Chunikhin's existence theorem for subgroups of a finite group

C. D. H. Cooper

We give a simplified proof of a general theorem of Chunikhin on existence of subgroups of a finite group. The proof avoids the technical device of "indexials" which Chunikhin set up for this purpose.

1. Introduction

In [2] (and later in [1], pp. 79-100), Chunikhin proves a very general theorem which asserts, for any finite group and any normal series of that group, the existence of a subgroup having a certain relationship with the terms of the normal series. It includes as special cases the existence of a Hall π -subgroup in a π -soluble group and the existence of subgroups of all possible π -orders in a π -supersoluble group. In this paper we give a much more direct proof than the one in [1], avoiding the elaborate machinery of "indexials" which Chunikhin sets up.

Throughout the paper, all groups are assumed to be finite.

THEOREM 1 (Chunikhin [1], pp. 79-100). Suppose that the group G has a series $1=G_0\leq G_1\leq\ldots\leq G_{2n}=G$ such that if $1\leq i\leq n-1$, $G_{2i} \triangleq G \text{ and } G=G_{2i}N_G(G_{2i-1}) \text{ . If } 0\leq i\leq n-1 \text{ , let } \theta_i \text{ be the set of primes which divide } |G_{2j+1}/G_{2j}| \text{ for some } j\in\{i,\ldots,n-1\} \text{ . Then there exists a subgroup } H \text{ of } G \text{ such that if } H_i=H\cap G_i \text{ for } 0\leq i\leq 2n$,

(1)
$$G_{2i+1} = H_{2i+1}G_{2i}$$
 for $0 \le i \le n-1$,

Received 15 December 1970.

- (2) $H_i \leq H$ for $0 \leq i \leq 2n$,
- (3) H_{2i}/H_{2i-1} is a nilpotent θ_i -group for $1 \le i \le n$,
- (4) $H_{2i+1}/H_{2i} \stackrel{\sim}{=} G_{2i+1}/G_{2i}$ for $0 \le i \le n-1$,
- (5) $|H_{2i}/H_{2i-1}|$ divides $|G_{2i}:G_{2i-1}|$ for $1 \le i \le n$,
- (6) H is a θ_0 -group.

2. Some definitions

If π is any set of primes, π' denotes the complement of π in the set of all primes. A π -number is an integer whose only prime divisors are elements of π , and a π -group is a group whose order is a π -number. A Hall π -subgroup, H, of a group G is a π -subgroup of G whose index in G is a π' -number.

A group G is π -supersoluble if each chief factor is either a cyclic group of order p for some $p \in \pi$, or a π' -group. G is π -soluble if each composition factor (chief factor) is either a p-group for some $p \in \pi$ or a π' -group. G is π -separable if each composition factor (chief factor) is a π -group or a π' -group. G is π -decomposable if the order of each composition factor (chief factor) is divisible by at most one prime from π . G is π -partible if the order of each composition factor (chief factor) is a π -number, or is divisible by at most one prime from π .

We are here following Gorenstein [3] in the use of the term " π -separable". Chunikhin uses " π -separable" to refer to what we call π -decomposable. The fact that the above definitions, with the exception of π -supersolubility, can be stated in terms of composition factors or chief factors follows from the fact that every chief factor is a direct product of isomorphic copies of some composition factor.

A π -supersoluble group is clearly π -soluble. A group is π -soluble if and only if it is both π -separable and π -decomposable. π -separability and π -decomposability each imply π -partibility. Subgroups and factor groups of π -supersoluble, π -soluble, π -separable, π -decomposable and π -partible groups are respectively π -supersoluble, π -soluble, π -separable, π -decomposable and π -partible. π -supersoluble and

 $\pi\text{-soluble}$ groups are respectively, $\pi_1\text{-supersoluble}$ and $\pi_1\text{-soluble}$ for all $\pi_1\subseteq\pi$. A $\pi\text{-separable}$ group is $\pi'\text{-separable}$.

3. Preliminary lemmas

LEMMA 1. Suppose $B \le A \le G$ and $C \le G$ such that B permutes with C . Then

- (a) $A \cap BC = B(A \cap C)$,
- (b) $|A \cap C| / |B \cap C|$ divides |A| / |B|,
- (c) if $A \leq BC$ and $B \preceq A$ then $A \cap C/B \cap C \cong A/B$.

Proof. (a) is the modularity law ([4], p. 124).

- (b). $|B(A\cap C)| = |B| \cdot |A\cap C| / |B\cap C|$ whence $|A\cap C| / |B\cap C| = |B(A\cap C)| / |B|$ which divides |A| / |B|.
 - (c). $A = A \cap BC = B(A \cap C)$ by (a) whence $A/B = A \cap C/(A \cap C) \cap B = A \cap C/B \cap C$.

