
BULL. AUSTRAL. MATH. SOC. MOS 2025, 2040

VOL. I (.19691, 3-10

On a relation between the Fitting length
of a soluble group and the number of
conjugacy classes of its maximal nilpotent

subgroups

H. Lausch and A. Makan

In a finite soluble group G , the Fitting (or nilpotency) length

h(G) can be considered as a measure for how strongly G deviates

from being nilpotent. As another measure for this, the number

v(G) of conjugacy classes of the maximal nilpotent subgroups of

G may be taken. It is shown that there exists an integer-valued

function / on the set of positive integers such that

h(G) < f(v(G)) for all finite (soluble) groups of odd order.

Moreover, if all prime divisors of the order of G are greater

than v(G)(v(G) - l)/2 , then h(G) < 3 . The bound f(v(G))

is just of qualitative nature and by far not best possible. For

\)(G) = 2 , h(G) = 3 , some statements are made about the

structure of G .

1. In various papers by Gross [3], Hoffman [5], and Thompson [?],

bounds were given for the nilpotency length of a finite soluble group in

terms of the group exponent (in the case of certain pq-groups) the order

of a fixed-point-free p-automorphism, or of the number of primes (not

necessarily different) dividing the order of a soluble, ir'-automorphism

group of a ir-group. The main result of this paper is

THEOREM. Let h(G) be the Fitting length of a finite group G of odd

order, v(G) the number of different conjugaey classes of the maximal
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nilpotent subgroups of G , then there exists a function f , defined on the
set of natural numbers and taking natural numbers as values, such that
h(G) < f(v(G)) .

Rose [8] has, however, shown that there i s no lower bound for h(G)

in terms of v(G) . The statement of the theorem i s merely of qual i tat ive

nature , for v(G) = 2,3 sharp bounds are given, and for \>(G) = 2 ,

h(G) = 3 some statements are made about the structure of G . All the

groups are assumed to be f in i t e and soluble in t h i s paper.

2. In order to prove the theorem, we s t a r t with some lemmas.

LEMMA 1. If N < G , then v(G/N) < v(G) . Every maximal nilpotent

subgroup of G/N aan be written as VN/N where V is maximal nilpotent

in G . If v(G/N) = v (G) , and V is maximal nilpotent in G , then

VN/N is maximal nilpotent in G/N .

Proof. Let W/N be maximal nilpotent in G/N . Then there exists a

ni lpotent subgroup Wi in G such that W = W\N . Let V be a maximal

nilpotent subgroup of G such that J/x C V . Then W/N = W^/N c VN/N

whence W = VN by maxioiality of W/N . The other statements of the lemma

follow.

LEMMA 2. Let if<] C , N nilpotent, V maximal nilpotent in G ,

V$> N , i / c V , (\w\,\N\) = 1 t and Wc^V for every nilpotent subgroup

V of G containing N . Then either C^(W) = V (1 N or there exists a

maximal nilpotent subgroup T of G , T^N such that We T ,

Vr\N<TON = CN(W) . If, in particular, V H N is maximal among

{T H N | T maximal nilpotent in G , T ^ N} , then CJW) = V O N .

Proof. Since r k U ^ I ; = 1 we have VH N c C^iW) , and C^W) x W

i s a nilpotent subgroup of G . Let T be a maximal nilpotent subgroup of

G such that T 3 Cj.(W) x W . Then T 4> N as W c T , by assumption.

Also (\W\,\N\) = 1 impl ies T n N o C^(W) and so T O N = C^(W) . The

second statement of Lemma 2 i s then obvious.

LEMMA 3. Let F be the Fitting subgroup of G , \G\ odd, and

suppose F is an elementary-abelian p-group. Let V be a maximal

nilpotent subgroup of G , V~$> F , and I be the largest integer for
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whioh there exists a chain of subgroups V f) F < V- - f) F < V-, „ H F <.. .<

Vi fl F < F where V. is a maximal nilpotent subgroup of G for

i = 1,2,.. .,1-1 . Then, for every prime q =f p , every abelian q-subgroup

of V can be generated by at most I elements.

