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On a relation between the Fitting length

of a soluble group and the number of

conjugacy classes of its maximal nilpotent
subgroups

H. Lausch and A. Makan

In & finite soluble group G , the Fitting (or nilpotency) length
h(G) can be considered as a measure for how strongly G deviates
from being nilpotent. As another measure for this, the number
V(G) of conjugacy classes of the maximal nilpotent subgroups of
G may be taken. It is shown that there exists an integer-valued
function f on the set of positive integers such that

h(G) £ f(v(G)) for all finite (soluble) groups of odd order.
Moreover, if all prime divisors of the order of (G are greater
than V(G)(v(G) - 1)/2 , then Ah(G) £ 3 . The bound Fv(G))

is just of qualitative nature and by far not best possible. For
WG) =2, h(G) =3 , some statements are made about the

structure of G .

1. 1In various papers by Gross [3], Hoffman [5], and Thompson [9],
bounds were given for the nilpotency length of a finite soluble group in
terms of the group exponent (in the case of certain pg-groups) the order
of a fixed~point-free p-automorphism, or of the number of primes (not
necessarily different) dividing the order of a scluble, 7' —automorphism

group of a T-~group. The main result of this paper is

THEOREM. Let h(G) be the Fitting length of a finite group G of odd
order, VI(G) the number of different conjugacy classes of the maximal
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nilpotent subgroups of G , then there exists a function f , defined on the
set of natural numbers and taking natural mumbers as values, such that
r(G) £ f(v(G)) .

Rose [8] has, however, shown that there is no lower bound for Hh(G)
in terms of V(G) . The statement of the theorem is merely of qualitative
nature, for v(G) = 2,3 sharp bounds are given, and for V(G) = 2 ,

h(G) = 3 some statements are made about the structure of G . All the

groups are assumed to be finite and soluble in this paper.
2. 1In order to prove the theorem, we start with some lemmas.

LEMMA 1. If N <G, then Vv(G/N) < V(G) . BEvery maximal nilpotent
subgroup of G/N can be written as VN/N where V <is maximal nilpotent
in G . If V(G/N) =v(G) , and V <is maximal nilpotent in G , then
Vli/N is maximal nilpotent in G/N .

Proof. Let W/N be maximal nilpotent in G/N . Then there exists a
nilpotent subgroup #; in G such that W= W N . Let V be & maximal
nilpotent subgroup of G such that Wy < V . Then W/N = WiN/N < VN/N
whence W = VN by maximality of W/N . The other statements of the lemma
follow.

LEMMA 2. Let N G, N nilpotent, V maximal nilpotent in G ,
vpN, Wev, (|W|,|¥)=1,and W7 for every nilpotent subgroup
V of G containing N . Then either Cy(W) = VNN or there exists a

maximal nilpotent subgroup T of G, TDHN such that Wc T,
VnNniN<TAWN-= CN(W) . If, in particular, VN N is maximal among

{TnwN | T maximal nilpotent in G, TpN} , then Cy(W) =vn n.
Proof, Since (|W|,|N|) =1 we have VN N c CN(W) , and CN(W) x W

is a nilpotent subgroup of G . Let T be a maximal nilpotent subgroup of
G such that T D CN(W} x ¥ . Then ThN as Wc T , by assumption.

Mso ([W|,|N|) =1 implies TN Nc Cy(W) and so TN = Cy(W) . The
second statement of Lemms 2 is then obvious.

LEMMA 3. Let F be the Fitting subgroup of G, |G| odd, and
suppose F is an elementary-abelian p-group. Let V be a maximal
nilpotent subgroup of G, VDF, and 1 be the largest integer for
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which there exists a chain of subgroups VN F < V NF <V, 5 NF<..<

1-1
Vi NF < F where V. s a maximal nilpotent subgroup of G for

i=1,2,...,1-1 . Then, for every prime q %+ p , every abelian q-subgroup

of V ecan be generated by at most 1 elements.

Proof. By inductionon I ., For Il =1, let U be an abelian
g-subgroup of V , z€U . By Lemma 2, VNF= CF(z) implying U is
zeU\{l}CF(Z) =V NF (see [2], Th. 6.2.4). Suppose
Lemma 3 is true for all integers less than 1 , and let U be an abelian
q-subgroup of V . Let K= {CF(T) | {1} <Tc U} . K is ordered by

cyclic, otherwise F =

inclusion. Either K consists just of one element, then, again by (2],
Th. 6.2.4, U is cyclic, or we can choose & second minimal element
CF(R)

XNF in K, where {1}’ <R <U and X is maximal nilpotent

in G , by Lemma 2. CU(X NF) x (XN F) 1is nilpotent, hence

CU(X NFlcY, XNF cYNF for some maximal nilpotent subgroup Y of
G. Also VNFcC CF(U) < CF(R) =XNF vwhence VNF <YNF so that,
by induction, CU(X N F) can be generated by at most 7-1 elements. It
remains to show that U/CU(X NF) is cyclic. If u € U , then

