
J. Functional Programming 6 (1): 29-45, January 1996 © 1996 Cambridge University Press 29

The resource constrained shortest path problem
implemented in a lazy functional language

PIETER H. HARTEL
Department of Computer Systems, University of Amsterdam, The Netherlands

(Email: pieter@fwi.uva.nl,)

HUGH GLASER
Department of Electronics and Computer Science, University of Southampton, UK

(Email: hgQecs. soton. ac .ukj

Abstract

The resource constrained shortest path problem is an NP-hard problem for which many
ingenious algorithms have been developed. These algorithms are usually implemented in
Fortran or another imperative programming language. We have implemented some of the
simpler algorithms in a lazy functional language. Benefits accrue in the software engineering
of the implementations. Our implementations have been applied to a standard benchmark
of data files, which is available from the Operational Research Library of Imperial College,
London. The performance of the lazy functional implementations, even with the comparatively
simple algorithms that we have used, is competitive with a reference Fortran implementation.

Capsule Review

This paper shows how a natural development of a solution to a combinatorial search problem
in a functional language leads to a simple but reasonably efficient solution based on dynamic
programming. The solution to the resource constrained shortest path problem uses a recursive
definition of an array in terms of itself to eliminate the problem of deciding the order in which
the array elements must be evaluated. The program also uses lazy evaluation to control the
degree of evaluation done in solving each subproblem in a way that allows additional work
to be done incrementally when necessary. This avoids doing work that would normally be
done, and then discarded, in a straightforward algorithm for dynamic programming written
in an imperative language. Implementing a similar evaluation strategy in Fortran, or any
other traditional language for numerical computation, would at best be complicated.

Hartel and Glaser compare their results with published performance figures for a sophis-
ticated Fortran program designed with performance in mind. There are enough differences
between the authors' program and the Fortran program, and the machines used to execute
these programs, to make it hard to draw any strong conclusion. However, the raw numbers
suggest that the functional program actually outperforms the Fortran program (although
the authors carefully and properly do not make this claim). In practice, the experimental
results do strongly suggest that, in the context of some computationally intensive applications,
functional programs may have real advantages that offset the overheads normally associated
with functional programming.

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

30 P. H. Hartel and H. Glaser

1 Introduction

The Resource Constrained Shortest path Problem (RCSP) is to find the shortest
path in a network such that certain constraints are satisfied. We consider this an
interesting problem because it provides a challenge to a functional programmer.
There are three reasons for this.

Firstly, RCSP is NP-hard (Handler and Zang, 1980). Good heuristics are thus
required so that on a practical problem size an answer may be found in a reasonable
amount of time. This makes RCSP an interesting problem in general. Because lazy
functional languages are having difficulty in achieving absolute performance, RCSP
is a particularly interesting problem in the lazy functional context.

Secondly, a solution to RCSP requires a graph algorithm. These are considered
difficult to implement efficiently in a purely functional language (Harrison, 1993).
The available techniques are not always easy to apply, but we think that this is
because of the imperative way programmers reason about graph algorithms. Our
solutions are perfectly straightforward provided they are approached from the right
angle. The use of monolithic arrays with 0(1) access will prove to be important.

The third reason for choosing RCSP is that real data sets are available via
anonymous ftp from the Operational Research Library of Imperial College, London.
Timings of reference Fortran implementation of RCSP on these data sets are also
available (Beasley and Christofides, 1989). This makes it possible to compare lazy
functional implementations to a reference implementation.

We are not alone in our attempt to investigate the advantages and disadvantages
of lazy functional programming when applied to implementing graph algorithms.

King and Launchbury (1993) describe implementations of depth first search and
linear graph algorithms in a lazy functional language. They demonstrate that lazy
functional languages are indeed useful in this area. Their chosen application area is
different from ours because the complexity of their algorithms is polynomial.

Harrison and Glass (1992) use the unconstrained shortest path problem to demon-
strate that standard program design techniques are applicable in a functional context.
Their work is not concerned with efficiency.

