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Chunikhin's existence theorem for
subgroups of a finite group

C. D. H. Cooper

We give a simplified proof of a general theorem of Chunikhin on

existence of subgroups of a finite group. The proof avoids the

technical device of "indexials" which Chunikhin set up for this

purpose.

1. Introduction

In [2] (and later in [I], PP- 79-100), Chunikhin proves a very general

theorem which asserts, for any finite group and any normal series of that

group, the existence of a subgroup having a certain relationship with the

terms of the normal series. It includes as special cases the existence of

a Hall TT-subgroup in a ir-soluble group and the existence of subgroups of

all possible TT-orders in a ir-supersoluble group. In this paper we give

a much more direct proof than the one in [J], avoiding the elaborate

machinery of "indexials" which Chunikhin sets up.

Throughout the paper, all groups are assumed to be finite.

THEOREM 1 (Chunikhin [J], pp. 79-100). Suppose that the group G

has a series 1 = G « G < ... 2 G = G such that if l < i < n-1 ,

G2i 3 G and G = G^N^G^^) . If 0 < i < n-1 , let &i be the set of

primes which divide \G . /G • | for some j i {i, ..., n-l) . Then there

exists a subgroup H of G such that if H^ = H n G^ for 0 S i 5 2 n ,

( 1 ) G2i+1 =
 H2i+lG2i
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(2) H. S H for 0 5 i < 2 n ,

(3) Ho./H . is a nilpotent 6.-group for 1 < i < n

W H / H 2 i = G2i+1/G2i

(5) k2 i/^2i-ii d i u i ^ s \G2i- G2i-\\ for 1 ^ i < n ,

(6) 5 is a 6--group.

2. Some definitions

If ir is any set of primes, it' denotes the complement of TT in the

set of all primes. A TJ-number is an integer whose only prime divisors are

elements of TT , and a u-group is a group whose order is a 7r-number. A

Hall Tr-subgroup, H , of a group G is a ir-subgroup of G whose index

in G is a IT'-number.

A group G is IT-super'soluble if each chief factor is either a cyclic

group of order p for some p € TT , or a ir'-group. G is TT-soZwiZe if

each composition factor (chief factor) is either a p-group for some p (. TT

or a Tr'-group. G is ^-separable if each composition factor (chief

factor) is a ir-group or a Tr'-group. G is ^-decomposable if the order

of each composition factor (chief factor) is divisible by at most one prime

from 7T . G is ^-partible if the order of each composition factor (chief

factor) is a TT-number, or is divisible by at most one prime from TT .

We are here following Gorenstein [3] in the use of the term

"TT-separable" . Chunikhin uses "TT-separable" to refer to what we call

TT-decomposable. The fact that the above definitions, with the exception of

TT-supersolubility, can be stated in terms of composition factors or chief

factors follows from the fact that every chief factor is a direct product

of isomorphic copies of some composition factor.

A TT-supersoluble group is clearly Tr-soluble. A group is Tr-soluble

if and only if it is both TT-separable and ir-decomposable. ir-separability

and TT-decomposability each imply Tr-partibility. Subgroups and factor

groups of Tr-supersoluble, TT-soluble, TT-separable, TT-decomposable and

TT-partible groups are respectively ir-supersoluble, Tr-soluble,

TT-separable, ir-decomposable and TT-partible. TT-supersoluble and
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ir-soluble groups are respectively, TTj-supersoluble and irj-soluble for a l l

l l c i , A TT-separable group is IT'-separable.

3. Preliminary lenmas

LEMMA 1. Suppose B < A 5 G and C 5 G such that B permutes with

C . Then

(a) A n BC = B(AnC) 3

(b) \AnC\/\BnC\ divides \A\/\B\ ,

(a) if A 2 BC and B 2 A then ArC/BnC = A/B .

Proof. (a) is the modularity law ([4], p. 12l+).

(b). \B(AnC)\ = |B|.|4nC|/|BnC| whence |/lnC|/|BnC| = |BUnC)|/|fl|

which divides |4|/|s| .

