes of flows is
expected to be stronger.

Conjecture 1.6. (Barbot–Barthelmé) If φt is a positively skewed R-covered Anosov flow,
then φt is orbit equivalent to a contact Anosov flows. (Marty [24] posted a proof of this
statement after the completion of the present work.)

For almost half of a century since the seminal work of Anosov, the only known examples
of contact Anosov flows were the geodesic flows of Riemannian or Finsler manifolds.
Foulon and Hasselblatt [14] showed that it is not only possible to construct new examples
of contact Anosov flows performing Goodman surgery on a geodesic flow, but also that it
could be done producing hyperbolic manifolds.

The construction of Foulon and Hasselblatt uses a special class of arbitrarily thin
transverse annuli with positive preferred direction containing a knot L that is Legendrian
for the contact structure preserved by the geodesic flow. Such annuli are located far from
a closed orbit and the set of negative surgery coefficients that yield a contact Anosov flow
is not known. If the knot L is associated to a simple closed geodesic there is an embedded
quasi-transverse annulus containing L and Corollary 1.5 applies. As a consequence, we
have the following theorem.

THEOREM 1.7. (See Theorem 8.2) Choose a closed orbit γ in the geodesic flow on the unit
tangent bundle of a hyperbolic surface S. If q < 0, a (1, q)-Goodman surgery generates a
flow that is orbit equivalent to a contact Anosov flow if and only if the orbit γ is a lift of a
simple closed geodesic on S. (Our proof of Anosovity does not rely on Barbot’s version of
the cone field criterion [5] and can be used to give an alternate proof of [14, Theorem 4.3].)
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Theorem 1.7 represents the counterpart in the category of contact Anosov flows
of results recently proven by Bonatti and Iakovoglou [11, Theorem 1] and Marty
[23, Theorem J] in the category of R-covered Anosov flows. Using Theorem 1.7 and work
of Asaoka, Bonatti and Marty [4], we prove a version of Conjecture 1.6 for a single surgery
along a closed orbit of the geodesic flow. Let φt be the geodesic flow with the orientation
that makes it a positively skewed R-covered Anosov flow.

THEOREM 1.8. (See Theorem 9.5) Any positive skewed R-covered Anosov flow obtained
by a single surgery along a closed orbit of a geodesic flow is orbit equivalent to a positive
contact Anosov flow.

Note that Theorem 1.7 has a natural interpretation in the context of contact and
symplectic geometry. Foulon and Hasselblatt construction is an example of a contact
surgery in the sense that given a Legendrian knot L in a contact 3-manifold (M , η),
where η is the contact form preserved by an Anosov flow φt (in particular, η is not
part of a supporting bi-contact structure for φt ), it produces a new contact 3-manifold
performing a Dehn type surgery along L. Historically, a (1, −1)-contact surgery is called
Legendrian surgery. Legendrian surgeries preserve tightness [31] and have a natural
interpretation from a symplectic point of view. Foulon and Hasselblatt show [14] that
positive Goodman surgeries (therefore, not Legendrian) always generate contact Anosov
flows. If the geodesic is filling, the new manifold is hyperbolic. Since a filling geodesic
is non-simple, a consequence of Theorem 1.7 is the impossibility of generating a positive
contact Anosov flow on a hyperbolic manifold performing a single Legendrian surgery
on a geodesic flow. In contrast, it is possible to generate a positive contact Anosov flow
performing Legendrian surgery along any simple closed geodesic. This operation yields a
graph manifold and the associated flows are orbit equivalent to those described by Handel
and Thurston in [19] for a shear with aj < 0 and short enough geodesic γj .

2. Anosov flows, projectively Anosov flows and bi-contact structures
Anosov flows are an important class of dynamical system characterized by structural
stability under C1-small perturbations (see [1, 2, 29]). Beyond their interesting dynamical
properties, there is evidence of an intricate and beautiful relationship with the topology
of the manifold they inhabit (see the survey [8] for classic and more recent developments
[6, 7, 9, 10] by Fenley, Barbot and Barthelmé). Geometrically, they are distinguished by
the contracting and expanding behaviour of two invariant directions

Definition 2.1. Let M be a closed manifold and φt : M → M a C1 flow on M. The flow
φt is called Anosov if there is a splitting of the tangent bundle TM = Euu ⊕ Ess ⊕ 〈X〉
preserved by Dφt , and positive constants A and B such that

‖Dφt(vu)‖ ≥ AeBt‖vu‖ for any vu ∈ Euu, t ≥ 0,

‖Dφt(vs)‖ ≤ Ae−Bt‖vs‖ for any vs ∈ Ess , t ≥ 0.

Here, ‖·‖ is induce by a Riemmanian metric on TM . We call Euu and Ess respectively the
strong unstable bundle and the strong stable bundle.
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6 F. Salmoiraghi

FIGURE 2. On the left, the tangent bundle in a neighbourhood of a flow line of an Anosov flow. The oblique
plane fields define the bi-contact structure. The vertical plane is the leaf of the unstable weak foliation Fu. On

the right, the normal bundle TM/〈X〉 (colour online).

Classic examples of Anosov flows are the geodesic flow on the unit tangent bundle of
a hyperbolic surface and the suspension flows of hyperbolic linear automorphisms of the
torus.

The definition above has remarkable geometric consequences. Anosov showed that the
distributions Ess and Euu are uniquely integrable and the associated foliations are denoted
by F ss and Fuu. Moreover, the weak stable bundleEs = Ess ⊕ 〈X〉 and the weak unstable
bundle Eu = Euu ⊕ 〈X〉 are also uniquely integrable and the codimension one associated
foliations are dented with F s and Fu (see Figure 2).

Mitsumatsu [25] first noticed that an Anosov flow with orientable weak invariant
foliations is tangent to the intersection of two transverse contact structures (see also
Eliashberg and Thurston [12]). We will call such pairs bi-contact structures. However,
the converse statement is not true and there are bi-contact structures that do not define
Anosov flows.

2.1. Contact structures and Reeb flows. A co-oriented contact structure is a plane field
distribution that is maximally non-integrable in the sense that it can be described as the
kernel of a C1 1-form satisfying the relation α ∧ dα 
= 0. By Frobenious theorem, contact
structures can be thought of as polar opposite of foliations: there is not a subsurface S such
that T S = ker α, even in a neighbourhood of a point. Contact structures come in two types,
positive and negative. A positive contact structure is a plane field distribution ξ+ described
by a C1 1-form satisfying the relation α+ ∧ dα+ > 0. A negative contact structure ξ− is
described instead by a C1 1-form such that α− ∧ dα− < 0.

An important property of contact structures is that they do not have local invari-
ants. Indeed, by Darboux theorem, positive (negative) contact structures are all locally
contactomorphic to the positive (negative) standard contact structure in R

3 described
by ξ+

std = ker dz− y dx and ξ−
std = ker dz+ y dx. Therefore, we can locally picture a

positive contact (negative) structure as a plane field whose plane rotates counterclockwise
(clockwise) along the x-axis. Associated to the defining contact forms, there is an
important class of flows called Reeb flows. Given a contact form α, we define the Reeb
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vector field Rα as the unique vector field satisfying the equations

α(Rα) = 1, dα(Rα , ·) = 0.

These relations imply that Rα is transverse to ker α and LRαα = 0 (Rα preserves α).
We conclude this section introducing a very important class of vector fields that is well

studied and has remarkable geometric properties [14, 22].

Definition 2.2. A Reeb flow that is also an Anosov flow is called a contact Anosov flow.

In other words, a contact Anosov flow is an Anosov flow preserving a contact form.

2.2. Bi-contact structures and projectively Anosov flows. We now give an example of a
pair of opposite and transverse contact structures that does not define an Anosov flow.

Example 2.3. We construct a bi-contact structure on T 3 using a recipe introduced by
Mitsumatsu in [25, 26]. Consider the contact forms defined on T 2 × I ,

αn = cos(2nπz) dx − sin(2nπz) dy,

α−m = cos(2mπz) dx + sin(2mπz) dy.

They are not transverse to each other on the tori defined by {z = 0}, {z = 1
4 }, {z = 1

2 },
{z = 3

4 }. If we introduce a perturbation ε(z) dz such that ε(z) is a function that does not
vanish on the tori, the contact forms α+ = αn + ε(z) dz and α− = α−m define transverse
contact structures of opposite orientations.

As Plante and Thurston showed in [30], the fundamental group of a manifold that admits
an Anosov flow grows exponentially. Since the ambient manifold is T 3, any flow defined
by the pair of contact structures (ker α−, ker α+) is not Anosov.

Definition 2.4. (Mitsumatsu [25]) Let M be a closed manifold and φt : M → M a C1 flow
on M. The flow φt is called projectively Anosov if there is a splitting of the projectified
tangent bundle TM/〈X〉 = Eu ⊕ E s preserved by Dφt and positive constants A and B
such that

‖Dφt(vu)‖
‖Dφt(vs)‖ ≥ AeBt

‖vu‖
‖vs‖ for any vu ∈ Eu and vs ∈ E s , t ≥ 0.

Here, ‖·‖ is induce by a Riemmanian metric on TM . We call Eu and E s respectively the
unstable bundle and the stable bundle.