Kashiwagi and Wise (1991) study a general schema for implementing graph
algorithms in a lazy functional language. Their method could be applied to RCSP,
but being more general it would probably not give the same performance as our
implementation.

Following this introduction, section 2 reviews some of the mathematical aspects of
RCSP. In sections 3 and 4 two implementations are discussed, for which experimental
results are presented in section 5. The conclusions are in section 6.

2 Dynamic programming formulation of RCSP

To make this paper reasonably self-contained, we describe the standard dynamic
programming solution to RCSP. Dynamic programming is divide and conquer
carried to its extreme: it requires solving all subproblems of a particular problem,

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

1
1

initial

The resource

f = 6

t)v y
c = 0
r, 4 0

constrained

r = 6

f

V s
c = 0

shortest

\V -
J final

path problem

Non-Placement

Placement

31

Fig. 1. Network corresponding to the knapsack problem.

and remembering the answers found for all the subproblems, so that they can be
reused later, in case the same subproblem occurs again.

The RCSP problem has been simplified in the sense that we do not deal with
cyclic graphs, nor with undirected edges. Extending the algorithms to cope with
arbitrary graphs instead of Directed Acyclic Graphs (DAG) is possible, but omitting
these complications makes the presentation more succinct. The simplified RCSP
problem is useful. It closely corresponds to the knapsack problem. Consider the
3-node network of Figure 1. The correspondence with a 2-item knapsack is as
follows: the path from node i to node i + 1 along an edge in the bottom half of
the diagram corresponds to placing item i with weight r, in the knapsack. There is
no cost associated with this placement. The path joining the same pair of nodes in
the top half of the diagram corresponds to excluding item i from the knapsack at
cost Cj. This does not consume resource. The upperbound on the resource in the
restricted RCSP problem is the capacity of the knapsack. Finding the shortest path
corresponds to minimising the cost of placing items in the knapsack, and therefore
maximising the profit.

The formulation of RCSP which is to follow is heavily based on that given by
Beasley and Christofides (1989). However, they use a relational specification, with
a logic variable to control the resource consumption. Our specification is purely
functional.

Consider a DAG defined as G = (V,E), where V is a set of n nodes and £ is a
set of m directed edges. Nodes are labelled with natural numbers 1... n. An edge
from a node i to a node j is identified by the pair (i,j). Node 1 is taken to be the
initial node of a path and node n is taken to be the final node of the path through
the network.

Associated with each edge is a positive cost ci;- of type C and a positive k
dimensional resource vector r,y of type Rk. The ordering on Rk is such that for all
s,leRk:

s < t o (V 1 < i < k • Sj < ti), w h e r e s = (s\,...,Sk) a n d t = (t\,...,tk).

Let the number of edges along a path be the length of the path, let the sum of all
Cij along a path be the cost of the path, and let the sum of all ris along a path be

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

32 P. H. Hartel and H. Glaser

the resource of the path. Let an optimal path through the network be a path that
has a minimal cost, while its resource does not exceed a given non-negative upper
bound u. Then RCSP is to find such an optimal path.

The RCSP problem can be formalised as follows. Define a path p of length / from
node 1 to node n as a set of / connected edges of the form:

P = {(h,i2),(h,h),• • • ,(ii-\,ii),(ii,U+i)}, where I'I = 1 and i/+1 = n.

Let P be the set of all paths from node 1 to node n. Thus P <= p(E x E). For all
p e P, define the functions # : P -> C and 01 : P -> J?fc as follows:

('J)ep

Then a particular path p e P is the resource constrained shortest path with respect
to the graph G and the upper bound on the resource u if and only if:

p RCSPfi GopeP A (®{p) < u) A (V<j € P • ®{q) < u => #(p) < <$(q).)