(a). A = A n BC = B(AnC) by (a) whence A/B = AnC/(AnC)nB = AnC/BnC .

LEMMA 2. (Schur-Zassenhaus [4], p. 22k). If H is a normal Rail

•^-subgroup of G 3 G contains a Hall IT'-subgroup.

LEMMA 3. Conclusions (it) to (6) of Theorem 1 are consequences of (l)

to (3).

Proof. (k) follows from (l) by the second isomorphism theorem.

(5). Suppose 1 5 i < n . Then

G2i-1H - H2i-lG2i~2H * ( 1 ) '

since G ._ 2 G . Similarly EG . = HG . and so G . is

permutable with H . (5) now follows from Lemma 1 (b) on putting

A=G2i > B = C2i-1 ' C = fl •

(6). If 0 S i < n-X , ^2i-^l/H2i i s a 9i-SrouP b v (**)> a n d i f

1 £ i S n , H2i^H2i-l i s a V b ^3^

Since 6 3 6 3 • • • 2 e >

LEMT-1A 4 . If 1 = GQ < C < . . . « G2w = G i s a efcairc o / subgroups of
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G such that if 1 5 i 5 n , G . S G and G = G
2i

N
G{G

2-_1)
 and if s i

a subgroup of G such that C. 5 S 5 N „(<? ) and G = GJ5 , then putting

S. = S n G. ,

(a) G. = G S. for 2 5 i < 2rc , and
1r £. If

(b) S = S2iNs[S2i_1) and S^ 2 5 for 1 < i < n .

Proof. (a). Suppose i > 2 . Then

G. = G. n G S = Go[G.nS) by Lemma 1 (a),
Is %< d. C. 1>

= G2Si •

(b). I f i > 2 ,

S = S n G = S n

S i n c e G 2 ~ G2i-1

by Lenma 1 (a),

But S2itis{S2i_x) <S and so 5 = S ^ ^ . J .

If i = 1 , S2i_± = Sx = G± ? S vhence ^ ( S ^ ^ ) = 5 .

4. Proof of Theorem 1

We suppose that the theorem is false and throughout this section G

is assumed to be a minimal counter-example. We suppose further that the

theorem fails for G in respect of the chain 1 = G 5 G < ... 5 G = G,

(n - l) but holds for every shorter chain. For 0 5 i 5 n-X , 6.
If

d e n o t e s t h e s e t o f p r i m e s w h i c h d i v i d e some \G-./G.\ f o r j > i .

LEMMA 5. J / C ^ S s ^ ( ^ J and G = G
2

5 t ; w m S = C '

Proof. Suppose S < G . It follows from Lemma 1* ("&/) and the fact

that G is a minimal counter-example that there exist H 2 S such that if
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for 0 £ i £ n-1 , <j>. denotes the set of primes which divide some

, then

for 0 £ i £ n-1 ,

(ii) H^ 2 H for 0 £ i £ 2n ,

(iii) Hp./H . is a nilpotent 4> .-group for 1 £ i £ n ,

where H. is defined to be H n S. for 0 £ i £ 2n .
i i

Now if i £ 1 ,

by Lemma U f<2J

= G2H2i+l
S2i * (i)

= G2S2iH2i+l

- G .H . by Lemma

If i = 0 ,

Thus (1) holds for G .

If 0 5 j < n-1 i t follows from Lemma 1 (b) that |S . /S . |

divides \G0^+1/G . | and so <f>. c 6. for 0 £ i £ n-1 . Final ly ,

H n S. = H n G. for 0 £ i 5 2n and so from (ii), (iii) it follows that

(2) and (3) hold for G . Hence by Lemma 3, the theorem holds for G , a

contradiction. Hence S = G .

LEMMA 6. If Gi £• G then G1 = 1 .