The invariant bundles Eu and E s induce invariant plane fields Eu and Es on M.
These plane fields are continuous and integrable, but unlike the Anosov case, the integral
manifolds may not be unique (see [12]). However, when they are smooth, they also are
uniquely integrable. We call these flows regular projectively Anosov (see [3, 27, 28] for a
complete classification).

Definition 2.5. We say that a flow φt is defined (or supported) by a bi-contact structure
(ξ−, ξ+) if the generating vector field X belongs to the intersection ξ− ∩ ξ+.
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The following result gives a geometric characterization of the class of projectively
Anosov flows.

THEOREM 2.6. (Mitsumatsu [25]) Let X be a C1 vector field on M. Then, X is projectively
Anosov if and only if it is defined by a bi-contact structure.

Remark 2.7. We refer to [20, 21] for a more complete overview of the connection between
bi-contact geometry, symplectic geometry and projectively Anosov flows, and for a precise
discussion on the regularity of the plane fields, bundles and foliations involved.

2.3. Reeb dynamics of a bi-contact structure defining an Anosov flows. We now present
a characterization of Anosov flows due to Hoozori [21] that uses the Reeb dynamics of the
underling bi-contact structure.

Definition 2.8. (Hozoori [21]) Consider a bi-contact structure (ξ−, ξ+) on M and a
supported vector field X. We say that X is dynamically positive (negative) if at every point
p ∈ M , its image into TM/〈X〉 lies in the interior of the region defined by the stable and
unstable bundle. More precisely, we say that X is dynamically positive if its image into
TM/〈X〉 lies in the interior of the region defined by the stable and unstable bundle in
clock-wise order and considering the flow pointing into the page (see Figure 2).

THEOREM 2.9. (Hozoori [21]) Let φt be a projectively Anosov flow on M. The following
are equivalent.

(1) The flow φt is Anosov.
(2) There is a pair (α−, α+) of positive and negative contact forms defining φt such that

the Reeb vector field of α+ is dynamically negative.
(3) There is a pair (α−, α+) of positive and negative contact forms defining φt such that

the Reeb vector field of α− is dynamically positive.
In particular, we have the following sufficient condition of Anosovity.

COROLLARY 2.10. Let (ker α− = ξ−, ξ+) be a bi-contact structure such that Rα− ∈ ξ−.
The flow φt defined by (ξ−, ξ+) is Anosov.

It is important to remark that under these circumstances, the knowledge of the position
of stable and unstable invariant direction in TM/〈X〉 is not needed since under this
condition, Rα− is automatically dynamically positive.

A volume preserving Anosov flow is an Anosov flow preserving a continuous volume
form. It is known that if the flow is Ck , such a volume form is automatically Ck (see [20]
for more references).

Hozoori shows [20] the following characterization of bi-contact structures defining
volume preserving Anosov flows.

THEOREM 2.11. (Hozoori [20]) Let φt be a projectively Anosov flow on M. Here, φt is
a volume preserving Anosov flow if and only if there are pairs of positive and negative
contact forms defining φt such that Rα− ∈ ker α+ and Rα+ ∈ ker α−.
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Surgery on Anosov flows using bi-contact geometry 9

At the time of writing this work, it is not known if a general Anosov flow is always
supported by a bi-contact structure (ξ−, ξ+) such that Rα− ∈ ker α+.

2.4. Flexibility of bi-contact structures and structural stability. The interplay between
structural stability of an Anosov flow and the flexibility of its underlying bi-contact
structure can be used to construct C1-paths of Anosov flows.

LEMMA 2.12. Suppose that M is equipped with a pair of contact structures (ker α− =
ξ−, ξ+) defining an Anosov flow φt such that the Reeb vector field Rα− of α− belongs to
ξ+. An isotopy of ξ+ along the flow-lines of Rα− defines a path of orbit equivalent Anosov
flows.

Proof. Assume that Rα− ∈ ξ+. An isotopy of ξ+ = ker α+ as above defines a C1-path
of bi-contact structures (ξ−, ker(α+)t )t∈[0,1] such that Rα− ∈ (ξ+)t = ker(α+)t in N. The
statement follows from Theorem 2.9 and the C1-structural stability of Anosov flows.

In particular, all the flows along the path are orbit equivalent with an orbit equivalence
isotopic to the identity. The above result will be used in the proof of Theorems 5.6 and 6.4.

3. The geodesic flow on the unit tangent bundle of a hyperbolic surface
In this section, we introduce the prototype of an Anosov flow: the geodesic flow on the unit
tangent bundle of a hyperbolic surface (see [1]). This object is particularly important in our
context because it is naturally supported by a bi-contact structure: it can be considered the
motivating example for constructing a bi-contact theory of Anosov flow. Moreover, for a
long time, it was the only known example of a contact Anosov flow.

3.1. Geometric structures on UTS. The geodesic flow on the unit tangent bundle of a
hyperbolic surface S carries some remarkable geometric structure that can be interpreted
in the context of bi-contact geometry. We follow the discussion of [15]. Using the
identification of UTH2 with PSL(2, R), it is possible to show that there is a canonical
framing consisting of the vector field X that generates the flow, the periodic vector field
V pointing in the fibre direction and the vector field defined by H := [V , X]. This frame
satisfies the following relations:

[V , X] = H , [H , X] = V , [H , V ] = X. (3.1)

A consequence of the structure equations is that the strong stable and unstable bundles
E± are spanned by the vectors e± = V ±H . It is not difficult to show that equation (3.1)
implies the existence of three 1-forms α−, α+ and β+ defining mutually transverse contact
structures (see Figure 3 and [15] for more details). They are defined by

β+(V ) = 0 = β+(H), α+(X) = 0 = α+(V ), α−(X) = 0 = α−(H),

β+(X) = 1, α+(H) = 1, α−(V ) = 1,

dβ+(X, ·) = 0, dα+(H , ·) = 0, dα−(V , ·) = 0.
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FIGURE 3. On the top right, a Birkhoff torus associated to simple closed geodesic γ . On the right side, the
contact structures described in §3.2. The plane field transverse to the arrows is the contact structure η+ = ker β+
preserved by the geodesic flow. The closed orbits γ+ and γ− are Legendrian knots for the bi-contact structure
(ξ−, ξ+) that generates the geodesic flow. The special knot L is represented by the dashed line (colour online).

The relations above show that the vector fields X, H and V are respectively the Reeb
vector fields of the contact forms β+, α+ and α−. In particular, the geodesic flow is the
Reeb flow of β+. The pair of contact forms (α−, α+) define a bi-contact structure that
supports X.

3.2. Structures on a Birkhoff torus and Legendrian knots. Let S = H
2/� be a hyper-

bolic surface and let γ be a closed geodesic. The lift of γ to the unit tangent bundle of γ
is an immersed Birkhoff torus UTγ with two closed orbits {γ1, γ2}, in the sense that UTγ
is an immersed torus transverse to the geodesic flow in UTγ \ {γ1, γ2} and tangent to the
geodesic flow along {γ1, γ2}. If the geodesic γ is also simple, UTγ is an embedded torus.

We now describe a special knot L on the Birkhoff torus that plays a very important role
in numerous applications. This knot is defined by the angle θ = π/2 on each fibre along γ
and has the following remarkable properties (see Figures 2 and 4).
(1) L is a Legendrian knot for the contact structure η+ preserved by the flow.
(2) L is transverse to the weak stable and unstable foliations.
(3) L is a Legendrian-transverse knot with respect to the bi-contact structure

(ker α−, ker α+).

LEMMA 3.1. Let φt be the geodesic flow on the unit tangent bundle UT S of an oriented
hyperbolic surface S. In a neighbourhood N = A0 × (−ε, ε) of a Birkhoff annulus
associated to a simple closed geodesic, there is a coordinate system (w, s, v) such that
the natural contact forms (α−, α+, β+) have the following expressions:

α− = dw + v ds;

α+ = e(1/2)v
2
(cos w ds − sin w dv);

β+ = e(1/2)v
2
(− sin w ds − cos w dv).
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FIGURE 4. On the left, the foliation on an embedded Birkhoff torus induced by the stable and unstable weak
foliations. On the right, the characteristic foliations induced by the bi-contact structure (ker α+, ker α−) (colour

online).

Here, A0 is constructed as follows. Consider the Legendrian-transverse knot L constructed
in §3.2 and letA0 be an annulus tangent to the flow φt of X constructed by flowing L (using
the flow φt ). Let (s, v) be a coordinate system on A0 such that the s-curves are parallel to
∂A0. We extend (s, v) to a coordinate system (s, v, w) on N using the flow of Rα− . (This
can always be done since, by construction, Rα− is transverse to A0.)

Proof. Let (α−, α+, β+) be the contact forms defined above. It is enough to show that if
V = Rα− , H = Rα+ and X = Rβ+ , we have

β+(V ) = β+(H) = α−(X) = α−(H) = α+(X) = α+(V ) = 0.

This shows that the contact forms (α−, α+, β+) define a local model of the geodesic flow
near a quasi-transverse torus, as described in §3.2. An elementary calculation gives the
following expressions for the Reeb vector fields of (α−, α+, β+) in N:

V = Rα− = ∂

∂w
;

H = Rα+ = e−(1/2)v2
(

cos w
∂

∂s
− sin w

∂

∂v
− v cos w

∂

∂w

)
;

X = Rβ+ = e−(12)v2
(

− sin w
∂

∂s
− cos w

∂

∂v
+ v sin w

∂

∂w

)
.