We find it more convenient to work with a function than with a relation, but there
may be many 'shortest' paths that satisfy the relation RCSP. All such paths could
be gathered in a set, and a function could be defined, which given a graph returns
the set of shortest paths. As it is often only the cost of a path satisfying RCSP that
is of interest, we can define a simpler function, /* say, that computes just this cost.
It is convenient to use an auxiliary function f : (V x Rk) —> C, which gives the cost
of the resource constrained shortest path from node 1 to a given node j using the
standard dynamic programming recursion:

f(j, f) = m i n { / (i , r - ri}) + ci} \ieVA (i, j) e £ } , if ; + 1

l f) = { 0' i f ? > 6
\ oo, otherwise.

A path that consumes more than the allowed amount of resource is given a cost oo.
Furthermore, min{} = oo. The optimal path has cost

It can be proved by induction on n that ^(p) = /*, where p RCSPa G.
To illustrate how the function / solves RCSP, consider the network of Figure 2.

The network has five nodes and six edges; the resource vectors are of dimension 2
(i.e. k = 2). We must now compute:

/(5, r)=min{/(4, f - (1,1)) + 6,/(3, f - (0,1)) + 5} f e {«}
/(4,r)=min{/(3,r-(l,0)) + 4} fe{u- (1,1)}
/(3,r)=min{/(2,r - (1,5)) + 3,/(l,r - (0,4)) + 2} f € {u - (0,1),« - (2,1)}
/(2,r)=min{/(l,r-<4,0» + l} r e {u - (l,6),u - (3,6)}

f 0, i f r > 6 re{u-(0 ,5) , i i - (2 ,5)
n ' ' \ oo, otherwise it - {5,6),u- (7,6)}

Dynamic programming prescribes that no recomputation takes place during the

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

The resource constrained shortest path problem 33

1

initial

? = <0,4)

c = 5

f = (0,1

c = 6

5

finalc = l c = 3 c = 4

r = (4,0) r = (l , 5) r = (1,0) r = (l,l>

Fig. 2. Sample network, showing the costs and resources associated with each edge.

Table 1. All possible paths through the sample network, showing the cost and the
resource consumption.

Path Cost Resource

[1,3,5] 7 <0,5
[1,2,3,5] 9 (5,6
[1,3,4,5] 12 (2,5
[1,2,3,4,5] 14 (7,6

evaluation of / , which means that for every possible argument pair, the function
value must be remembered. In functional programming circles this technique is
known as memoising (Hughes, 1985). To use / as a basis for implementing RCSP
would be prohibitively expensive, because it is too time and space consuming to
remember all possible argument value pairs for / .

A simple solution to RCSP works by solving the p-th shortest path prob-
lem (Christofides, 1975). The function g : V —> $O(Rk x C) enumerates all paths, for
example in order of increasing cost:

g(J) =U{g(0 + (hj, ctJ) | i € V A (i, j) G £}, if j± 1,

From the set of solutions select a feasible solution with the least cost:

g* = min{c | (r, c) e g(n) A 6 < f < «}.

It can be proved by induction over n, that f(n,u) = min{c | (f,c) € g(n) A0 < f < u}.
Therefore, / ' = g*.

In the network of Figure 2, the function g calculates the set of results as shown in
Table 1, from which it is easy to select the optimal solution when given a particular
value of it. In the next two sections we will show that a lazy functional language is
eminently suited to implement this strategy.

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

34 P. H. Hartel and H. Glaser

3 Initial node RCSP: discard infeasible paths at the initial node

The first step towards an efficient program is to use a dynamic programming solution
for the unconstrained shortest path problem, and to implement the constraints sepa-
rately. The idea behind this implementation is to make each node in the graph pro-
duce a stream of paths, sorted on the cost of the path. The constraint is implemented
by filtering out every path from a stream of paths that does not satisfy the constraint.

A solution built along these lines is not expected to be efficient, because it
basically enumerates all the possible paths, in order of increasing cost, until a path
is found that satisfies the constraints. However, the solution has the advantage that
it separates two different concerns, which is always a good idea to try first.