Proof. Suppose that Gj # 1 . Using the symbol " " to denote

images of subgroups of G in G/G\ , we have by the assumptions on the

Gi > \i ~ S and C = G^W^J = G ^ ^ J . Hence by the

minimality of G , there is a subgroup H of G such that Gj £ fl and

such that if for 0 £ i £ n-1 , a. denotes the set of primes which divide
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some \^2j+1^2^ f O r J' " i '

A i for °~i ~n

( i i ) ~5. 2 ~R for 0 S i 5 2n ,
"Z-

( i i i ) H-./H . is a nilpotent a.-group for 1 5 £ 5 n ,

where #. is defined to be H n G. for 0 5 i 5 2H .
i v

I f i i 1 , i t follows from ( i ) t h a t G . = H . G . . Moreover

G1 £ H and so ^ = H = H^ . Thus ( l ) holds for G . From ( i i ) ,

H. S H for t i l , and c l e a r l y En 5 H . Hence (2) holds for G . I f

J > 1 , G2j.+1/ff2[?. S G2j+1
/G

2j • M o r e o v e r ^ / ^ o 1 S t r i v i a l - H e n c e i f

0 < i < Ti-1 , ^ c Qi . I f i > 1 , H2i/H2i_± = H2i/H2i_± and so toy

( i i i ) , H ./H . i s a n i l p o t e n t 6 .-group and so (3) holds for G .

Thus, by Lemma 3 , t h e theorem holds for G , a c o n t r a d i c t i o n . Hence

GY = 1 .

LEMMA 7. If Gi = 1 and G2 is nilpotent then G2 = 1 •

Proof. Suppose that G2 + 1 . Using the symbol " " to denote

images of subgroups of G in G/G2 , then by the assumptions on the G. ,
Is

G2i ?G and G = G^Q [G
2i-i1

 = ^2 i ^^2 i - l ^ ' H e n c e b y t h e m i n i n l a l i t y

of G , there is a subgroup K of G such that G2 - K and such that if

for 0 5 i 5 n-1 , a. denotes the set of primes which divide some
Is

^ ~ z i for J - l '

i ^

(ii) L 2 F for 0 5 i 5 2n ,

(iii) K ./K . is a nilpotent a.-group for 1 < •£

(iv) Z is an aQ-group,

where K. is defined to be K n G. for 0 5 i S 2n .
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If j > 1 , G ^ / G j y = C ^ / % - ' a n d s° «; = Qj • S i n c e V ^ O

is trivial, a = a = 6 . Thus "by (iv), K/G^ is a 6^-group.

Since G is nilpotent it contains a unique Hall 8'-subgroup, M .

U is characteristic in G and hence normal in G . GjM is a 8-^group

and so K/M is a 6^-group. By Lemma 2, there exists a Hall 8,-subgroup

B of K . Thus K = ME and M n H = 1 .

If i i 2 , then since M 5 C , , we have by Lemma 1 (a) that

K. = K n G. = MB n G. = MfflnG.) = Affl. where ff. is defined to be S n G.

for 0 £ i 2 2n . If t i l we have from (i) that

G2i+1 =
 K2UlG2i = MB2i+lG2i = E2i,lG2-L ' M o r e O V e r Gl a n d Hl a r e

trivial, so G = H G . Thus (l) holds for G .

If I > 2 , it follows from (ii) that X. 2 K and so MH. 3 ME .

Hence

B. < ME. n H = B.(MnE) by Lemma 1 (a) ,

= E. .

Thus E. 3 B . Moreover B = G 2 £ and # = G = 1 2 ff . Thus (2)

holds for G .

If i > 2 , ^ / ^ ^ = V * 2 t - 1 = m2i'MH2i-l ' H2i/H2i-1 M d S°

by (iii), E ./E . is a nilpotent a.-group and so a nilpotent

9.-group. Since E = 1 , HjH-\ S ^2 a n d is nilP°"fcent since G^ is

nilpotent. Since K/M is a 8,-group, so is E . Hence (3) holds for

G and so by Lemma 3, the theorem holds for G , a contradiction. Hence

Proof of Theorem 1. We obtain our ultimate contradiction through an

interplay of Lemmas 5, 6 and 7. Taking S = ff_(G ) in Lemma 5 we

conclude that G 3 G . Hence by Lemma 6, G = 1 . Thus if 5 is any

subgroup of G such that G = GJ5 , then by Lemma 5, S = G . Hence G
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is contained in the Frattini subgroup of G , whence it is nilpotent. By

Lemma 7, G_ = 1 . Since the theorem holds for G in respect of the

shorter chain 1 = C S C 5 ... 5 C = G , it must hold in respect of the

original chain, a contradiction.

