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ABSTRACT: The calibration of luminosities using trigonometric parallaxes in­
troduces well-known errors that are a function of the ratio of the parallax error to the 
parallax, when the sample is chosen from stars with measured parallaxes larger than 
some minimum parallax. In this paper it is shown that similar errors are also introduced 
into the mass axis of the mass-luminosity relation (MLR) and can result in a biased 
MLR. The bias is shown to be related to the Lutz-Kelker correction to the absolute 
magnitude, as extended by Hanson for the case of selection effects in the data sample. 
The size of the correction in the mass axis is substantial and for the case of a uniform 
distribution in space, it can amount to a multiplicative factor of 1.17 in the mass for 
a ten sigma (<r/x = 0.10) parallax and a factor of 1.62 for a five sigma (<x/ir = 0.20) 
parallax. 

1. I N T R O D U C T I O N 

It has been known for many years that the direct use of trigonometric parallaxes 
to calibrate the luminosities of stars can result in values biased towards lower 
luminosities, when the sample is chosen from stars with measured parallaxes 
larger than some minimum parallax. The origin of this error is in the rapidly 
increasing number of stars encountered per unit parallax as one moves to larger 
and larger distances. When this parallax distribution, G(ir), is convolved with 
an observational error, the result is that many more stars with small true par­
allaxes are scattered towards larger observed parallaxes than conversely. As a 
result, an uncorrected calibration uses parallaxes that are on the average too 
large, which results in a luminosity or absolute magnitude that is too dim. A 
good example of this systematic error is given by Hoffleit (1939), where she com­
pared the trigonometric and spectroscopic parallaxes for a sample of 370 bright 
southern stars with spectroscopic parallaxes on the Mt. Wilson system. Hoffleit 
plotted the differences between the absolute magnitudes determined from the 
trigonometric and spectroscopic parallaxes versus the trigonometric parallaxes. 
For the small and consequently poorly measured parallaxes, she showed that 
there were large systematic errors in the derived absolute magnitudes. 

The first paper that dealt in detail with the problem was that of Dyson 
(1926), in which he derived the formalism for correcting the observed distri­
bution of parallaxes to the true distribution using Eddington's (1913) method. 
The true distribution could then be used to derive a luminosity calibration with­
out systematic error. The method was subsequently described by Trumpler & 
Weaver (1953) and Feast k Shuttleworth (1965). Wallerstein (1967) dealt with 
the problem in the calibration of the K-line absolute magnitudes through Monte 
Carlo simulations of a sample of stars. The statistical corrections thus esti­
mated were used to correct the absolute magnitudes derived from the observed 
trigonometric parallaxes. Following this, Lutz & Kelker (1973) formalized the 
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problem and analytically calculated the corrections to be applied to the derived 
absolute magnitudes for a uniform distribution of stars in space. Hanson (1979) 
then generalized the problem by devising a method to determine the true spatial 
distribution of the observed stars and then calculated the correction appropriate 
for that spatial distribution. The latter effect is very important, since various 
selection effects introduce spatially non-uniform distributions. The revised cor­
rections can sometimes be as much as a factor of two smaller than the original 
Lutz-Kelker corrections. 

2. THE ABSOLUTE MAGNITUDE CORRECTIONS 

In this section we will review the basics of the Lutz-Kelker corrections in order 
to relate them to the corrections to the mass calibration. We will follow the 
formalism developed by Lutz & Kelker (1973) and Hanson (1979). Given the 
distance modulus equation, we can write the error in the absolute magnitude, 
AM = Mt — M„, where the subscripts t and o refer to the true and observed 
quantities, as 

AM = 5 log (jrt/7r0) . (1) 

For simplicity, we will henceforth drop the t subscript and assume that un-
subscripted quantities refer to the true values. If we have a uniform distribution 
of stars in space, then the number of stars between r and r + dr is given by, 

N(r)dr = 4TlD0r
2dr , (2) 

where D0 is the star density and n = 3.14159. The equivalent number of stars 
between 7r and ir + dw is, 

N(v)dir = 4JlD0Tr-*dTr. (3) 

Equation 3 is the parallax distribution for a uniform distribution of stars 
in space. Hanson's (1979) modification of the distribution assumes that the 
distribution goes as TT-", where n is to be determined rather than assumed to 
be equal to 4. We therefore have, 

N(n)dn = 4UD0w-nd^ . (4) 

It remains now to determine the exponent, n, in the density law so that the 
correction can be evaluated. Hanson (1979) pointed out that since the parallax 
and the proper motion are directly related by ir = 4.74/i/V, and the kinematic 
distribution of stars is relatively independent of spatial location in the solar 
neighborhood, we can write z = ir/n0 ex /x//x„. For most of the stellar samples 
of interest, the rms velocity is about 35 k m s - 1 . As a result, the proper motion 
errors are some eight times smaller in proportion to the proper motion, than the 
parallax errors are to the parallax. The proper motion errors can therefore be 
safely ignored as an important contributor to the smearing of the true proper 
motion distribution in the region of interest. The distribution of the proper 
motions can then be approximated by, 

fif(/l)(X/i " , (5) 
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and the cumulative proper motion distribution is then, 