Proof. By induction on I . For 1=1, let U be an abelian

q-subgroup of V , z £ U . By Lemma 2, V D F = Cp(z) implying V is

cyclic, otherwise F = \J\S-I \Cp(z) = v n F (see [2]> Th- 6.2.U). Suppose

Lemma 3 is true for all integers less than I , and let V be an abelian

q-subgroup of V . Let K = {Cp(T) \ {1} < T C U} . £ is ordered by

inclusion. Either X consists just of one element, then, again by [2],

Th. 6.2.1+, U is cyclic, or we can choose a second minimal element

CUR) = X n F in K , where {l}' < R < U and X is maximal nilpotent
C —

in G , by Lemma 2. Cy(X n F) * (X n F) is nilpotent, hence

Cy(X n F) c Y , X n F CY n F for some maximal nilpotent subgroup Y of

G . Also V n F C CJU) < CJR) = X O F whence V n F < X nF so that,

by induction, CJJ(X ^ &) c a n b e generated by at most l-l elements. It

remains to show that V/CAX n F) is cyclic. If u 6 U , then

(X n F)U = CpO?*) = Cp(R) = X n F , and so V C HQ(X n F) . We claim

U/Cr,(X C\ F) acts faithfully on X n F/CJU) . Let u € U , and
U r

[u , X n F] C CF(U) . By Maschke's theorem, X C\ F = Cp(U) x L where

L i s a i/-module. Hence [M , L] c CnCW n L = i , and so u e C,,(L) =
£ U

CJJ(X OF). We claim that U/CUX n F) acts in a fixed-point-free

manner on X n F/Cp(U) . For, l e t u e U , x e X r\F , [w , x] 6 Ĉ CW .

We may write a; = yz , ye Cp(U) , z e L . Then [M , 3] e cp(U) n L = 1

and 3 € Cp(u) . If c y j j ^ * n f » t h e n X OF > Cp(u) n (X n F) =

Cp(u) n Cp(R) = Cp((u , R)) = Cp(U) , by definit ion of X O F . Hence
z € CJU) and so x € CJV) . If CJu) Z> X n F , then w 6 C,,a n W .r r r U
Therefore U/CJX C\ F) is cyclic.

LEMMA 4 (Thompson). If G is a p-group, p > 2 and every abelian
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normal subgroup of G can be generated by k elements, then every subgroup

k(k+l)
of G can be generated by — ^ — - elements.

Proof. See [6], III. Satz 12.3.

LEMMA 5 (Huppert). Let G be a p-soluble group, V a vector space

of dimension n over w(p) , and let G be faithfully and irreducibly

represented on V , (n , \G\) - 1 . Then G is cyclic and \G\ \ pn - 1 .

Proof. See [7].

LEMMA 6. Let G possess a Fitting subgroup F such that F is the

unique minimal normal subgroup of G and suppose F is a p-group. Then

there exists a normal subgroup S of G such that h(G/S) = h(G) - 1 ,

for h(G) > 1 . Moreover, the Fitting subgroup of G/S is the unique

minimal normal subgroup of G/S and is a p'-group.

Proof. Let N_ be the class of nilpotent groups, IT = {{l}} and

IT = IT'1 £ , for k = 2,3,... Let B be (unique) minimal for BAG,

G/B e £l(G)~2 , and B/K a chief factor of G . Clearly F C K < B and

B/K is a p'-group. Moreover there exists for h(G) > 2 , a maximal

subgroup M of G complementing B/K , by [/]. Let R = CQ(B/K) ,

S = RC\ M . Then CQ(B/K) = CQ(R/S) , G/CQ(R/S) $ lfi
(G)~2 and so

h(G/S) = h(G) - 1 . For h(G) = 2 , we may take any maximal normal subgroup

of G for S .

Proof of the Theorem. Let N-^ , N2 be two different minimal normal

subgroups of G . Then h(G) = naxfhCG/N^^) , h(G/N2)J < nBX.(f(v(G/N1)) ,

f(v(G/N2))) > by induction. If N is a minimal normal subgroup of G ,

and N<Z<i(G) , then h(G) = h(G/<b(G)) , hence h(G) = h(G/N) <f(v(G/N)) ,

by induction. Thus, if we can find an increasing function f(y) which

bounds h(G) for all groups G having their Fitting subgroups as unique

minimal normal subgroups, f(v) is then a general bound for h(G)• Hence

let us assume that G has its Fitting subgroup F as its unique minimal

normal subgroup, and suppose F is a p-group. There is exactly one

conjugacy class of maximal nilpotent subgroups of G containing F ,

namely the Sylow p-subgroups of G • Hence by Lemma 3 > every abelian

q-subgroup, q ̂  p , can be generated by at most y(G) - 1 elements. Lemma

h implies that the p'-chief factors of G are of rank at most
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2 • W e choose S < G accordingly to Lemma 6, and Lemma 1 implies