LEMMA 2. (Schur-Zassenhaus [4], p. 224). If H is a normal Hall π -subgroup of G , G contains a Hall π '-subgroup.

LEMMA 3. Conclusions (4) to (6) of Theorem 1 are consequences of (1) to (3).

Proof. (4) follows from (1) by the second isomorphism theorem.

(5). Suppose $1 \le i \le n$. Then

$$G_{2i-1}^{H} = H_{2i-1}^{G} G_{2i-2}^{H}$$
 by (1),
= HG_{2i-2} ,

since $G_{2i-2} \supseteq G$. Similarly $HG_{2i-1} = HG_{2i-2}$ and so G_{2i-1} is permutable with H. (5) now follows from Lemma 1 (b) on putting $A = G_{2i}$, $B = G_{2i-1}$, C = H.

(6). If $0 \le i \le n-1$, H_{2i+1}/H_{2i} is a θ_i -group by (4), and if $1 \le i \le n$, H_{2i}/H_{2i-1} is a θ_i -group by (3).

Since $\theta_0 \supseteq \theta_1 \supseteq \ldots \supseteq \theta_n$, H is a θ_0 -group.

LEMMA 4. If $1 = G_0 \le G_1 \le \ldots \le G_{2n} = G$ is a chain of subgroups of

G such that if $1 \le i \le n$, $G_{2i} \le G$ and $G = G_{2i}N_G(G_{2i-1})$ and if S is a subgroup of G such that $G_1 \le S \le N_G(G_1)$ and $G = G_2S$, then putting $S_i = S \cap G_i$,

(a)
$$G_i = G_2S_i$$
 for $2 \le i \le 2n$, and

(b)
$$S = S_{2i}N_S(S_{2i-1})$$
 and $S_{2i} \supseteq S$ for $1 \le i \le n$.

Proof. (a). Suppose $i \ge 2$. Then

$$G_i = G_i \cap G_2 S = G_2 (G_i \cap S)$$
 by Lemma 1 (a),
= $G_2 S_i$.

(b). If
$$i \ge 2$$
,

$$\begin{split} S &= S \, \cap \, G \, = \, S \, \cap \, G_{2i}N_G \big(G_{2i-1}\big) \ , \\ &= S \, \cap \, G_2S_{2i}N_G \big(G_{2i-1}\big) \ \ \, \text{by } (a) \, , \\ &= S \, \cap \, S_{2i}N_G \big(G_{2i-1}\big) \ \ \, \text{since} \ \ \, G_2 \, \leq \, G_{2i-1} \, \leq \, N_G \big(G_{2i-1}\big) \, \, , \\ &= S_{2i} \left[S \cap N_G \big(G_{2i-1}\big)\right] \ \ \, \text{by Lemma 1 } (a) \, , \\ &= S_{2i}N_S \big(G_{2i-1}\big) \, \leq \, S_{2i}N_S \big(S_{2i-1}\big) \, \, . \end{split}$$

But $S_{2i}N_S(S_{2i-1}) \leq S$ and so $S=S_{2i}N_S(S_{2i-1})$. If i=1 , $S_{2i-1}=S_1=G_1 \supseteq S$ whence $N_S(S_{2i-1})=S$.

4. Proof of Theorem 1

We suppose that the theorem is false and throughout this section G is assumed to be a minimal counter-example. We suppose further that the theorem fails for G in respect of the chain $1=G_0\leq G_1\leq\ldots\leq G_{2n}=G$, $(n\geq 1)$ but holds for every shorter chain. For $0\leq i\leq n-1$, θ_i denotes the set of primes which divide some $|G_{2j+1}/G_{2j}|$ for $j\geq i$.

LEMMA 5. If
$$G_1 \leq S \leq N_G(G_1)$$
 and $G = G_2S$ then $S = G$.

Proof. Suppose S < G. It follows from Lemma 4 (b) and the fact that G is a minimal counter-example that there exist $H \leq S$ such that if

for $0 \le i \le n$ -1 , ϕ_i denotes the set of primes which divide some $\left|S_{2j+1}/S_{2j}\right| \quad \text{for} \quad j \ge i \ , \ \text{then}$

- (i) $S_{2i+1} = H_{2i+1}S_{2i}$ for $0 \le i \le n-1$,
- (ii) $H_i \supseteq H$ for $0 \le i \le 2n$,
- (iii) H_{2i}/H_{2i-1} is a nilpotent ϕ_i -group for $1 \leq i \leq n$,

where H_i is defined to be $H \cap S_i$ for $0 \le i \le 2n$.