*(/0 = f f f M ^ oc //-("-1), (6) 

or taking logs, 
log N(fi) = —(n — 1) log n + const. (7) 

Hanson (1979) has shown that for samples of stars known to be complete, 
an index of n = 4 is obtained, in agreement with the expected value for a uniform 
distribution in space. Values as small as n = 2.5 have been found for samples 
with a strong proper motion bias such as for the subdwarfs used to calibrate the 
Pop II main sequence. The result of this small value of n is that smaller Lutz-
Kelker corrections, by about a factor of two, are derived and a larger value of the 
limiting value of (o-/w)max can be used, thus allowing us to use parallaxes with 
somewhat larger errors and practically speaking, more stars. To differentiate 
the corrections, AM(n), for an arbitrary power law distribution in space (or 
selection effect) from those with a uniform distribution (n = 4), we will refer to 
the former as the Lutz-Kelker-Hanson or LKH corrections. 

3. D E F I N I T I O N OF T H E C A L I B R A T I O N S A M P L E 

Some care must be exercised in the definition of the sample that we are going 
to calibrate. For example, the LK corrections are applicable strictly to a sample 
selected with 7r > TTI, where 7Ti is the lower observed parallax selection limit. 
If the sample has been selected such that, in addition n > fi\, then the LKH 
corrections should be used after determining the appropriate value of the power 
law in the spatial distribution, i.e. n in Equation 7. If the sample satisfies the 
above criteria, then the formalism in the above section applies. 

4. T H E M A S S C O R R E C T I O N S 

Turning now to the mass axis, we note that the quantity determined is the sum 
of the masses, £ m = ( m i + m2)i which is given by, 

£ m = o3p-V-3, (8) 
and 

m2 = Fj^m; (9) 

mi = ( l - F ) ^ m , 

where F = m2/ £ m is the fractional mass as determined from photographic 
astrometry. Since we normally deal with the masses in logarithmic units, we 
take the log of Equation 9 and get, 

log m2 = log F + Zlog a - 2 log P - 3 log w. (10) 

The systematic error introduced into the masses will then be given by, 
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Alog m = log mt — log m0, (11) 

or 
Alog m = - 3 log (ir/jr„), (12) 

where mt and m0 are the true and observed masses, respectively. Recall that 
the error in the magnitude axis was given by Equation 1 as 

AM = 5 log (TT/TT,,). (13) 

The similarity of Equation 12 and Equation 13 show that we can write the 
correction to the mass axis as, 

Alog m = - (3/5)AML/rH. (14) 

As an example of the new correction to the mass axis, we have computed 
the corrections to both axes in the Mass-Luminosity relationship for binary 
stars with calculated orbits in the new edition of the Yale Parallax Catalogue 
(YPC). However, we have not yet included the mass ratios for the stars and must 
assume that each binary consists of two main sequence stars. Binaries with YPC 
spectral type information indicating a non-dwarf component are excluded from 
this sample. In Paper II we will provide more details on the calculations, analyze 
all binaries in the YPC and include the mass ratios in the discussion. 

We turn now to estimating the true distribution of the binaries in space 
in order to determine the value of n to be used in Equation 4. In Figure 1, 
we plot log N(fi) versus log \i for those binaries with measured parallaxes 
;r0 > +0.030", > +0.040" and > +0.050" and (CT/TT) < 0.20. The slope of the 
"linear" part of the relation provides an estimate of the spatial distribution 
power law index, n. The values have been estimated by eye and yield n = 2.8, 
3.0, and 2.9, respectively for the above minimum parallaxes. We adopt n = 2.9 
as a value representative of binaries that might be appropriate to use for the 
calibration. 

We should emphasize that the space distribution of the binaries in our sam­
ple is the product of many selection effects. If, for example, we attempt to trace 
the various selection effects, we must first discover the binary nature of the star, 
which in general imposes a maximum apparent magnitude of about 9.0. While 
fainter binaries can be discovered today, the existence of an observational history 
adequate to determine an orbit implies that the binary was discovered long ago 
with a relatively small telescope. And second, some parallax observer must have 
thought that it was close enough to the sun to warrant spending the time to 
determine its parallax. The separate characterization of these selection effects 
would be both difficult and suspect, so the use of Hanson's (1979) approach to 
estimate the space distribution power law index of the sample will be adopted. 