The lazy functional language used for the programs is Intermediate (Hartel et al,
1991), which is a variant of Miranda1' (Turner, 1985). One of the extensions consists
of the support for monolithic arrays with 0(1) access, as in Haskell (Hudak et al.,
1992). Here are two examples of array primitives. Double angular brackets are used
to denote an array thus: ((a;... au)). All arrays are accompanied by a descriptor pair
descr I u, which holds the lower bound / and the upper bound u of the array. The
first example is the function listarray, which turns a list into an array:

listarray :: descr —> [a] —* array a

listarray (descr I u) [x / , . . . , xu] = ((x/ . . . xu)).

The second example function accum takes an accumulation function, an old array
and a list of index/value pairs (associations). It folds new values from the list into
the array using the given accumulation function:

accum :: (a —* fi —* a) —» array a —*• [assoc int /?] —* array a

accum f ((at ...au)) as = ((bsi...bsu))

where bsi = foldl f a\ [v | (assoc i v) <— as;i = I]

bsu = foldl f au [v | (assoc i v) <— as;i = u].

Returning to the solution of RCSP, we first define some suitable data structures
to represent the graph. A graph consists of a list of nodes and some control infor-
mation. The control information gives the lowest and highest label number in the
graph and the upper bound on the resource. A node consists of a label and a list
of edges, and an edge contains the label of its destination as well as an integer cost
and a resource vector. A resource vector is represented as a list of integer values:

[node]graph : :

node : :

edge ::

label

thecost =

resource =

= Graph

= Node

= Edge

= int

= int

= int

label

label

label

label

[edge]

thecost

[resource]

[resource]

The path data type has three elements: the first is the list of nodes visited between

Miranda is a trademark of Research Software Ltd.

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

The resource constrained shortest path problem 35

the current node and the final node n of the network, the second component of the
data type is the cost of the path, and the third component is the amount of resource
consumed along the path:

> path : : = Path [label] thecost [resource]

With these data types, the dynamic programming recursion of the shortest path
can be expressed using two arrays, each indexed by labels. The first array default
yields a default list of paths for every node. Taking the final node of the network
as an example, the list of nodes from the final node to itself should be empty, with
zero cost and resource use. The array with default path lists is built by the function
sp_def ault. The default lists makes sure that whatever happens, a path is available
for every label. The standard function l i s ta r ray turns a list, in this case a list of
repeated, identical elements, into a finite array with the given array descriptor, in
this case ranging from lo to hi :

> sp_default :: graph->array [path]

> sp_default (Graph lo hi upbounds nodes)

> = listarray (descr lo hi) (repeat [Path [] 0 [0 I i <- upbounds]])

The second array paths_ar is defined locally within the function sp_graph. This
array will contain either a real list of paths from a node to the final node of
the network, or the default list, if the node is unreachable from the initial node.
The graphs being traversed are acyclic, therefore it is safe for the array paths_ar
to be defined in terms of itself. This is a standard technique in lazy functional
programming (knot tying (Bird, 1984)). In any other language one would have
to resort to a topological sorting of the array, thus working out explicitly the
dependencies in the network. Using a lazy functional language gives an edge over
other programming paradigms in terms of the ease of coding.

The application of the standard function accum here replaces all elements of the
default array by new values, which will be provided by the function sp_node:
> sp_graph : : graph->array [path]->array [path]
> sp.graph (Graph lo hi upbounds nodes) default
> = paths.ar
> where
> paths.ar = accum (\x y.y) default [sp_node paths.ar n I n <- nodes]

The structure of the data types, which describes a graph in terms of nodes, and a
node in terms of edges, will now be followed closely in describing the functions that
operate on these data structures. The compositionality of both data structures and
functions is another powerful feature of pure functional programming.