We check that the vector field V = Rα− = ∂/∂w satisfies the requirements of the (unique)
Reeb vector field of α−,

α−(V ) = (dw + v ds)

(
∂

∂w

)
= 1,

and since dα− = dv ∧ ds, we have dα−(V , ·) = 0. Moreover, since α+ and β+ do not
have a dw-term, α+(V ) = 0 and β+(V ) = 0. We leave to the reader to check the other
identities.

4. Foulon–Hasselblatt contact surgery
In this section, we introduce a construction of Foulon and Hasselblatt that will play a fun-
damental role in the definition of the bi-contact surgery. Remarkably, the bi-contact surgery
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12 F. Salmoiraghi

FIGURE 5. The surgery annulus in Foulon–Hasselblatt construction.

will allow us to extend the classic application of Foulon and Hasselblatt construction to a
broader class of (contact) Anosov flows.

Let α be a Ck contact form with Reeb vector field Rα , and consider a Legendrian knot
L for ξ = ker α. Foulon and Hasselblatt describe in [14] a family of contact surgeries of
the Dehn type that generates a new Ck contact form α̃ in the new manifold M̃ and a Ck−1

vector field Rα̃ such that:
(1) ξ̃ = ker α̃ is isotopic to a contact structure obtained from ξ = ker α by classic

contact surgery and such that α̃ = α outside a neighbourhood of an annulus C
transverse to the flow of Rα;

(2) Rα̃ is the Reeb vector field of α̃. Moreover, Rα̃ is collinear to Rα in M \ C.
In other words, the Foulon and Hasselblatt construction is a contact surgery that allows

us to have some control on the direction of the resulting Reeb vector field.

4.1. Definition of the contact surgery. In the following, we recall the main features of
the Foulon–Hasselblatt construction (see [14, 15] for more details). Given a 3-manifold
with a contact structure ξ = ker α and a Legendrian knot L, there is a coordinate system

(t , s, w) ∈ N = (−δ, δ)× S1 × (−ε, ε),

where the parameters (s, w) are defined on the surgery annulus C = {0} × S1 × (−ε, ε)
(see Figure 5). More precisely, s ∈ S1 is the parameter of L and w belongs to some interval
(−ε, ε). The transverse parameter t is such that the Reeb vector field of γ satisfies
Rα = ∂/∂t ; therefore, N is a flow-box chart for Rα . In this coordinate system, a contact
form defining a contact structure takes the particularly simple expression γ = dt + w ds.

The surgery can be thought of as first cutting the manifold M along the annulus C and
then gluing back the two sides of the cut in a different way. In particular, we glue the
point that, on one side of the cut, is described by coordinates (s, w) to that described by
coordinates (s + f (w), w) on the other side. Here, f : [−ε, ε] → S1 is a non-decreasing
function such that f (−ε) = 0 and f (ε) = 2πq, and satisfying a number of additional
requirements. The transition map F : C → C, (s, w) → (s + f (w), w) is often called
shear. Since

F∗
∂

∂t
= ∂

∂t
,

https://doi.org/10.1017/etds.2025.10196 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10196


Surgery on Anosov flows using bi-contact geometry 13

the shear defines a smooth vector field from Rα . Note that if we restrict our attention to the
vector field Rα , Foulon–Hasselblatt construction can be interpreted as a Goodman surgery
on Rα .

Let us denote with (α)− the contact form defined on one side of the flow-box chart and
with (α)+ the contact form on the other side, we easily see that

F ∗(α)+ = (α)− + wf ′(w) dw;

therefore, the shear defines a smooth vector field from Rα , but does not define a smooth
contact structure on the new manifold. This issue is addressed by Foulon and Hasselblatt
introducing a deformation that yields to a 1-form (α̃)+ = (α)+ − dh of class C1 and dh is
the differential of the following function:

h(t , w) = λ(t)

∫ w

−ε
xf ′(x) dx.

Here, λ : R → [0, 1] is a C1 bump function with support in some interval (0, δ) with
δ > 0 that takes value 1 in a neighbourhood of 0 and takes value 0 in a neighbourhood of δ.
With these choices, we have F ∗(α − dh)+ = (α)−. Therefore, α̃ is a well-defined 1-form
of class C1 in M̃ . Note that the deformation depends on the shear and it is not immediately
clear if the plane field distribution ker α̃ still defines a contact structure. The authors show
that if we choose 0 < ε < δ/2πq, this is in fact the case. Moreover, the Reeb vector field
of α̃ takes the form

Rα̃ = Rα

1 − dh(Rα)
.

4.2. Application to contact Anosov flows. The Foulon–Hasselblatt construction is purely
contact geometric, it does not require the Reeb vector field of α to be Anosov and it can be
performed in a neighbourhood of any Legendrian knot.

If applied to a geodesic flow on the unit tangent bundle of an hyperbolic surface, we
have the following theorem.

THEOREM 4.1. (Foulon–Hasselblatt–Vaugon [15]) Select a closed geodesic γ on a
hyperbolic surface S and consider the geodesic flow on UT S. Consider the knot L defined
by the angle θ = π/2 on each fibre along γ . Let 2ε be the width of the surgery annulus.
(1) The (1, q)-Dehn surgery along L defined in §4.1 does produce an Anosov flow if

q > 0 regardless of the width of the surgery annulus.
(2) It does not produce an Anosov if −q/ε is large enough, that is, if either q < 0 is

fixed and ε is small enough or if ε > 0 is fixed and q < 0 with |q| big enough.

The following result shows that the geodesic γ can be chosen in such a way that the
result of the surgery is hyperbolic.

THEOREM 4.2. (Calegari/Folklore [14]) Let γ a closed, filling geodesic in an hyperbolic
surface S. Then, the complement of its image in the unit tangent bundle of S is hyperbolic.
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Note that the Birkhoff torus corresponding to a closed, filling geodesic is
self-intersecting. However, for q > 0, we can choose ε > 0 small enough to ensure that
the surgery annulus Cε is embedded in M.

5. Bi-contact surgery on Anosov flows
We introduce a new type of Dehn surgery on a projectively Anosov flow with weak
orientable invariant foliations. Our construction is defined in a neighbourhood N of a
knot K that is simultaneously Legendrian for ξ− and transverse for ξ+. Furthermore, we
require that in N, the Reeb vector field of a contact form α− such that ker α− = ξ− is
contained in ξ+. As Hozoori shows in [20], if the flow is Anosov and volume preserving,
there is a supporting bi-contact structure (ker α− = ξ−, ker α+ = ξ+) that satisfies the
above property everywhere. However, if the flow is just Anosov, Hozoori [20] shows that
the condition Rα− ∈ ker α+ = ξ+ can be always achieved in a neighbourhood of a closed
orbit.

THEOREM 5.1. (Hozoori [20]) Let φt be a C1-Hölder Anosov flow with orientable weak
invariant foliations and let γ be a periodic orbit. There is a pair of contact forms
(α−, α+), such that (ker α−, ker α+) is a supporting bi-contact structure for φt and,
in a neighbourhood N of γ , the Reeb vector field Rα− of α− satisfies the condition
α+(Rα−) = 0.

We use the following corollary to construct a Legendrian-transverse knot from a closed
orbit γ .

COROLLARY 5.2. Let γ be a closed orbit of a flow defined by a bi-contact structure
(ker α− = ξ−, ker α+ = ξ+) such that in a neighbourhood N of γ , the Reeb vector field
Rα− belongs to ker α+ = ξ+. Let ψw be the flow of Rα− . The knot K = ψw(γ ) is a
Legendrian-transverse knot for 0 < w sufficiently small.

Definition 5.3. Consider a closed orbit γ and a pair of contact forms (α−, α+) such that
in a neighbourhood N of γ , the Reeb vector field Rα− belongs to ker α+ = ξ+. We call
a Legendrian-transverse push-off of γ a knot K that is simultaneously Legendrian for
ξ− = ker α− and transverse for ξ+ = ker α+, and it is obtained by translating γ using the
flow of Rα− (see Figure 6).

5.0.1. Sketch of the construction of a bi-contact surgery. Let K be a Legendrian-
transverse knot in a bi-contact structure (ξ−, ξ+) defining a vector field X with flow φt .
Suppose that in a neighbourhood N of K, we have Rα− ∈ ξ+ for some contact form α−
such that ker α− = ξ−. Since K is Legendrian for ξ−, we can apply Foulon–Hasselblatt
contact surgery to the pair (α−, Rα−) using a shear F on a surgery annulus A0 constructed
by translating the knot K using the flow φt . Note that with the above assumptions, A0

is transverse to Rα− and tangent to X. After surgery, we have a new contact form α̃−
with Reeb vector field Rα̃− that is collinear to Rα− in M \ A0. Consider now the contact
structure ker α+ = ξ+ transverse to the knot K. If the surgery coefficient q is positive, we
will show that there is a new contact form α̃+ such that the Reeb vector field Rα̃− belongs
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FIGURE 6. Legendrian-transverse push-off of a closed orbit. The vertical arrows represent Rα− . In black, the
Anosov flow (colour online).

to ker α̃+ = ξ̃+. Suppose now that the initial defining bi-contact structure is such that
Rα− ∈ ker α+ everywhere (therefore, the supported flow is Anosov by Corollary 2.10. The
new bi-contact structure (ker α̃−, ker α̃+) has the same property; therefore, the supported
vector field X̃ is Anosov.