(XA F)" = Co(R*) = Cy(R) =X NF , and so UCHNXNF) . We clain
U/CU(X N F) acts faithfully on X N F/CF(U) . Let u €U, and

u, XNnF]c Cp(U) . By Maschke's theorem, XN F = CF(U) x [ where

L is a U-module. Hence f{u , L] CCF(U) NL=1,andso ué€ CU(L) =
CU(X NF) . We claim that U/CU(X N F) acts in a fixed-point-free

manner on X nF/CF(U) . For,let uelv, x€XxNF, [u, x] GCF(U)
We may write z = yz , yeCF(U) , 2€L . Then [u, z]eCF(U)nL=1
and z € Cp(u) . If Cp(w) PXNF , then XNF>Chu)n (XNF) =
Cplu) N CF(R) = CF((u » R)) = CF(U) , by definition of XN F . Hence

2 € (JF(U) and so x eCF(U) . If CF(u) DXNF , then u eCU(XﬂF)
Therefore U/CU(Xn F) 1is cyeclic.

LEMMA 4 (Thompson). If G is a p-group, p > 2 and 'every abelian
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normal subgroup of G can be generated by k elements, then every subgroup

of G ecan be generated by &%ﬂ elements.

Proof. See [6], III. Satz 12.3.

LEMMA 5 (Huppert). Let G be a p-soluble group, V a vector space
of dimension n over GF(p) , and let G be faithfully and irreducibly

represented on V, (n, |G|) =1 . Then G is cyelicand |G| | p* - 1.
Proof. See [7].

LEMMA 6. Let G possess a Fitting subgroup F such that F 1is the
unique minimal normal subgroup of G and suppose F is a p-group. Then
there exists a normal subgroup S of G such that h(G/S) = h(G) - 1,
for h(G) > 1 . Moreover, the Fitting subgroup of G/S is the unique

minimal normal subgroup of G/S and is a p'-group.
Proof. Let J be the class of nilpotent groups, f = {{1}} and
gk = gk'l N, for k=2,3,... Let H be (unigue) minimal for # 4 G ,

G/H € lh(G)-Z , and H/K a chief factor of ¢ . Clearly F CK < H and
H/K 1is a p'-group. Moreover there exists for h(G) > 2 , a maximal

subgroup M of (G complementing H/K , by [1]. Let R=CG(H/K) s
S=ROM. Then Cy(E/K) = Co(R/S) » G/Co(R/S) & W*'¥™% ana so

h(G/S) = h(G) -~ 1 . PFor n(G) = 2 , we may take any maximal normal subgroup
of G for S.

Proof of the Theorem. Let N, , N, be two different minimal normal
subgroups of G . Then A(G) = max(h(G/N,) , h(G/N;)) < max(f(v(G/N,)) ,
f(v(G/N,))) » by induction. If N is a minimal normal subgroup of ¢ ,
and N C ¢(G) , then h(G) = h(G/%(G)) , hence h(G) = h(G/N) < f(v(G/N)) »
by induction. Thus, if we can find an increasing function f(y) which
bounds HA(G) for all groups G having their Fitting subgroups as unique
minimal normal subgroups, f(v) 1is then a general bound for h(G). Hence
let us assume that ¢ has its Fitting subgroup F as its unique minimal
normal subgroup, and suppose F is a p-group. Theré is exactly one
conjugacy class of maximal nilpotent subgroups of (¢ containing PF ,
namely the Sylow p-subgroups of ( . Hence by Lemma 3, every abelian
g-subgroup, gq + p s can be generated by at most y(G) - 1 elements. Lemma
4 implies that the p'-chief factors of ¢ are of rank at most
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2121!%122:11 . We choose S <G accordingly to Lemma 6, and Lemma 1 implies

v(G/S) < V(G) . Hence, all p-chief factors of G/S are of rank at most

ELQiﬁgﬁgi:lL . Therefore, by [6], VI. Hauptsatz 6.6 ¢ , the p-length of

V(G)(v(G)-1)
> .

be the set of all odd primes less than or equal to

G/S 1is at most Assume V(G) > 2 . Let {pl,pz,...,pr(v)}

v(G)(Z(G)—l) , take

the upper pj;-series of G/S refine each factor by a py-series, etc.

r(v) _

One obtains a normal series of G/S of length at most 2(s(v) + 1) 1

s(w = MEL(E)-1)

where , consisting of pi—factors, 1 =1,2,00052(V) ,

and {p1,pos... }'-factors. By Lemma S5, these {pl,pz,...,pr(v)}'-

*Ep(v)
factors are all of Fitting length at most 2, and there are at most

r(v)

(g(v) + l)r(v) of them. Hence, h(G/S) < 3(s(v) + 1) -1 and

rv)

h(G) < 3(s(v) + 1) Since s(v) and r(v) are increasing functionmns,

we may take f(v) = 3(s(v) + l)r(v) V(G) = 1 implies h(G) =1 , for

v(G) =2, {pl,...,pr(v)} =@ , and again Lemms 5 implies that

h(G/S)

A

2 whence h(G) £3 . Q.E.D.

V(G) (v(G)-1)
2

COROLLARY. If q||G| implies q > » then h(G) < 3.