The function sp_node merges sorted lists of path lists into a single sorted path
list. The paths are sorted in order of increasing cost. The constructor assoc forms
a pair of the node label and the merged list of paths, for the benefit of the accum
function above:

> sp_node :: array [path]->node->assoc [path]

> sp_node paths.ar (Node from edges)

> = assoc from (foldrl merge.path.cost incoming.paths)

> where

> incoming.paths = sp.edge.list paths.ar edges

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

36 P. H. Hartel and H. Glaser

The list of edges associated with a node is traversed by sp_edge_list, resulting
in a list of path lists:

> sp_edge_list :: array [path]-> [edge]->[[path]]
> sp_edge_list paths_ar edges
> = [sp_edge paths_ar e I e <- edges]

The last function sp_edge builds a list of new paths out of a list of existing paths.
To guarantee that the dynamic programming solution is properly implemented, the
function sp_edge has to have access to the local variable paths_ar as defined in
the body of sp_graph. The array paths_ar is therefore passed as a parameter
from sp_graph to all the intervening functions, ultimately to be used by the current
function sp_edge.

Each edge carries the label to of the node to which it connects. This label can be
used to access all paths from node to to the final node of the network, by indexing
the array paths_ar. The infix operator '!' is here used as the array subscript
operator. The list comprehension in the function sp_edge potentially runs through
all the paths departing from node to to the final node, attaching the label to to the
list of nodes already visited and updating the cost and resource. Since the resource
is implemented as a list of integers, the standard function zip2with may be used to
perform pairwise addition on the resource vectors resources 1 and resources2.

> sp_edge : : array [path] ->edge-> [path]

> sp_edge paths_ar (Edge to costl resources!.)

> = [Path (to:edges) (costl+cost2) (zip2with (+) resourcesl resources2)

> I Path edges cost2 resources2 <- paths.ar ! to]

The main program combines the two functions sp_graph and sp_def ault op-
erating on the real path array and the default path array to solve R.CSP in two
steps. The list of all paths from the initial node to the final node is subscripted
out of the array paths_ar. This causes the shortest path to be computed, which is
then subjected to the resource constraint test using the upperbound upbounds in the
filter of the list comprehension. Should the test fail, the next best path is computed
until the desired answer appears. This answer is selected by the hd function and the
remaining solutions are ignored. Here again we use the laziness to generate a list of
results separately from choosing the desired elements of the list.

> sp_main :: graph->path

> sp_main g

> = hd [Path edges cost resources

> I Path edges cost resources <- paths_ar ! lo

> ; and (zip2with (>=) upbounds resources)]

> where

> (Graph lo hi upbounds nodes) = g

> paths_ar = sp_graph g (sp_default g)

This completes the presentation of the shortest path program, which discards
infeasible paths at the initial node. Because of this property, the program is called
the initial node RCSP. Before moving on to a more refined program, we consider
some complexity issues.

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

The resource constrained shortest path problem 37

3.1 An informal complexity analysis of initial node RCSP

The unconstrained shortest path program visits each edge that is reachable from the
initial node exactly once. Edges that cannot be reached from the initial node will
not be visited at all. This is reassuring, but not sufficient to describe the complexity
in terms of elementary operations, because whilst visiting an edge, a large number
of paths may have to be built.

Before discussing the real complexity issue let us have a closer look at the
behaviour of the lazy evaluation of the program. Suppose that the shortest path
also satisfies the resource constraint, which as it turns out is sometimes the case in
the data sets from the Operational Research Library.

Consider again the example network of Figure 2. As we have seen in the code of
the function sp_node, the paths on all outgoing edges of a node must be merged.
Asking for the shortest path at a node therefore causes only the shortest paths on
all its outgoing edges to be computed. The demand propagation can be thought of
as propagating along the edges of the graph of Figure 2. Because of the dynamic
programming implementation, the shortest path on all nodes, and in particular on
nodes 3 and 5 will only be computed once.

When the demand arrives at the final node, results will begin to be generated
and propagated backwards towards the initial node. The precise set of evaluated
paths is shown in the top half of Table 2. (The bottom half of the table will be
discussed in the next section.) Also shown in the top half are the paths that are
not evaluated, when only the first shortest path is demanded at the initial node.
Consider as an example what happens at node 3. Here we find that path [3,5] has
cost 5, which is less than the cost 10 of path [3,4,5]. Thus, to form the shortest path
at node 1, path [3,5] is extended to path [1,3,5] and similarly at node 2 path [3,5]
is extended to path [2,3,5]. No work is done to extend path [3,4,5] at either node 1
or node 2, which explains the presence of paths [1,3,4,5] and [2,3,4,5] in the column
marked unevaluated paths. Lazy evaluation is the cause of this economic pattern of
evaluation.