Remark 5.4. The condition Rα− ∈ ker α+ everywhere can be always achieved in a volume
preserving Anosov flow (see Theorem 2.11). At the time of writing this work, it is
not known if the condition can be achieved on any Anosov flow with orientable weak
foliations.

5.1. Definition of the bi-contact surgery. We first construct a special coordinate system
in a neighbourhood N of the Legendrian-transverse knot K, where two supporting contact
forms (α−, α+) take a very simple expression.

LEMMA 5.5. Suppose M is a 3-manifold endowed with a projectively Anosov flow φt

defined by a bi-contact structure (ξ−, ξ+) and consider a knot K that is simultaneously
Legendrian for ξ− and transverse for ξ+. Suppose also that there is a contact form α−
defining ξ− such that the Reeb vector field of α− is contained in ξ+ in a neighbourhood
N = A0 × (−ε, ε) of K, where A0 is an annulus tangent to the Anosov flow and ε > 0.
(A0 is also tangent to the contact structure along its core K.) We can choose N equipped
with coordinates (s, v, w) and a contact form α+ supporting ξ+ such that in N, we have

α− = dw + v ds,

α+ = ds − b(s, v, w) dv with α+ = ds on A0.

Here, s and v are coordinates on A0 such that s ∈ S1 is the parameter describing K and
v ∈ (−δ, δ) with δ ∈ R

+, while w ∈ (−ε, ε) is the transverse parameter to A0 defined by
the flow of R−.
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FIGURE 7. The surgery annulus A0 spanned by the flow. The dashed line is the Legendrian-transverse knot K.
The vertical arrows represent Rα− . In black, the Anosov flow (colour online).

Proof. The construction of the surgery annulus A0 is straightforward. We start with the
Legendrian-transverse knot K : S1 → M and we define the tangent annulus

A0 =
⋃

t∈[−τ ,τ ]

φt (K)

spanned by the flow φt for t ∈ [−τ , τ ] with τ > 0. Let α− be the 1-form specified in the
statement of the lemma. Since K is Legendrian, we can choose a small enough τ such that
the Reeb vector field Rα− is transverse to A0 (see Figure 7).

Let ψw be the flow of the Reeb vector field Rα− of α−. There is an auxiliary coordinate
system (s, u, w) in a neighbourhood of A such that

α− = dw + a(s, u) ds.

Since K is a Legendrian knot, we have a(s, 0) = 0 and since ∂/∂ua(s, u) 
= 0, the
transformation of coordinates

(s, u) → (s, a(s, u)) =: (s, v)

is non-singular and therefore we have (see [14])

α− = dw + v ds.

Since the flow lines of Rα− are Legendrian for ξ+ by hypothesis and the v-curves are
transverse to ξ+ in a neighbourhood N of K, there is a contact form α+ supporting ξ+ that
in N can be written

α+ = ds − b(s, v, w) dv.

In general, the v-curves do not describe the same codimension-two foliation described
by the flowlines of X. However, these codimension-two foliations coincide on the surgery
annulus. Therefore, b(s, v, 0) = 0 and α+ = ds.

LEMMA 5.6. In the hypothesis of Lemma 5.5, there is a neighbourhood�′ ⊂ N of K such
that the contact form α0+ = ds − b(s, v, w) dv can be isotoped along the flow lines of Rα−
to a contact form independent on the s- and v-coordinate. In particular, we can write

α1+ = ds − h(w) dv.
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Proof. Since ξ+ is a positive contact structure, b(s, v, w) is strictly increasing with w.
Therefore, b(s, v, 0) = 0 implies that b(s, v, w) > 0 forw > 0. Choose a smooth function
h : R → R such that h(w) is strictly increasing with w and h(0) = 0. For every point
(s, v) ∈ A0 and k small enough, there is function gk : A0 → R such that gk(s, v) >
0 and b(s, v, gk(s, v)) = h(k). The graph of gk , namely Agk = {(s, v, w)|(s, v) ∈ A0,
w = gk(s, v)}, is an annulus above A0. More generally, for w ∈ [0, k], we have a
family of annuli Agw = {(s, v, w)|(s, v) ∈ A0, w = gw(s, v)}, where gw(s, v) is such that
b(s, v, gw(s, v)) = h(w). Now, let FAgw be the characteristic foliation induced by ξ+ on
Agw for w ∈ [0, k]. Since h(w) is independent on the s- and v-coordinate, the projection
of FAgw along the w-curves onto A0 is a foliation of A0 that is invariant in the s-
and v-direction. Consider the union � = ⋃

w∈[0,k] Agw of all the annuli Agw for w ∈
[0, k] and the subset �′ ⊂ � with �′ = ⋃

w∈[0,k] A
′
gw

, where A′
gw

= {(s, v, w)|(s, v) ∈
A′

0, w = gw(s, v)} and A′
0 is defined by v ∈ [−δ1, δ1] ⊂ (−δ, δ). Let ψt be a smooth

isotopy with support in � along the flow-lines of Rα− such that ψ1(A′
gw
) is the set

A′
w = {(s, v, w)|(s, v) ∈ A′

0, w = cost}. Consider onAw = ψ1(Agw) the foliation FAw =
ψ1(FAgw ) and let FA′

w
be its restriction on A′

w. Since the isotopy has been realized
deforming each annulus Agw along the w-curves, the projection of FAw on A0 is
independent on the s- and v-coordinate. Since A′

w is parallel to A′
0, the foliation FA′

w
(not

just its projection) is invariant in the s- and v-coordinate. Note that by construction, FAw
is the characteristic foliation induced on Aw by the contact structure ψ1∗ξ+. Since FA′

w
on

each A′
w, w ∈ [0, k] is independent on the s- and v-coordinates, there is a contact form

defining ψ1∗ξ+ on �′ that is independent on the s- and v-coordinates. In particular, we can
write ψ1∗ξ+ = ker α1+ with α1+ = ds − h(w) ds.

Remark 5.7. Consider a path of projectively Anosov flows defined by an isotopy of the
contact structure ξ+ along the flow-lines of Rα− as in Lemma 5.6. Every flow along the
path is Anosov. In particular, any two flows φt0 and φt1 in the path are orbit equivalent by a
diffeomorphism isotopic to the identity (see Theorem 2.12).

5.1.1. Deformations and gluings. Our procedure can be thought of as first cutting the
manifold M along the annulusA0 and then gluing back the two sides of the cut in a different
way. In particular, we glue the points described by the coordinates (s, v) on the side of
the cut where w ≤ 0 to points (s + f (v), v) on the side of the cut where w ≥ 0. More
precisely, this can be stated as the following remark.

Remark 5.8. (Notation) Let w ∈ [−ε, ε] be the parameter of the flow generated by Rα− .
In the following, by A−

0 , we mean the surgery annulus as a subset of the flow-box chart
(−ε, 0] × A0, while by A+

0 , we mean the surgery annulus as a subset of the flow-box chart
[0, ε)× A0. Moreover, (α−)|A−

0
is the restriction of α− to A−

0 , and (α−)− is the restriction
of α− to (−ε, 0] × A0. Similarly, (α−)+ is the restriction of α− to (0, ε] × A0.

We define

f : R → S1, v → f (v),
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FIGURE 8. On the top left, the bi-contact structure of the original flow. On the bottom left, the bi-contact structure
after deformation. On the right, the corresponding flow-lines on the two sides of the surgery annulus A0 (colour

online).

where f : R → [0, 2π ] monotone in (−δ, δ), smooth and such that f ((−∞, −δ)) = 0,
f ([δ, ∞)) = −2qπ , where q ∈ Z, and we define the shear map

F : A−
0 → A+

0 , (s, v) → (s + f (v), v).

Remark 5.9. Note that for a (1, q)-bi-contact surgery with q > 0, the function f
used to define the shear is non-increasing, while the function used in §4 to define a
(1, q)-Foulon–Hasselblatt surgery is non-decreasing. This is because Foulon–Hasselblatt
construction was originally performed along a transverse annulus C, while the
Legendrian-transverse surgery is performed on an annulus A0 tangent to the flow. With
this convention, if K ⊂ C ∩ A0, the two operations produce homeomorphic manifolds for
the same q.

As noticed in §4.1, the shear F : A−
0 → A+

0 defines a smooth new 3-manifold M̃ , but it
does not preserve the contact form α− since on the surgery annulus A0,

F ∗(α−)|A+
0

= dw + v d(s + f (v)) = (α−)− + vf ′(v) ds.

Here, by F ∗(α−)|A+
0

, we mean the image of (α−)|A+
0

under the pull-back map F ∗.
An analogous calculation shows that α+ is not preserved either since

F ∗(α+)|A+
0

= F ∗ ds = d(s + f (v)) = ds + f ′(v) dv = (α+)|A−
0

+ f ′(v) dv.

The strategy is to deform each of the contact structures independently on M \ A0 in such
a way that they remain transverse to each other and after the application of the shear, they
define two new (transverse) contact structures (see Figure 8).