A

Proof. This is an immediate consequence of Lemma 5, provided |G| is
odd. Now assume V(G) = 2 , and 2]|G| . We may assume that G has its
Fitting subgroup F as its unique minimal normal subgroup. First, let
F be a 2-group. Lemma 3 implies G, , is cyclic, and a Hall-Higman type
argument [4] shows that the’ 2'-length of G is at most 1 whence
h(G) £ 3 . Now let F bea 2'-group. Lemms 3 implies that G, is
cyclic or a generalized quaternion group. In either case G/F possesses
a characteristic subgroup of order 2 which is clearly central in G/F .
Assume G/F 1is not nilpotent and F is a p-group, p € 2' . Then G/F
contains an element xF of order 2p . Let x=yz , oly) = pa s

o(z) € p' . Then y € CF(Gp') for some p-complement Gp, of G , and
xF = zF is a p'-element, contradiction. Hence, in this case, h(G) 2.

3. For v(G) =2, h(G) =3 is really attained for some groups G .
The symmetric group S, on 4 letters provides such an example. Moreover,

let H=CC_  be a (non-direct) semidirect product of a group C& of order

ap
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q by a group CP of order p and let G = Ep wr H be the wreath product

of a group Cp of order p by H. Then Vv(G) =2 , and h(G) =3 as

one can easily check.

For groups minimal for Vv(G) =2 , h(G) = 3 we get the following
result: ¢

PROPOSITION 7. Let G be a finite group which ig minimal with respect
to the property that V(G) = 2 implies h(G) =3 . Then |G| =p°q®,
P » q being distinet primes, and G contains no element of order pq .
In particular, if F 1is the Fitting subgroup of G , then |F| =pY, for
sgome Y>0,and B=1, yYy=0a-1.

REMARK. Since Vv(G) =2 , G = ViV, where V;V, are maximsl
nilpotent subgroups of G . In this case, the solubility of G follows
from a theorem of Wielandt and Kege! [71].

First we prove

LEMMA 8. Let G be a finite group minimal with the properties that
V(G) = 2 1implies h(G) = 3 . Then the maximal nilpotent subgroups of
G are Hall subgroups of G .

Proof. Let V; and V; be representatives of the two conjugacy
classes of maximal nilpotent subgroups of & . By hypothesis, we may
assume that G has its Fitting subgroup F as its unique minimal normal
subgroup. Without loss of generality, we may assume V) D F . Let
|Fl = pY , then V; = Gp , & Sylow p-subgroup of G , and

V, = Gp' x CG (Gp.) where Gp’ is a p-complement of G . We have to

p
show CG (Gp.) =1 . Let F,/F be the Fitting subgroup of G/F , then
p
Fy/F = Gp, , moreover CG (Gp,) = CF(Gp.) . Also CF(Gp') c Z(F5)

p
since F is abelian. We claim 2(F,) =CF(Gp,) . For Z(Fy) =

(Z(Fz))p, x CF(GP,) where (Z(Fz))p, is the p'-complement of Z(Fy)
As F is self-centralizing it follows (Z(Fz))p, =1 . Thus
CF(GP.) = Z(F;) char F, 4 G implying CF(Gp’) =1 as F is a minimal

normal subgroup of G .
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Proof of Proposition 7. By Lemma 8, V), = Gp s Vp = Gp' . Suppose
q||V2| . Therefore G contains no element of order pq , otherwise

v(G) > 2 , and so G/F contains no element of order pg , qge p'
Certainly V,F = F, as h(G/F) = 2 . Suppose V, is not a Sylow
q-subgroup for some q € p’ . Then, for some prime » , let R be &
Sylow r-subgroup of G, r#q . Then FR char F, and so FR4 G .
Consider Gy = (FR)Vy = RVy . RV; contains no element of order pr ,
therefore Vv(Gy) =2, G; < G . Minimality of G implies h(G;) = 2 .
But then FR = G; since F 1is self-centralizing and so V, = F , hence
h(G) = 2 , contradiction. Thus V, = Gq , & Sylow g-subgroup of G ,

and |G| = |V1V2| = pan . Vo acts in a fixed-point-free manner on F ,
hence V, is cyclic (q = 2 can be excluded, for then h(G) = 2, by the

proof of the corollary of the theorem). Let S/F be the cyclic normal
subgroup of index q in Fy,/F . Then S ¢ G . Using the same argument

as above, we may conclude V; = F provided B > 1 . Therefore B =1

Let M be a maximal subgroup of (G containing F, . Then M QG ,

Vin M is a Sylow p-subgroup of M , and M contains no element of order
pq . Therefore V(M) = 2 . Minimality of (¢ implies hA(M) = 2 and so
M =Fy . Therefore y=aqa - 1

4. Ve are going to give an exact bound for Hh(G) in the case of

v(G) =3, |6| oda.

LEMMA 9 (Thompson). Suppogse p <8 an odd prime, G 1is a p-soluble
group and G has no elementary-abelian subgroup of order p3 . Then each
p-chief factor of G 1is of order p or p?.

Proof. See [10].

COROLLARY. If |G| is odd, v(G) = 3 , then h(G)

A
w

Proof. By Lemmas 3, 5, and 6.
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