Should it be necessary to evaluate the second shortest path as well, then in
principle the game starts all over again. However, only some new paths have to be
generated, because the previously evaluated shortest paths are all still available. In
particular, asking for second shortest path on node 1 will only ask for the second
shortest path on node 3, because the shortest path on node 2 is still available.

To investigate the worst and the best case complexity of initial node RCSP more
formally consider a fully connected network (acyclic). A fully connected network with
n + 1 nodes is constructed from a fully connected network with n nodes by adding
a new initial node as follows:

• Give all nodes labelled 1... n a new label 2... n + 1.
• Add a new node with label 1.
• Connect the new node to all other nodes using new edges (l,2)...(l,n).

The construction ensures that each node is connected by a single edge to all other
nodes. There is precisely one fully connected network Gn for each value of n. This

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

38 P. H. Hartel and H. Glaser

Table 1. All paths with associated resource consumption and cost on all nodes of the
example network for two implementations of RCSP. All paths are placed in three

categories under the assumption that only the first shortest path at node 1 (i.e.
[1,3,5]) is requested. The first category gives the shortest path. The second category

gives all paths that had to be evaluated to calculate the shortest path. The third
category gives all the remaining, as yet unevaluated paths.

Node

5
4
3
2
1

5
4
3
2

1

Shortest path
Path

[5]
[4,5]
[3,5]
[2,3,5]
[1,3,5]

[5]
[4,5]
[3,5]

[1,3,5]

Res. Cost
Also

Path
evaluated

Res.

Discard infeasible paths at the initia,

(0,0)
(1,1)
(0,l>
<1.6>
(0,5)

0
6
5
8
7

[3,4,5]

[1,2,3,5]

(2,1)

(5,6)

Discard infeasible paths at all l

(0,0)
(1,1)
(0,1)

(0,5)

0
6
5

7

[3,4,5]
[2,3,5]
[2,3,4,5]
[1,2,3,5]

(2,1)
(1,6)
(3,6)
(5,6)

Cost

node

10

9

lodes,

10
8
13
9

Unevaluated i
Path

only, u = (2 , 5)

[2,3,4,5]
[1,3,4,5]
[1,2,3,4,5]

6 = (2,5)

[1,3,4,5]
[1,2,3,4,5]

Res.

(3,6
(2,5
(7,6

(2,5
(7,6

saths
Cost

13
12
14

12
14

can be formalised as follows:

Gn={Vn,En)
Vn={i j 1 < i < n}
En={(i, ;)|1 < i < n A i < j < n}.

Figure 3 shows the fully connected networks G2..G5. The edges in the top half of
the diagram are the new edges connecting the new node 1 to the remaining nodes.
It is not difficult to show that:

\Vn\=n

The number of edges | En | is thus quadratic in n and the number of paths | Pn | is
exponential in n.

In the best case only the first path at node 1 needs to be generated. This causes
only the first path on all other nodes to be generated. Here the laziness ensures that
merging a number of sorted lists so that the head of the result becomes evaluated
causes only the head of the mergeands to be evaluated. To evaluate the shortest
path at any node requires a number of elementary steps to be carried out that is

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

The resource constrained shortest path problem 39

G2 G3 G4 G$

Fig. 3. The first four fully connected networks. A network with n + 1 nodes is constructed
from a network with n nodes by adding a new node and connecting this node to all other

nodes. The new edges of each configuration are shown in the top half of the diagram.

proportional to the number of incoming edges. Therefore in the best case, initial
node RCSP is quadratic in n.

In the worst case all paths need to be generated, so initial node RCSP is at worst
exponential in n.