The deformation that we apply to α− is the same one used by Foulon and Hasselblatt to
define their contact surgery.
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We define (α̃−)− = (α−)− in the flow-box charts (−ε, 0] × A0 and (α̃−)+ = (α−)+ −
dh in [0, ε)× A0. Here, h : (−δ, δ)× [0, ε) → R is such that

h(v, w) = λ1(w)

∫ v

−δ
xf ′(x) dx.

Here, λ1 : R :→ [0, 1] is a smooth bump function supported in [0, ε) such that
λ1(0) = 1 and |λ′

1| < 1/ε + ι with ι arbitrarily small. Note that in a neighbourhood of
A+

0 , we have [15]

α̃− = dw + v ds − f ′(v)v dv;

therefore,

F ∗((α−)+ − dh)|A+
0

= (α−)|A−
0

and we have a well-defined 1-form on the new manifold M̃ .
The deformation that we apply to α+ is defined as follows. We set (α̃+)− = (α+)− and

(α̃+)+ = (α+)+ − σ , and consider the 1-form

σ = λ2(w) f
′(v) dv, (5.1)

where λ2 : R → [0, 1] is a smooth bump function, with support in [0, ε) that takes the
value 1 in a neighbourhood of 0 and value 0 in a neighbourhood of ε. More explicitly,

(α̃+)+ = ds − (b(w)+ λ2(w) f
′(v)) dv.

Note that since f ′(v) has support in (−δ, δ), the 1-form σ is smooth and vanishing in the
complement of A0 × [0, ε).

We check that on the surgery annulus A0, we have F ∗((α+)+ − σ)|A+
0

= (α+)|A+
0

. A
direct computation shows that

F ∗(α̃+)|A+
0

= F ∗(ds − b(w) dv − λ2(w) f
′(v) dv)|A+

0

= ds + f ′(v) dv − b(w) dv − f ′(v) dv = (α+)|A−
0

;

therefore, α̃+ is a well-defined 1-form on M̃ .

Remark 5.10. The plane field distribution ξ̃+ = ker(α̃+) and the plane field distribution
ξ̃− = ker(α̃−) are transverse since ξ̃+ contains Rα̃− that is a vector field always transverse
to ξ̃− = ker(α̃−).

The following statement encompasses Theorems 1.1 and 1.2 in the introduction.

THEOREM 5.11. Let (ξ− = ker α−, ξ+ = ker α+) be a bi-contact structure such that
in a neighbourhood of a Legendrian-transverse knot K, we have Rα− ⊂ ker α+.
If q > 0, a bi-contact (1, q)-surgery along K produces a new bi-contact structure
(ξ̃− = ker α̃−, ξ̃+ = ker α̃+). Moreover, Rα̃− ⊂ ker α̃+.

Proof. We first show that the (1, q)-surgery produces a 1-form α̃− that is contact for every
q ∈ Z. This is done using the contact surgery introduced by Foulon and Hasselblatt in
[14], and interpreting the surgery annulus A0 as a transverse annulus to the Reeb vector

https://doi.org/10.1017/etds.2025.10196 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10196


20 F. Salmoiraghi

field of α−. We use a slightly different argument to that used by Foulon and Hasselblatt. In
particular, we show that we do not need any bound on the derivative of f in the definition
of the shear in §5.1.1. As shown in [14], we have

α̃ ∧ dα̃ =
(

− 1 + ∂h

∂w

)
dV ,

with dV = ds ∧ dv ∧ dw. Therefore, the condition |∂h/∂w| < 1 ensures that α̃ is
contact. ∣∣∣∣ ∂h∂w

∣∣∣∣ =
∣∣∣∣λ′

1

∫ v

−δ
xf ′(x) dx

∣∣∣∣,
integrating by parts and since f (−δ) = 0, we get∣∣∣∣ ∂h∂w

∣∣∣∣ =
∣∣∣∣λ′

1

(
vf (v)+ δf (−δ)−

∫ v

−δ
f (x) dx

)∣∣∣∣ =
∣∣∣∣λ′

1

(
vf (v)−

∫ v

−δ
f (x) dx

)∣∣∣∣
since |λ′

1| < 1/ε + ι with ι arbitrarily small, −δ < v < δ (by definition of v),
|f (v)| < 2π |q| (by definition of f ) and | ∫ v

−δ f (x) dx| ≤ | ∫ δ
−δ f (x) dx)| < 4πδ|q|, we

have ∣∣∣∣ ∂h∂w
∣∣∣∣ ≤

(
1
ε

+ ι

)
(δ2π |q| + 4δπ |q|) =

(
1
ε

+ ι

)
(6δπ |q|),

and since ι is arbitrarily small, we have∣∣∣∣ ∂h∂w
∣∣∣∣ ≤ δ

ε
(6π |q| + 1).

This shows that the 1-form α̃− is contact if

0 < δ <
ε

6π |q| + 1
. (5.2)

Remark 5.12. Note that condition (5.2) holds independently of the sign of q and the
positivity of α−. Moreover, δ can be chosen arbitrarily small, in particular, the tangent
surgery annulus A0 can be chosen arbitrarily thin.

We now show that for q > 0, the 1-form α̃+ defines a contact form on M̃ . The 1-form
α̃+ defines a positive contact form if and only if [12]

b′(w)+ λ′
2(w) f

′(v) > 0. (5.3)

Since b′(w) > 0 by the contact condition and λ′
2(w) ≤ 0 by the definition of the bump

function λ2, the inequality is always satisfied if f ′(v) ≤ 0. Therefore, the family of
(1, q)-Dehn surgeries produces bi-contact structures for q > 0.

Finally, since α̃+ = ds − (b(w)+ λ2(w) f
′(v)) dv and Rα̃+ is parallel to Rα+ on

M̃ \ A0, we have Rα̃+ ∈ ker α̃+.

The proof of Theorem 5.11 shows that there is a choice of the direction of the twist
that strengthens the contact condition of the contact structure transverse to K. Performing
the surgery in the opposite direction may result in a violation of the contact condition.
An analogous phenomenon emerges in Goodman surgery (see [5, 15, 19]), where there
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is a choice of the direction of the shear that weakens the hyperbolicity of the flow. The
following result shows that there is indeed a strong connection between the Anosovity of
the new flows produced by the bi-contact surgery and contact geometry.

THEOREM 5.13. Let M be a 3-manifold endowed with a bi-contact structure
(ker α−, ker α+) such thatRα− ∈ ker α+ everywhere. If the Legendrian-transverse surgery
yields a new bi-contact structure, it yields an Anosov flow.

Proof. The proof is a straightforward application of Hoozori criterion of Anosovity. Since
by construction, we have Rα̃− ⊂ ξ̃+, the Reeb vector field Rα̃ is dynamically positive
everywhere (Corollary 2.10).

6. New Anosov flows for negative surgery coefficients
We now give a sufficient condition for a bi-contact (1, q)-surgery to yield an Anosov flow
when the operation is performed in the direction that weakens the hyperbolicity. Let K be
a Legendrian-transverse knot in a bi-contact structure (ξ− = ker α−, ξ+ = ker α+) such
that Rα− ⊂ ξ+ everywhere. The condition we give for a bi-contact (1, q)-surgery to yield
an Anosov flow is purely contact geometric and involves the behaviour of ξ+ along the
boundary of a neighbourhood � of K. To this end, we introduce the following definition.

Definition 6.1. Let� be a neighbourhood of a Legendrian-transverse knot K such that the
leaves of the characteristic foliation F∂� induced by ξ+ on ∂� are simple closed curves in
the homology class r[μ] + s[K], where μ bounds a disk in �. We call k = s/r > 0 the
slope of the characteristic foliation F∂�.

Remark 6.2. Let N be a neighbourhood of a Legendrian-transverse knot K as in
Lemma 5.5. After an isotopy of the ξ+ along the flow-lines of α− that induces an orbit
equivalence isotopic to the identity, we assume that α+ = ds − h(w) dv by Lemma 5.6.

THEOREM 6.3. Let K be a Legendrian-tansverse knot in a bi-contact structure
(ξ− = ker α−, ξ+ = ker α+) such that Rα− ⊂ ξ+ everywhere. There is a neighbourhood
� ⊂ N of K such that if k > 0 is the slope of the characteristic foliation F∂N induced by
ξ+ on ∂N , a bi-contact (1, q)-surgery with q > −k yields an Anosov flow.

Proof. Let φt be an Anosov flow supported by (ker α− = ξ−, ξ+) such that Rα− ∈ ξ+.
Callψw the flow ofRα− . Consider a flow-box neighbourhood� ⊂ N ofK = K0 bounded
at the bottom by the surgery annulus AK0 = A0, bounded on the sides by the annuli
(transverse to the flow φt ) Cin and Cout constructed by flowing the boundary components
of A0 using the flow of Rα− , and bounded on the top by an annulus (see Figure 9)

AKε =
⋃

t∈[−τ ,τ ]

φt (ψε(K)).