\>(G/S) < \)(G) . Hence, all p-chief factors of G/S are of rank at most

v(G)MG)-l) _ Therefore, by [6], VI. Hauptsatz 6.6 c , the p-length of

G/S is at most v(G)MG)-l) _ A s s u m e v(G) > 2 . Let {pi,p2, • • • ->Pr(v)}

be the set of all odd primes less than or equal to 5 , take

the upper pj-series of G/S refine each factor by a p2-series, etc.

One obtains a normal series of G/S of length at most 2(s(v) + 1) - 1

where s(\>) = v(G) (\>(G)-1) ^ c o n s i s ti ng of p.-factors, i = 1,2,.. .,r(v) ,

and {pi,p2,. ..Jpr(v)}
1-factors. By Lemma 5, these {pi,p2, • • ••»Pr(v)^'"

factors are all of Fitting length at most 2, and there are at most

(a(v) + i;r ( v ) of them. Hence, h(G/S) < 3(a(v) + l)r(v) - 1 and

h(G) < 3(8(v) + l)v . Since s(v) and r(v) are increasing functions,

we may take f(\>) = 3(s(v) + l)r(-v) . v(G) = 1 implies h(G) = 1 , for

v(G) = 2 , (pij...jP ( %} = 0 > and again Lemma 5 implies that

h(G/S) < 2 whence h(G) < 3 . Q.E.D.

COROLLARY. If q\\G\ implies q > v(G)MG)-l) ^ then h(G) < 3 m

Proof. This is an immediate consequence of Lemma 5, provided \G\ is

odd. Now assume v(G) = 2 , and 2\ \G\ . We may assume that G has its

Fitting subgroup F as its unique minimal normal subgroup. First, let

F be a 2-group. Lemma 3 implies G2 » is cyclic, and a Hall-Higman type

argument [4] shows that the' 2'-length of G is at most 1 whence

h(G) < 3 . Now let F be a 2'-group. Lemma 3 implies that G2 is

cyclic or a generalized quaternion group. In either case G/F possesses

a characteristic subgroup of order 2 which is clearly central in G/F .

Assume G/F is not nilpotent and F is a p-group, p €. 2' . Then G/F

contains an element xF of order 2p . Let x = yz , o(y) = p ,

o(z) €. p' . Then y e Cr/G 1) f° r some p-complement G , of G , and

xF = zF is a p'-element, contradiction. Hence, in this case, h(G) < 2 •

3. For v(G) = 2 , h(G) = 3 is really attained for some groups G .

The symmetric group S^ on It letters provides such an example. Moreover,

let H = C C be a (non-direct) semidirect product of a group C of order
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q by a group C_ of order p and let G = C wr B be the wreath product

of a group C of order p by H . Then v(G) = 2 , and h(G) = 3 as

one can easily check.

For groups minimal for v(G) = 2 , h(G) = 3 we get the following

result:

PROPOSITION 7. Let G be a finite group which is minimal with respect

to the property that v(G) = 2 implies h(G) =3 . Then \G\ = paq® ,

p , q being distinct primes, and G contains no element of order pq .

In particular, if F is the Fitting subgroup of G , then \F\ = p*', for

some y > 0 , and 8 = 1, y = a - 1 .

REMARK. Since v(G) = 2 , G = VXV2 where V1V2 are maximal

nilpotent subgroups of G . In this case, the solubility of G follows

from a theorem of Wielandt and Kegel [//]•

First we prove

LEMMA 8. Let G be a finite group minimal with the properties that

\>(G) = 2 implies h(G) = 3 . Then the maximal nilpotent subgroups of

G are Hall subgroups of G .

Proof. Let V\ and V2 be representatives of the two conjugacy

classes of maximal nilpotent subgroups of G . By hypothesis, we may

assume that G has its Fitting subgroup F as its unique minimal normal

subgroup. Without loss of generality, we may assume Vi O F . Let

\F\ = p , then V\ = G , a Sylow p-subgroup of G , and

V2 = G , x C_ (G ,) where G , is a p-complement of G . We have to
p

show CG (G ,) = 1 . Let F2/F be the Fitting subgroup of G/F , then

F2/F = G, .moreover CQ (G,)=Cp(G,) . Also Cp(G ,) c Z(F2)

since F is abelian. We claim Z(F2) = Cp(G' ,) . For Z(F2) =

(Z(F2)) , x Cp(G ,) where (Z(F2)) , is the p1-complement of Z(F2) .