Now if $i \ge 1$,

$$\begin{split} G_{2i+1} &= G_2 S_{2i+1} & \text{by Lemma 4 } (a) \\ &= G_2 H_{2i+1} S_{2i} & \text{by (i)} \\ &= G_2 S_{2i} H_{2i+1} \\ &= G_{2i} H_{2i+1} & \text{by Lemma 4 } (a). \end{split}$$

If i = 0,

$$G_{2i+1} = G_1 = S_1 = H_1 S_0$$
 by (i),
= H_1 .

Thus (1) holds for G .

If $0 \le j \le n-1$ it follows from Lemma 1 (b) that $|S_{2j+1}/S_{2j}|$ divides $|G_{2j+1}/G_{2j}|$ and so $\phi_i \subseteq \theta_i$ for $0 \le i \le n-1$. Finally, $H \cap S_i = H \cap G_i$ for $0 \le i \le 2n$ and so from (ii), (iii) it follows that (2) and (3) hold for G. Hence by Lemma 3, the theorem holds for G, a contradiction. Hence S = G.

LEMMA 6. If $G_1 \supseteq G$ then $G_1 = 1$.

Proof. Suppose that $G_1 \neq 1$. Using the symbol "" to denote images of subgroups of G in G/G_1 , we have by the assumptions on the G_i , $\overline{G}_{2i} \triangleq \overline{G}$ and $\overline{G} = \overline{G}_{2i} \overline{N_G} \overline{G}_{2i-1} = \overline{G}_{2i} \overline{N_G} \overline{G}_{2i-1}$. Hence by the minimality of G, there is a subgroup H of G such that $G_1 \leq H$ and such that if for $0 \leq i \leq n-1$, α_i denotes the set of primes which divide

some $|\overline{G}_{2j+1}/\overline{G}_{2j}|$ for $j \ge i$,

- (i) $\overline{G}_{2i+1} = \overline{H}_{2i+1} \overline{G}_{2i}$ for $0 \le i \le n-1$,
- (ii) $\overline{H}_i \supseteq \overline{H}$ for $0 \le i \le 2n$,
- (iii) $\overline{H}_{2i}/\overline{H}_{2i-1}$ is a nilpotent α_i -group for $1 \leq i \leq n$,

where H_i is defined to be $H \cap G_i$ for $0 \le i \le 2n$.

If $i\geq 1$, it follows from (i) that $G_{2i+1}=H_{2i+1}G_{2i}$. Moreover $G_1\leq H$ and so $G_1=H_1=H_1G_0$. Thus (1) holds for G. From (ii), $H_i \trianglelefteq H$ for $i\geq 1$, and clearly $H_0\leq H$. Hence (2) holds for G. If $j\geq 1$, $\overline{G}_{2j+1}/\overline{G}_{2j}\cong G_{2j+1}/G_{2j}$. Moreover $\overline{G}_1/\overline{G}_0$ is trivial. Hence if $0\leq i\leq n-1$, $\alpha_i\subseteq \theta_i$. If $i\geq 1$, $\overline{H}_{2i}/\overline{H}_{2i-1}\cong H_{2i}/H_{2i-1}$ and so by (iii), H_{2i}/H_{2i-1} is a nilpotent θ_i -group and so (3) holds for G. Thus, by Lemma 3, the theorem holds for G, a contradiction. Hence $G_1=1$.

LEMMA 7. If $G_1 = 1$ and G_2 is nilpotent then $G_2 = 1$.

Proof. Suppose that $G_2 \neq 1$. Using the symbol "" to denote images of subgroups of G in G/G_2 , then by the assumptions on the G_i , $\overline{G}_{2i} \trianglelefteq \overline{G}$ and $\overline{G} = \overline{G}_{2i} \overline{N_G} (\overline{G}_{2i-1}) = \overline{G}_{2i} \overline{N_G} (\overline{G}_{2i-1})$. Hence by the minimality of G, there is a subgroup K of G such that $G_2 \leq K$ and such that if for $0 \leq i \leq n-1$, α_i denotes the set of primes which divide some $|\overline{G}_{2j+1}/\overline{G}_{2j}|$ for $j \geq i$,

- (i) $\overline{G}_{2i+1} = \overline{K}_{2i+1}\overline{G}_{2i}$ for $0 \le i \le n-1$,
- (ii) $\overline{K}_i \preceq \overline{K}$ for $0 \le i \le 2n$,
- (iii) $\overline{K}_{2i}/\overline{K}_{2i-1}$ is a nilpotent α_i -group for $1 \leq i \leq n$,
 - (iv) \overline{K} is an α_0 -group,

where K_i is defined to be $K \cap G_i$ for $0 \le i \le 2n$.