In particular, AKε is constructed as follows. Let Kε = ψε(K) be the knot obtained by
translating K using the flow ψw for a (small) time ε. The annulus AKε is constructed
translating the knot ψε(K) using the Anosov flow φt for t ∈ [−τ , τ ]. Moreover, we can
assume that F∂� is composed by closed curves. This is possible since F∂� is a linear
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foliation since it is independent on the s-coordinate. If the slope is irrational, after a
C1-small perturbation along the flow-lines of Rα− , we can assume that F∂� has closed
leaves. Let k = s/r > 0 be the slope of F∂�. Let p be the integral part of −k if −k is
not an integer and set p = −k + 1 if −k is an integer. Since p > −k, we can choose a
function fp : [−δ, δ] → S1 with f ′

p(−δ) = f ′
p(δ) = 0 such that the curve fp = {(v, s) ∈

A0|v ∈ [−δ, δ], s = fp(v)}, defined by the graph of fp, has the following properties:
(1) the projection πw(fp) of fp into AKε along the w-curves intersects transversely the

curves of the characteristic foliation FAKε obtained by restricting F∂� to AKε ;
(2) the foliation on ∂� constructed by replacing FAKε with a family of curves parallel

to πw(fp) has slope p.
The shear map

F : A0 → A0, (s, v) → (s + fp(v), v)

induces a (1, p)-Dehn surgery. Similarly to §5.1.1, we set

(α̃+)+ = ds − (b(w)+ λp(v, w) f ′
p(v)) dv.

On AKε , the characteristic foliation induced by ξ+ = ker(ds − b(w) dv) is directed
by v = (∂/∂s)b(gKε (v))+ ∂/∂v + C1(v)∂/∂w, where gKε (v) : [−δ, δ] → [0, ε] is such
that AKε = {v ∈ [−δ, δ], w = gKε (v)} and some C1 : [−δ, δ] → R. Since the curve
πw(fp) defined above positively intersects FAKε , we have b(gKε (v)) > f ′

p(v). Moreover,
b(0) = 0 on A0 and b′(w) > 0 in �. Therefore, there is an annulus Afp between AKε
and A0 such that the characteristic foliation FAfp

induced by ξ+ on Afp is directed
by u = (∂/∂s)f ′

p(v)+ ∂/∂v + C2(v)∂/∂w with C2 : [−δ, δ] → R. We have Afq = {v ∈
[−δ, δ], w = hfp (v)} with hfp : [−δ, δ] → [0, ε] such that b(hfp (v)) = f ′

p(v). We now
define the smooth function λp : � → [0, 1]. (Since α+ is invariant in the s-direction,
λp can be chosen to be constant along the coordinate s, so we will write for simplicity
λp(v, w) instead of λp(s, v, w).) We set λp(v, w) = 0 near AKε . Let �′ ⊂ � be the
portion of� between A0 and Afp . We set λp(v, w) = 1 on a subset �′′ ⊂ � that contains
�′. Therefore, we have λp(v, w) = 1 near Afq and λp(v, w) = 0 near AKε . Since in the
region � \�′′ we have b(w) > f ′

p(v), we can define λp : � → [0, 1] such that

b(w)+ λp(v, w) f ′
p(v) > 0, hfp (v) < w < gKε (v).

In particular, we can choose λp(v, w) < −b(w)/f ′
p(v) with ∂λp/∂w < −b′(w)/f ′

p(v).
With these choices, we have

b′(w)+ ∂λp

∂w
f ′
p(v) > 0, (6.1)

which is equivalent to say that α̃+ is contact. Since the w-curves are flow lines of Rα− ,
Anosovity follows by Hozoori’s criterion.

6.1. Bi-contact surgery near a closed orbit. We now show that if the knot K is a
Legendrian-transverse push off of a closed orbit γ of the flow, it is possible to perform
the bi-contact surgery with any integral surgery coefficient. First, we give a version of
Lemma 5.5 in a neighbourhood of a closed orbit γ .
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FIGURE 9. On the right, the positive contact structure rotates along the w axis. As usual, the
Legendrian-transverse knot is denoted by a dashed line. On the left, the annuli AKw spanned by the flow (colour

online).

LEMMA 6.4. Suppose M is a 3-manifold endowed with a projectively Anosov flow φt

defined by a bi-contact structure (ker α− = ξ−, ξ+) and consider a knot K that is a
Legendrian-transverse push-off of a closed orbit γ . Suppose also that the Reeb vector
field of α− is contained in ξ+ in a neighbourhood N = A0 × (−ε, ε) of K, where A0 is an
annulus tangent to the Anosov flow and ε > 0. We can choose N equipped with coordinates
(s, v, w) and a contact form α+ supporting ξ+ such that in N, we have

α− = dw + v ds,

α+ = (ε − w) ds − w dv.

Here, s and v are coordinates on A0 such that s ∈ S1 is the parameter describing K and
v ∈ (−δ, δ) with δ ∈ R

+, while w ∈ (−ε, ε) is the transverse parameter to A0 defined by
the flow of R−. Finally, ε ∈ (0, ε).

Proof. The proof is similar to that of Lemma 5.5. Let ψw be the flow of Rα− . Since K is
a Legendrian-transverse push-off of γ , we can write K = ψ−ε(γ ) for some ε > 0. Since
γ is a closed orbit of the flow, γ is a knot that is Legendrian for both ξ− and ξ+. Similarly
to the proof of Lemma 5.5, we can write

α+ = b1(s, v, w) ds − b2(s, v, w) dv,

with b2(s, v, 0) = 0 and b1(s, v, ε) = 0 since γ is Legendrian for ξ+. Using the same
argument of Lemma 5.6, we can isotope ξ+ along the w-curves obtaining the desired
expression for α+.

COROLLARY 6.5. Let γ be a closed orbit of a flow defined by a bi-contact structure
(ξ− = ker α−, ξ+ = ker α+) such that Rα− ⊂ ξ+ and let K be a Legendrian-transverse
push-off of γ . For every p ∈ Z

−, there is a flow-box neighbourhood �p of K such that a
bi-contact (1, q)-surgery along K yields an Anosov flow for every q > p.
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FIGURE 10. The positive contact structure ξ+ in the proximity of a closed orbit. The curves are the leaves of the
characteristic foliation induced by ξ+ on Aε (colour online).

Proof. Consider the flow-box neighbourhood � as in the proof of Theorem 6.3. Since
ψε(K) = γ , we have that if w approaches ε, the contact form α+ approaches the plane
field ker(−ε dv). In particular, the slope of the characteristic foliation induced by α+ on
� can be made arbitrarily large taking w close enough to ε. We finally use Theorem 6.3
and the fact that either p is the integral part of −k or p = −k + 1 (with k the slope of the
characteristic foliation induced by ξ+ on � defined in the proof of Theorem 6.3).

Remark 6.6. In a neighbourhood N of a closed orbit γ of a flow defined by a bi-contact
structure (ξ− = ker α−, ξ+ = ker α+) such that Rα− ⊂ ξ+, there is a sequence of nested
flow-box neighbourhoods of the Legendrian-transverse knot K namely �−1 ⊂ �−2 ⊂
· · · ⊂ �p ⊂ · · · ⊂ �−∞, p ∈ Z

− such that a bi-contact (1, q)-surgery yields an Anosov
flow for every q ≥ p. Here,

�p =
⋃

w∈[0,εp]

AKw ,

and

AKw =
⋃

t∈[−τ ,τ ]

φt (ψw(K))

with εp sufficiently close to ε. Moreover,

�−∞ =
⋃

w∈[0,ε)

AKw .

All the neighbourhoods are bounded on one side by A0. For p ∈ Z
−, the neighbourhood

�p is a flow-box (see Figure 10), while�−∞ is not a flow-box, since it contains the closed
orbit γ .

7. Relations with Goodman surgery
In this section, we study the relationship between the bi-contact surgery and the surgery
introduced by Goodman [17]. At a first glance, the two operations look very different. First
of all, the surgery annulus used in the bi-contract surgery is tangent to the generating vector
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FIGURE 11. The flow-box N. For simplicity, we depicted the top layer Aε as flat. The two vertical segments on
the right side of the left picture represent two leaves of F , while on the right, two leaves of the new foliation F̃
are represented. A negative Dehn twist on A0 (represented by the curve on the bottom of the picture on the right)
corresponds to a positive Dehn twist on Cout. Therefore, a flow constructed by a (1, q)-bi-contact surgery along

A0 is orbit equivalent to a flow generated by (1, q)-Goodman surgery along Cout (colour online).

field X, while in Goodman’s construction, we use an annulus transverse to the flow. Second,
in the bi-contact surgery construction, the deformation of the bi-contact structure induces
a three-dimensional perturbation of the flow in a neighbourhood of the surgery annulus.
However, in Goodman’s surgery, the flow lines of the new flow coincide with the old ones
outside the (transverse) surgery annulus. Despite these differences, the flows generated by
bi-contact surgery and those generated by Goodman’s construction are orbit equivalent.

THEOREM 7.1. Suppose that K is a Legendrian-transverse push-off of a closed orbit in
a bi-contact structure (ξ−, ξ+) defined by two contact forms (α−, α+) such that Rα− is
contained in ξ+. An Anosov flow generated by a bi-contact (1, q)-surgery along the tangent
annulus A0 is orbit equivalent to an Anosov flow generated by a (1, q)-Goodman surgery
along a transverse annulus C.