5. Consequences of Theorem 1

THEOREM 2. Suppose that

1=GQ <G2<Gk< ... <G2n=G

is a normal series for G . If for 1 5 £ 5 n-X } the factor G ./Go.

contains a single conjugacy class of Hall it-subgroups and if GIG-

contains a Hall it-subgroup then G contains a Hall it-subgroup. If these

Hall it-subgroups are soluble, G contains a soluble Hall it-subgroup.

Proof. For 1 5 i £ n , choose Go. so that G . -./Go. o i s a

Hall TT-subgroup of G ./G . . If 1 S i 5 n-1 , a l l Hall 7r-subgroups

o f G2i/G2i-2 a r e

NG/G . JG2i-l/G2i-2^ a n d S 0 G = G2iNG^G2iJ • By Theorem 1 there

exists a subgroup H of G having properties (l) to (6).

1

2i-\ 2i-2\ %=X \ 2i 2i-\\

n
which divides | | \G .:GO. and so is a ir'-number. Since for

0 5 i 5 n-1 , Go. ./Go. is a ir-group, 9. c IT for all i . In

particular 6^ c IT . H is a 6_-group by (6) and so a ir-group. Hence it

is a Hall ir-subgroup of G .

If the Hall TT-subgroups of the factors of G are soluble,

G2i-i/G2i-2 ' a n d h e n c e by C*) H2i-l/H2i-2 i s s o l u b l e f o r 1 5 l - n •
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Since, by (3), H ./H . is nilpotent for 1 5 i 5 n , H is soluble.*

COROLLARY. The theorem holds if 1 = G < G^< ... < G = G is a

composition series.

Proof. If A is a direct product of isomorphic copies of B , then

A has a single conjugacy class of Hall ir-subgroups if and only if B

has. Since each chief factor of G is a direct product of isomorphic

copies of some composition factor, the assumptions on the composition

factors carry over to the chief factors.

THEOREM 3 ([/], Theorem 3.9.1). If G is ^-partible then it

contains a Hall ^-subgroup. If for some TTJ C IT , G is ir^-decomposable

and (IT-ITj)-separable then it contains a T\\-solvible Hall ir-subgroup.

Proof. Let 1 = G < G < C, < . .. < G = G be a chief series for

G . If p is the set of prime divisors for some chief factor then by the

TT-partibility of G ,

(i) p c ir , or

(ii) p e n 1 , or

(iii) p n IT = {p} for some prime p .

In case (i) the factor is a ir-group and so has a unique Hall ir-subgroup

(namely itself). In case (ii) the factor is a ir'-group and so has a

unique Hall TT-subgroup (namely the trivial subgroup). In case (iii) the

factor has a single conjugacy class of Hall ir-subgroups (namely the Sylow

p-groups). Hence by Theorem 2, there exists a Hall ir-subgroup H of G

satisfying (l) to (6) of Theorem 1.

Suppose that G is TTj-decomposable and (TT—TTJ )-separable. If p is

the set of prime divisors of \G ./Go. _| , p e n ' or p n n = {p} by

TTj-decomposability. If p n TTj = {p} then by (TT-TTI )-separability,

p n (TT-TTI) = 0 that is p n IT = p n ITJ . Let T be the set of prime

divisors of l#2t-i/i?2i-21 " ^ ^ b y ( U )' T - P a n d b y ( 6 )'

T c 6 = n . Hence i c p nil . Thus either x c p c IT' or

* In fact by (5) and (6), each u
2J

H2.i-\ i S trivial-
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T c p n TT = p n TTj = {p} . Finally for 1 < % < n , R2'^H2'-X i s ' t y

(5 ) , a ir'-group.* Hence H i s TTi-soluble.
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