If $j \ge 1$, $\overline{G}_{2j+1}/\overline{G}_{2j} \cong G_{2j+1}/G_{2j}$, and so $\alpha_j = \theta_j$. Since $\overline{G}_1/\overline{G}_0$ is trivial, $\alpha_0 = \alpha_1 = \theta_1$. Thus by (iv), K/G_2 is a θ_1 -group.

Since G_2 is nilpotent it contains a unique Hall θ_1' -subgroup, M. M is characteristic in G_2 and hence normal in G. G_2/M is a θ_1 -group and so K/M is a θ_1 -group. By Lemma 2, there exists a Hall θ_1 -subgroup H of K. Thus K = MH and $M \cap H = 1$.

If $i \geq 2$, then since $M \leq G_2$, we have by Lemma 1 (a) that $K_i = K \cap G_i = MH \cap G_i = M\big(H \cap G_i\big) = MH_i \quad \text{where} \quad H_i \quad \text{is defined to be} \quad H \cap G_i$ for $0 \leq i \leq 2n$. If $i \geq 1$ we have from (i) that $G_{2i+1} = K_{2i+1}G_{2i} = MH_{2i+1}G_{2i} = H_{2i+1}G_{2i} \quad \text{Moreover} \quad G_1 \quad \text{and} \quad H_1 \quad \text{are}$ trivial, so $G_1 = H_1G_0$. Thus (1) holds for G.

If $i \geq 2$, it follows from (ii) that $K_i \supseteq K$ and so $MH_i \supseteq MH$. Hence

$$H_i^H \le MH_i \cap H = H_i(M \cap H)$$
 by Lemma 1 (a),
= H_i .

Thus $H_2 \supseteq H$. Moreover $H_2 = G_2 \supseteq H$ and $H_1 = G_1 = 1 \supseteq H$. Thus (2) holds for G.

If $i \geq 2$, $\overline{K}_{2i}/\overline{K}_{2i-1} \cong K_{2i}/K_{2i-1} = MH_{2i}/MH_{2i-1} \cong H_{2i}/H_{2i-1}$ and so by (iii), H_{2i}/H_{2i-1} is a nilpotent α_i -group and so a nilpotent θ_i -group. Since $H_1 = 1$, $H_2/H_1 \cong H_2$ and is nilpotent since G_2 is nilpotent. Since K/M is a θ_1 -group, so is H_2 . Hence (3) holds for G and so by Lemma 3, the theorem holds for G, a contradiction. Hence $G_2 = 1$.

Proof of Theorem 1. We obtain our ultimate contradiction through an interplay of Lemmas 5, 6 and 7. Taking $S=N_G(G_1)$ in Lemma 5 we conclude that $G_1 \subseteq G$. Hence by Lemma 6, $G_1=1$. Thus if S is any subgroup of G such that $G=G_2S$, then by Lemma 5, S=G. Hence G_2

is contained in the Frattini subgroup of G, whence it is nilpotent. By Lemma 7, $G_2 = 1$. Since the theorem holds for G in respect of the shorter chain $1 = G_2 \le G_3 \le \ldots \le G_{2n} = G$, it must hold in respect of the original chain, a contradiction.

5. Consequences of Theorem 1

THEOREM 2. Suppose that

$$1 = G_0 < G_2 < G_4 < \dots < G_{2n} = G$$

is a normal series for G. If for $1 \le i \le n-1$, the factor G_{2i}/G_{2i-2} contains a single conjugacy class of Hall π -subgroups and if G/G_{2n-2} contains a Hall π -subgroup then G contains a Hall π -subgroup. If these Hall π -subgroups are soluble, G contains a soluble Hall π -subgroup.

Proof. For $1 \leq i \leq n$, choose G_{2i-1} so that G_{2i-1}/G_{2i-2} is a Hall π -subgroup of G_{2i}/G_{2i-2} . If $1 \leq i \leq n-1$, all Hall π -subgroups of G_{2i}/G_{2i-2} are conjugate whence $G/G_{2i-2} = G_{2i}/G_{2i-2}$, $N_{G/G_{2i-2}}\binom{G_{2i-1}/G_{2i-2}}{G_{2i-2}}$ and so $G = G_{2i}N_G\binom{G_{2i-1}}{G_{2i-1}}$. By Theorem 1 there exists a subgroup H of G having properties (1) to (6).