Proof. As in the proof of Theorem 6.3, let φt be an Anosov flow supported by (ker α− =
ξ−, ξ+) such that Rα− ∈ ξ+. Call ψw the flow of Rα− . Let N be a neighbourhood of a
Legendrian knot K with a coordinate system (s, v, w) defined as in Lemma 5.5, where the
contact form α+ can be assumed (by Lemma 5.6) to be independent on the s-coordinate.
Consider a flow-box neighbourhood � ⊂ N of K = K0 bounded at the bottom by the
tangent surgery annulus AK0 = A0, bounded on the sides by the transverse annuli Cin and
Cout constructed by flowing the boundary components of A0 using the flow of Rα− , and
bounded on the top, by a tangent annulus (see Figure 9)

AKε =
⋃

t∈[−τ ,τ ]

φt (ψε(K)).

Let Fout be the foliation obtained by projecting on Cout (using the flow of X) the w-curves
defined on Cin. Consider now a bi-contact (1, q)-surgery along the tangent annulus A0

with shear

F : A0 → A0, (v, s) → (v, s + f (v))

with f (−δ) = 0 and f (δ) = −2πq. Let X̃ be the new vector field supported by the new
bi-contact structure (ξ̃−, ξ̃+). Note that after the surgery procedure the flow-box � is
transformed in another flow-box �̃, bounded by the same annuli as �. Let F̃out be the
foliation on Cout obtained by projecting (using the flow of X̃) the w-curves defined on Cin.
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We want to show that a leaf l̃out of F̃out has the same endpoints of a leaf lout of Fout, but
they differ by a Dehn twist along the core of Cout. Consider a segment lin of a segment
of a w-curve with endpoints p ∈ ∂A0 and q ∈ ∂AKε , and let lout and l̃out be its projection
into Cout using respectively the flow of X and X̃. Since on AKε the vector field X and
X̃ coincide, lout and l̃out share the same endpoint on the intersection of ∂Cout and ∂AKε .
Since the foliation induced by X̃ on A0 is directed by W̃0 = f ′(v) ∂/∂s + ∂/∂v, while
the one induced by X on A0 is directed by W0 = ∂/∂v, a segment of a flow-line of X̃
on A0 starting from the point p ∈ ∂A0 differs from that of X (staring from p) by a full
Dehn twist along the core of A0; therefore, the flow-line segments directed by W0 and
W̃0 share also the endpoint on the intersection of ∂A0 and ∂Cout. Thus, l̃out and lout have
the same endpoints. Since �̃ and � are both toroidal flow-boxes with the same transverse
and tangent faces, and since the flow-line of X̃ on A0 differs from that of X by a full
Dehn twist along the core of A0, l̃out must differ from lout by a full Dehn twist along the
core of Cout. Consider the flow obtained by collapsing to a point each of the flow-line
segments of X̃ in �̃. The resulting flow is clearly orbit equivalent to X̃ and also it is
orbit equivalent to a flow obtained by removing �̃ and gluing Cin to Cout using a map
that identifies each segment of w-curves lin on Cin to the corresponding l̃out on Cout. Call
X̃δ the family of flows obtained by bi-contact surgery for different choices of δ ∈ [δ̃, 0)
(2δ represents the width of the surgery annulus A0). Since this family defines a smooth
path of Anosov flows, they are all orbit equivalent by an orbit equivalence isotopic to the
identity. Taking δ small enough, we can make the annuli Cin and Cout to be C1-close to
the annulus C (this is the annulus transverse to the flow and bounded by K = K0 on the
bottom and by Kε on the top). However, lin is C1-close to lout. Since lin is a w-segment,
lout is C1-close to a w-segment and since l̃out is obtained adding a Dehn twist to lout and
the knot Kw, w ∈ [0, ε] is Legendrian (the fact that Kw is Legendrian is relevant since
if we take δ small, we can assume that the foliation in annuli of � and �̃ (defined in
Remark 6.6) are C1-close), the identification of lin with l̃out (for δ small enough) gives a
flow that is C1-close to one constructed by cutting X along C and gluing back the two sides
C− and C+ of C using the shear map

G : C− → C+, (w, s) → (w, s + g(w)),

with g : R → [0, 2π ], smooth, and such that g(0) = 0 and g(ε) = 2πq. The procedure
just described is Goodman surgery (see Figure 11).

COROLLARY 7.2. Suppose that K is a Legendrian-transverse knot in a bi-contact structure
(ξ− = ker α−, ξ+) such that Rα− ∈ ξ+ everywhere. Choose p ∈ Z

−. There is a transverse
annulus Cp such that a (1, q)-Goodman surgery on Cp yields an Anosov flow for every
q ≥ p.

Proof. For every flow-box �p as in Remark 6.6, consider the core annulus Cp of �p,

Cp =
⋃

w∈[0,εp]

Kw,

where Kw = ψw(K) and use the proof of Theorem 7.1.
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FIGURE 12. If a (1, p)-Goodman surgery along an annulus Cp produces an Anosov flow for a fixed p < 0, a
(1, p − 1)-Goodman produces an Anosov flow on an annulus Cp−1 obtained by expanding Cp towards the closed
orbit. The curve on the left represents a (1, −1) Goodman surgery, while the curve on the right is associated to a

(1, −2) Goodman surgery (colour online).

COROLLARY 7.3. In the hypothesis of Theorem 7.2, there is a sequence of nested
annuli C−1 ⊂ C−2 ⊂ · · · ⊂ Cp ⊂ · · · ⊂ C−∞ bounded on one side by the Legendrian-
transverse knot K. Every Cp is the core of �p and it is transverse to the flow if p ∈ Z. The
annulus C−∞ is quasi-transverse and it is bounded by K on one side and by the closed
orbit γ on the other side (see Figure 12). A (1, q)-Goodman surgery along Cp produces
an Anosov flow for every q ≥ p.

8. Surgery along simple closed geodesics in a geodesic flow
Let X be the generating vector field of the geodesic flow on the unit tangent bundle of
an oriented hyperbolic surface S and let β+ be the contact form preserved by X = Rβ+ .
Select a closed geodesic γ (eventually self intersecting) on S and consider the knot L
defined by the angle θ = π/2 on each fibre along γ . Here, L is a Legendrian knot for
ker β+. Let Cε = S1 × [−ε, ε] ⊂ UTγ be a transverse annulus with ε small enough to
ensure that Cε is not self intersecting. As shown by Foulon and Hasselblatt for any q > 0,
their construction ensures that a (1, q)-Goodman surgery produces a contact Anosov flow.

If L is associated to a simple closed geodesic γ , a recent result of Marty [23] shows that
Goodman surgery produces a positively skewed R-covered Anosov flow regardless of the
sign of the surgery if and only if the closed orbit is the lift of a simple closed geodesic. We
now prove a counterpart of Marty’s result in the contact category.

We prove the following lemma showing that while the Foulon and Hasselblatt con-
struction requires an arbitrarily thin annulus to produce a contact flow for positive surgery
coefficients, in the case of negative surgery coefficients, this requirement is not necessary.

LEMMA 8.1. Suppose that Rβ+ is the Reeb vector of a contact form β+ defining a positive
contact structure and let L be a Legendrian knot for ker β+. For q < 0, the Foulon and
Hasselblatt construction along a transverse embedded annulus C produces a new contact
form β̃+ with Reeb vector field Rβ̃+ regardless of the thickness of the surgery annulus.

Proof. Foulon and Hasselblatt show that the vector field X̃ obtained by Goodman surgery
with shear

G : C → C, (s, w) → (w, s + g(w)),
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along C preserves a positive contact form

β̃+ = dt + w ds − dh

with

h(t , w) = λ(t)

∫ w

−ε
xg′(x) dx;

hence,

β̃+ = dt + w ds − λ′(t)
∫ w

−ε
xg′(x) dx dt − λ(t)wg′(w) dw.

They indeed show that the contact condition

β̃+ ∧ dβ̃+ =
(

1 − ∂h

∂t

)
dV > 0 (8.1)

is satisfied regardless of the sign of the Dehn twist if the surgery annulus is sufficiently
thin. Note that if

∂h

∂t
= λ′(t)

∫ w

−ε
xg′(x) dx dt ≤ 0, (8.2)

the contact condition (8.1) is satisfied independently of the thickness of the surgery
annulus. If g′(w) < 0 and g : [−ε, ε] → S1 is odd, we have

∫ w
−ε xg

′(x) dx ≥ 0 for
w ∈ (−ε, ε) and since λ′(t) ≤ 0 for t > 0, inequality (8.2) is satisfied. This corresponds
to (1, q)-Foulon–Hasselblatt surgery with q < 0.

THEOREM 8.2. Let φt be the geodesic flow on the unit tangent bundle UT S of an oriented
hyperbolic surface S. Let C ⊂ UTγ be a quasi-transverse annulus associated to a simple
closed geodesic. For every p < 0, there is an embedded transverse annulus Cp ⊂ C

centred on L (as defined in §3.2) such that a (1, p)-Goodman surgery along Cp produces
a contact Anosov flow.