As F is self-centralizing it follows (Z(F2)) , = 1 . Thus

Cp(G ,) = Z(F2) char F2 < G implying Cp(G ,) = 1 as F is a minimal

normal subgroup of G .
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Proof of Proposition 7. By Lemma 8, Vx = G, V2 = G , . Suppose

q||V2I • Therefore G contains no element of order pq , otherwise

\>(G) > 2 , and so G/F contains no element of order pq , q e p' •

Certainly VZF = F2 as h(G/F) = 2 . Suppose V2 is not a Sylow

q-subgroup for some q e. p' • Then, for some prime r , let R be a

Sylow r-subgroup of G , r ̂  q . Then FR char F2 and so FR < G .

Consider G\ = (FR)Vy = RV\ . RVi contains no element of order pr ,

therefore v(Gi) = 2 , Gx < G . Minimality of G implies h(G\) = 2 .

But then FR = Gj since F is self-centralizing and so V\ = F , hence

h(G) = 2 , contradiction. Thus V2 = G , a Sylow q-subgroup of G ,

and |(?| = I V^V2 \ = p q . V2 acts in a fixed-point-free manner on F ,

hence V2 is cyclic (q = 2 can be excluded, for then h(G) = 2, by the

proof of the corollary of the theorem). Let S/F be the cyclic normal

subgroup of index q in F2/F . Then S < G . Using the same argument

as above, we may conclude V\ = F provided (3 > 1 . Therefore 3 = 1 •

Let M be a maximal subgroup of G containing F2 • Then U < G ,

V\ n M is a Sylow p-subgroup of M , and M contains no element of order

pq . Therefore v(M) = 2 . Minimality of G implies h(M) = 2 and so

M = F2 . Therefore y = a - 1 .

4. We are going to give an exact bound for h(G) in the case of

\>(G) = 3 , \G\ odd.

LEMMA 9 (Thompson). Suppose p is an odd prime, G is a p-soluble

group and G has no elementary-abelian subgroup of order p3 . Then each

p-chief factor of G is of order p or p2 .

Proof. See [J0].

COROLLARY. If \G\ is odd, \>(G) = 3 , then h(G) < 3 .

Proof. By Lemmas 3, 5> and 6.

References

[7] Roger Carter and Trevor Hawkes, "The J^-normalizers of a f in i te soluble

group", J. Algebra 5 (1967), 175-202.

[2] Daniel Gorenstein, Finite Groups (Harper and Row, New York, Evanston,

London, 1968).

https://doi.org/10.1017/S000497270004123X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004123X


10 H. Lausch and A. Makan

[3] Fletcher Gross, "On finite groups of exponent p q ", J. Algebra

7 (1967), 238-253.

[4] P. Hall and Graham Higman, "On the p-length of p-soluble groups and

reduction theorems for Burnside's problem", Proa. London Math.

Soa. (3) 6 (1956), 1-1+2.

[5] Frederik Hoffman, "Nilpotent height of finite groups admitting fixed-

point-free automorphisms", Math. Zeitschr. 85 (1964), 26O-267.

[6] Bertram Huppert, Endliohe Gruppen I. (Berlin, Heidelberg, New York,

1967).

[7] Bertram Huppert, "Zur Gaschiitzschen Theorie der Formationen", Math. Ann.

164 (1966), 133-lUl.

[S] John S. Rose, "Nilpotent subgroups of finite soluble groups", Math.

Zeitschr. 106 (1968), 97-112.

[9] John G. Thompson, "Automorphisms of solvable groups", J. Algebra 1

(1964), 259-267.

[10] John G. Thompson, "Nonsolvable finite groups all of whose local

subgroups are solvable", Bull. Amer. Math. Soa. 74 (1968),

383-437.

[7/] Otto H. Kegel, "Produkte nilpotenter Gruppen", Arch. Math. 12 (1961),

90-93.

Department of Mathematics, IAS,

The Australian National University,

Canberra, A.C.T.

https://doi.org/10.1017/S000497270004123X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004123X