In Table 1 below we have used a power law index of n = 2.9 determined 
from Figure 1 to illustrate the range of the corrections to be applied to the two 
axes. The low value of n enables the calibration to extend to stars with (<X/TT) < 
0.287, rather than the more restrictive value of 0.175 for the n = 4 case. The 
details of the restriction to the maximum value of (CT/TT) are discussed in detail 
by Hanson (1979). In Table 1 the columns list the ratio of the parallax error 
to the parallax, the LKH correction to the absolute magnitude, the systematic 
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FIGURE 1. The log of the cumulative distribution versus the log of the proper 
motion for x > +0"030, +0"040, and +0':050 and (cr/x) < 0.020. The proper motions 
have been scaled by factors of two to offset the curves for clarity. 

correction to the log of the mass, and the ratio of the true (corrected) mass to 
the observed mass. 

It is clear from Table 1 that the LKH corrections to the absolute magnitudes 
are very large at the point, (<r/x) = 0.3, where the derivation of a correction is 
vitiated by a variety of other errors that will dominate the final values of the 
bolometric magnitude and the log of the mass. Note that for (CT/X) > 0.20, 
the values of the corrections depend strongly on the integration limits for the 
individual star and may therefore differ from those listed in Table 1, which are 
values averaged over several stars with approximately the same (<T/TT). 

TABLE 1. Systematic corrections to the masses and luminosities for a parallax 
power law distribution index n = 2.9. 

<T/T 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 

Ailfixff 

0.00 
-0.02 
-0.08 
-0.19 
-0.35 
-0.50 
-0.65 

Alog m 

0.000 
0.012 
0.048 
0.114 
0.21 
0.30 
0.39 

m/m0 

1.00 
1.03 
1.17 
1.30 
1.62 
2.00 
2.45 
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FIGURE 2. Mass-Luminosity Relation for stars with errors < 0.3 mag and log 
(mass), respectively, corrected as described in the text for systematic errors in both 
axes. The pairs of stars are assumed to lie parallel to the ZAMS in the color-magnitude 
diagram to deconvolve them into individual visual magnitudes and colors, and they 
are subsequently assumed to lie parallel to the ZAMS in the MLR to determine the 
unknown mass fraction. 

5. C A L I B R A T I N G T H E M A S S - L U M I N O S I T Y R E L A T I O N 

It has been recognized for many years that accidental errors in the measured par­
allaxes introduce a systematic error into absolute magnitude calibrations. It has 
therefore become a more or less standard practice to apply the Lutz-Kelker cor­
rections to the absolute magnitudes of the stars before deriving the calibration. 
Corrections to the mass have not been applied before since this is the first time 
that their existence has been discussed as far as we are aware. One would there­
fore expect that the commonly used calibrations published by Harris, Strand 
and Worley (1963) and Heintz (1978, 1983) would be changed significantly by 
the new corrections. As illustrated in Figure 2 the relations are altered only 
slightly for two reasons. First, the massive end of the Mass-Luminosity Relation 
is dominated by masses determined from spectroscopic and eclipsing binaries, 
which are independent of trigonometric parallaxes and therefore the apparent 
deviation of the observations from the line is not significant; and second, the 
low mass end is dominated by well determined parallaxes, which therefore have 
relatively small systematic corrections. The location of the break in the slope of 
the Mass-Luminosity relation near MM — +7 and the details of the distribution 
of the stars around the relation may, however, be distorted by the neglect of the 
corrections. 

We note only briefly here that there appear to be systematic deviations for 
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the low mass stars and that the MLR may be in need of adjustments due to the 
application of the new corrections to the masses. We will defer further analysis 
of the data to Paper II after we have included all of the available data and the 
mass ratios in the calculations. 

6. C O N C L U S I O N S 

The procedures used to calibrate the Mass-Luminosity relation have been reex­
amined in relation to the systematic errors introduced into the two coordinates 
by the accidental observational errors in the trigonometric parallaxes. It is shown 
that the now standard LKH corrections to the bolometric magnitude axis have 
analogous systematic corrections that must be applied to the mass axis. The size 
of the corrections in the mass axis are substantial and in this case can amount to 
a multiplicative factor of 1.17 in the mass for a ten sigma (O/K = 0.10) parallax 
and a factor of 1.62 for a five sigma (a/ir = 0.20) parallax. 
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9. D I S C U S S I O N 

HARRINGTON: Have you done log(N(M))/log^ plots as a function of 
spectral type to see how the slope changes and thus where incompleteness sets 
in as you go down the main sequence? 

VAN ALTENA: No, but this is one of the things we will do once we have 
completed our data base. 

MAZEH: Can you comment on the slopes of the lines of the figure. 

VAN ALTENA: The slopes of the lines in the mass-luminosity relation are 
those from the 1978 book of W. D. Heintz. 

HEINTZ: The slope of the lower main sequence was revised from 6.0 to about 
6.5 - nothing very significant. 

ABT: In the mass-luminosity diagram, the upper line does not seem to be 
drawn through the mean position of the points. 

VAN ALTENA: The upper line is defined by eclipsing binaries, not the visual 
binaries that are illustrated here. 

KROUPA: On the lower main sequence, uncertainties in bolometric correction 
are very large. 

VAN ALTENA: Yes, the bolometric corrections must contribute a significant 
error to the bolometric magnitudes. 
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