Proof. We first show that for every p ∈ Z
−, there are choices such that the bi-contact

surgery along a tangent annulus A0 containing L produces an Anosov flow. Then, we show
that these flows are orbit equivalent to flows constructed by (1, p)-Foulon–Hasselblatt
surgery along an annulus C transverse to the geodesic flow. The first part of the proof is
essentially the same as Theorem 7.1. The difference is that in this case, we are not allowed
to perform any isotopy to transform the natural form α+ in a contact form independent on
the s and v coordinates since such an isotopy would modify the vector field X defined by
(α−, α+) in a vector fieldX′ that a priori does not preserve β+. Nevertheless, Theorem 3.1
shows that α+ and α− are independent on the s coordinates and this is enough for our
purpose. More precisely, consider the (s, v, w)-coordinate system in a neighbourhood N
of UTγ as in Theorem 3.1. Let φt be the geodesic flow supported by (α−, α+), the natural
contact forms. Call ψw the flow of Rα− . Consider a flow-box neighbourhood � ⊂ N of
L = L0 bounded at the bottom by the annulus

AL−ε =
⋃

t∈[−τ ,τ ]

φt (ψ−ε(L)),
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FIGURE 13. On the left, a neighbourhood of a Legendrian knot L associated to a simple closed geodesic on
a geodesic flow. The curve on the left is the Dehn twist corresponding to a (negative) Legendrian-transverse
surgery (note that the curve has positive slope). On the left, the characteristic foliations induced by ξ+ on ALε
and AL−ε . The curve on the right is the Dehn twist corresponding to the induced Goodman surgery (colour

online).

bounded on the sides by the annuli (transverse to the flow φt ) Cin and Cout constructed by
flowing the boundary components of A0 using the flow of Rα− , and bounded on the top by
an annulus (see Figure 9)

ALε =
⋃

t∈[−τ ,τ ]

φt (ψε(L)).

Note that in the proof of Theorem 7.1, the bottom of�was bounded by the surgery annulus
A0, while here, A0 is in between AL−ε and ALε . This is because we want to construct a
transverse annulus C centred on L. We can achieve this performing a bi-contact surgery
along A0 splitting the difference as in [14]. This method consists of introducing half of the
deformation of the bi-contact structure on the side of the annulus where w < 0 and half
on the side of the annulus where w > 0. Since by Theorem 3.1 ξ+ does not depend on
the s-coordinate, the characteristic foliation induced by ξ+ on ∂� does not depend on the
s-coordinate. By Theorem 6.6, for every p ∈ Z, there is a neighbourhood �p and a new
pair of contact structures (ξ̃−, ξ̃+)q on the manifold M̃p obtained by performing bi-contact
(1, p)-surgery along A0 in the manifold M. Note that �p and the pair (α̃−, α̃+)p can
be chosen to be independent of the s-coordinate. By Theorem 7.1, these flows are orbit
equivalent to flows obtained by (1, p)-Goodman surgery with shear

G : C → C, (s, w) → (w, s + g(w)),

where we chose g′(w) < 0. Since L is Legendrian for ker β+ and β+ is also not dependent
on s and ker β− contains the w-curves, we can apply the Foulon–Hasselblatt construction
with surgery annulus

C =
⋃

w∈[−ε,ε]

KLε

and coordinates (s, w, t), where (s, w) are defined on C and t is the parameter given by
the geodesic flow (the Reeb flow of β+). By Theorem 8.1, the resulting flow is contact
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regardless of the thickness of C. Therefore, for every q < 0, the resulting flow is Anosov
and contact (see Figure 13).

9. Skewed R-covered Anosov flows generated by surgery are contact
In this section, we prove a version of Conjecture 1.6 for surgeries on a closed orbit of
a geodesic flow on the unit tangent bundle of an hyperbolic surface S. This result is a
consequence of Theorem 8.1 and the work of Asaoka, Bonatti and Marty [4] that we recall
in the following subsection.

9.1. Partial sections, multiplicity and linking numbers. Let M be an oriented 3-manifold
equipped with a smooth flow φt . We call a subset P of M a partial section if it is the image
of a smooth immersion ι : P̂ → M , where P̂ is a compact surface and the restriction of
ι to the interior of P̂ is an embedding transverse to the flow and ι(∂P̂ ) is a finite union
of closed orbits of φt . The immersion ι lifts to the manifold M∂P obtained by blowing
up along ι(∂P̂ ) = ∂P . A closed orbit in ∂P is the image ι(γ̂ ) of a boundary component
γ̂ of ∂P̂ . We denote the lift of ι(γ̂ ) to the blow-up with γ ∗ and we call it the boundary
component immersed in γ . Let M be an oriented 3-manifold equipped with an Anosov
flow with orientable invariant foliations, an immersed boundary component γ ∗ has two
invariants: the multiplicity mult(γ ∗) and the linking number link(γ ∗) defined as follows:

γ ∗ = mult(γ ∗) λγ + link(γ ∗) μγ .

Here, λγ is a curve homotopic to a lift of γ in the blow-up manifold (a parallel),
while μγ is a curve homotopic to a fibre of the projection π∂P : M∂P → M (a meridian).
If a closed orbit γ is the image of just one boundary components of P̂ , we can write
mult(γ ∗) = mult(γ ) and link(γ ∗) = link(γ ). We say that a boundary component γ ∗ is
positive (negative) if mult(γ ∗) > 0 (mult(γ ∗) < 0). A partial section P is said to be
positive (negative) when all its boundary components are positive (negative).

THEOREM 9.1. (Asaoka–Bonatti–Marty [4]) If φt is positively skewed R-covered, it does
not admit a negative partial section.

In [4], the authors also study how the multiplicity of a boundary component of a partial
section varies after a (1, q)-Goodman surgery.

THEOREM 9.2. (Asaoka–Bonatti–Marty [4]) A (1, q)-Goodman surgery along a closed
orbit in ∂P increases the multiplicity of a boundary component γ ∗ by +q link(γ ∗).

Example 9.3. Given a non-simple closed geodesic, we have an associated Birkhoff
annulus C with self intersection. There is a process called Fried desingularization (see
[16]) that allows us to obtain from C an immersed partial section P as defined above.
The boundary components γ1 and γ2 of a partial section C associated to a (simple or
non-simple) closed geodesic have both multiplicity 1 and link(γ ∗) = p, where p is the
number of self intersections of the geodesic. By Theorem 9.2, a (1, q)-Goodman surgery
with q < 0 along γ1 changes the positivity of only one boundary component. The resulting
partial section has two boundary components with opposite sign.

https://doi.org/10.1017/etds.2025.10196 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10196


Surgery on Anosov flows using bi-contact geometry 31

Example 9.4. In [23, §1.5.20], Marty describes a method to produce partial sections
associated to a closed orbit γ that is the lift of non-simple closed geodesics on an
orientable surface of negative curvature. These partial sections have multiple negative
boundary components and the only positive boundary component is that associated to γ
with mult(γ ) = 1 and link(γ ) > 0.

We are now ready to prove the main result of this section. Let φt be a geodesic flow
with the orientation that makes it a positive skewed R-covered Anosov flow.

THEOREM 9.5. Let φt be the geodesic flow on the unit tangent bundle of an oriented
hyperbolic surface. Any positive skewed R-covered Anosov flow obtained by a single
Goodman surgery along a closed orbit γ that is the lift of a simple closed geodesic is
orbit equivalent to a positive contact Anosov flow.

Proof. As a consequence of Theorem 8.1, it is enough to show that a (1, q)-Goodman
surgery along a non-simple closed geodesic does not produce a positive skewed R-covered
Anosov flow if q < 0. Given a closed orbit γ associated to a non-simple geodesic, we
chose a partial section as described in Example 9.4. Since mult(γ ) = 1 and link(γ ) > 0,
by Theorem 9.2, a (1, q)-Goodman surgery along γ with q < 0 yields a negative partial
section. By Theorem 9.1, the new flow cannot be positive skewed R-covered.

Remark 9.6. One important ingredient in proving Theorem 9.5 is the fact that a
(1, q)-Goodman surgery along a closed non-simple geodesic γ in a positive skewed
R-cover Anosov flow does not produce a positive skewed R-covered Anosov flow if
q < 0. We now state a counterpart of this statement in the contact category.

PROPOSITION 9.7. It is not possible to construct a contact Anosov flow performing
Foulon–Hasselblatt construction if the closed geodesic is non-simple and q < 0.

Sketch of the proof. The idea is the following. To a neighbourhood N of L, Theorem 1.4
associates a positive number k (the slope of the characteristic foliation induced by ξ+ on
the neighbourhood�) with the property that a (1, q)-Goodman surgery produces a contact
Anosov flow if k + q > 0. A different neighbourhoodN ′ is associated to a different k′. For
instance, a sequence of nested neighbourhoods N ′ ⊂ N ′′ ⊂ N ′′′ is associate to a sequence
of increasing slopes k′′′ > k′′ > k′. For a fixed K, we denote with k the largest of all the
possible values of k. If the geodesic is closed and simple, there is an infinite sequence of
nested neighbourhoods as in Remark 6.3 and k = ∞. If the geodesic is non-simple, we
claim that k ≤ 1. A neighbourhood N of L with largest slope k contains the closed orbit γ
in its boundary ∂N . As a curve in ∂N , it has the form r[μ] + s[λ], where λ is homotopic
to L. Since also γ is homotopic to L, we have s = 1. Since the geodesic is non-simple,
the associated closed orbit intersects C and the slope of the characteristic foliation is finite
at least in a neighbourhood of the point of self intersection. Therefore, k 
= ∞, implying
that k = 1/r . Finally, since r ∈ Z, we have k ≤ 1. This shows that there does not exist a
neighbourhood N of L such that k + q > 0 if q < 0.
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