$$\begin{aligned} |G:H| &= \prod_{i=1}^{n} \frac{|G_{2i-1}:G_{2i-2}|}{|H_{2i-1}:H_{2i-2}|} \times \prod_{i=1}^{n} \frac{|G_{2i}:G_{2i-1}|}{|H_{2i}:H_{2i-1}|} \\ &= \prod_{i=1}^{n} \frac{|G_{2i}:G_{2i-1}|}{|H_{2i}:H_{2i-1}|} \text{ by (4),} \end{aligned}$$

which divides $\prod_{i=1}^n |G_{2i}:G_{2i-1}|$ and so is a π' -number. Since for $0 \le i \le n-1$, G_{2i+1}/G_{2i} is a π -group, $\theta_i \subseteq \pi$ for all i. In particular $\theta_0 \subseteq \pi$. H is a θ_0 -group by (6) and so a π -group. Hence it is a Hall π -subgroup of G.

If the Hall $\,$ m-subgroups of the factors of $\,G\,$ are soluble, ${}^G_{2i-1}/{}^G_{2i-2}\,\,, \text{ and hence by (4)} \quad {}^H_{2i-1}/{}^H_{2i-2} \quad \text{is soluble for} \quad 1 \leq i \leq n \,\,.$

Since, by (3), H_{2i}/H_{2i-1} is nilpotent for $1 \le i \le n$, H is soluble.*

COROLLARY. The theorem holds if $1 = G_0 < G_2 < \ldots < G_{2n} = G$ is a composition series.

Proof. If A is a direct product of isomorphic copies of B, then A has a single conjugacy class of Hall π -subgroups if and only if B has. Since each chief factor of G is a direct product of isomorphic copies of some composition factor, the assumptions on the composition factors carry over to the chief factors.

THEOREM 3 ([1], Theorem 3.9.1). If G is π -partible then it contains a Hall π -subgroup. If for some $\pi_1 \subseteq \pi$, G is π_1 -decomposable and $(\pi - \pi_1)$ -separable then it contains a π_1 -soluble Hall π -subgroup.

Proof. Let $1=G_0 < G_2 < G_4 < \ldots < G_{2n} = G$ be a chief series for G . If ρ is the set of prime divisors for some chief factor then by the π -partibility of G,

- (i) $\rho \subset \pi$, or
- (ii) $\rho \subseteq \pi'$, or
- (iii) $\rho \cap \pi = \{p\}$ for some prime p.

In case (i) the factor is a π -group and so has a unique Hall π -subgroup (namely itself). In case (ii) the factor is a π' -group and so has a unique Hall π -subgroup (namely the trivial subgroup). In case (iii) the factor has a single conjugacy class of Hall π -subgroups (namely the Sylow p-groups). Hence by Theorem 2, there exists a Hall π -subgroup H of G satisfying (1) to (6) of Theorem 1.

Suppose that G is π_1 -decomposable and $(\pi-\pi_1)$ -separable. If ρ is the set of prime divisors of $|G_{2i}/G_{2i-2}|$, $\rho\subseteq\pi_1'$ or $\rho\cap\pi_1=\{p\}$ by π_1 -decomposability. If $\rho\cap\pi_1=\{p\}$ then by $(\pi-\pi_1)$ -separability, $\rho\cap(\pi-\pi_1)=\emptyset$ that is $\rho\cap\pi=\rho\cap\pi_1$. Let τ be the set of prime divisors of $|H_{2i-1}/H_{2i-2}|$. Then by (4), $\tau\subseteq\rho$ and by (6), $\tau\subseteq\theta_0=\pi$. Hence $\tau\subseteq\rho\cap\pi$. Thus either $\tau\subseteq\rho\subseteq\pi'$ or

^{*} In fact by (5) and (6), each H_{2i}/H_{2i-1} is trivial.

 $\tau \subseteq \rho \cap \pi = \rho \cap \pi_1 = \{p\}$. Finally for $1 \le i \le n$, H_{2i}/H_{2i-1} is, by (5), a π' -group.* Hence H is π_1 -soluble.

References

- [1] S.A. Chunikhin, Subgroups of finite groups (Translated from the Russian and edited by Elizabeth Rowlinson. Wolters-Noordhoff, Groningen, 1969).
- [2] S.A. Čunihin, "A general test for the existence of subgroups in finite groups" (Russian), Mat. Sb. (N.S.) 55 (97) (1961), 101-124.

 English translation, Amer. Math. Soc. Transl. (2) 45 (1965), 79-104.
- [3] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
- [4] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).

School of Mathematics, Macquarie University, North Ryde, NSW.

^{*} In fact, since H is a π -group, H_{2i}/H_{2i-1} is trivial.