4 All node RCSP: discard infeasible paths at all nodes

The initial node RCSP program does not always have a satisfactory performance,
because too many paths have to be discarded before a feasible solution appears at
the initial node. The performance might be improved by discarding infeasible paths
at an earlier stage - that is, at all nodes of the graph - rather than at the initial
node only. This new version of the program is called the all node RCSP program.

Lest the reader become too exited about this improved solution, remember that
the evaluation of lazy functional programs is not as intuitive as it might seem.
Consider the paths generated for our example shown in the bottom half of Table 2.
This shows that given an upperbound of u = (2,5), discarding infeasible paths at
node 2 causes path [2,3,4,5] to be evaluated, whereas initial node RCSP was able
to avoid this. Since none of the paths at node 2 are feasible, the effort involved
in generating and discarding path [2,3,4,5] is wasted. Depending on the particular
graph and the precise value of the upperbound on the resource consumption, it
may or may not be sensible to discard paths at all nodes. To investigate this, let us
consider how to implement the discarding at each node.

The logical place to insert a filter to discard infeasible paths is in the list com-
prehension of the function sp_edge, because it is there where new paths are being
built out of existing paths. If it is known that the new path could not possibly turn
into a feasible solution, the new path is not generated at all. This does not affect the
worst case complexity of the solution, as there may not be any path at all that can
be discarded in this way. However, for some networks filtering at each node may be
beneficial.

Inserting a suitable filter in sp_edge requires considerable rewriting, as the filter
will need to have some information on which to base its decisions. As the decision
process is associated with a particular edge, from node n, to node ny say, and a list
of paths that pass along that edge, there are four pieces of important information:

upbounds The upperbound on the resource that any path may consume.
This information is global.

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

40 P. H. Hartel and H. Glaser

left-resources The minimum amount of resource that has to be available to be
able to travel from the initial node to node n,. This information
is associated with a node,

resourcesl The amount of resource needed to traverse the current edge,
which connects node n, to node n;. This information is associated
with an edge.

resources2 The amount of resource consumed along each path from the node
rij to the final node of the network. This information is associated
with a path.

From a software engineering point of view, one of the least pleasant features of
purely functional programming is that information must be brought explicitly from
where it is generated to where it is needed. Monads (Wadler, 1990) can be used to
hide the exact details of the information flow. However switching over to a monadic
programming style would alter the programs in an even more significant way than
just adding the extra parameters.

As discarding infeasible paths requires information originating from four different
sources, a new set of functions has to be written in order to propagate information.
The new set of functions r c sp_ . . . are similar in structure to the set of functions
s p _ . . . :

> rcsp_graph :: graph->array [resource]->array [path]->array [path]
> rcsp.graph (Graph lo hi upbounds nodes) left_ar default
> = paths.ar
> where
> paths_ar = accum (\x y.y) default
> [rcsp_node upbounds left_ar paths_ar n I n <- nodes]

> rcsp_node :: [resource]->array [resource]->array [path]->node->assoc [path]
> rcsp_node upbounds left_ar paths_ar (Node from edges)
> = assoc from (foldrl merge_path_cost incoming_paths)
> where
> incoming.paths = rcsp_edge_list upbounds left.resources paths.ar edges

left_resources = left_ar ! from

> rcsp_edge_list :: [resource]->[resource] ->array [path]->[edge]->[[path]]

> rcsp_edge_list upbounds left.resources paths_ar edges

> = [rcsp_edge upbounds left.resources paths_ar e I e <- edges]

> rcsp.edge :: [resource]->[resource]->array [path]->edge->[path]

> rcsp.edge upbounds left.resources paths.ar (Edge to costl resourcesl)

> = [Path (to:edges) (costl+cost2) (zip2with (+) resourcesl resources2)

> I Path edges cost2 resources2 <- paths.ar ! to

> ; and (zip4with (\u x y z . u >= x+y+z)

> upbounds left.resources resourcesl resources2)]

The resources on the edge and the path (resourcesl and resources2) are al-
ready present in the list comprehension of sp_edge. The upper bound upbounds is
available to rcsp.graph as a component of the Graph data constructor. Start-
ing at rcsp_graph, the upper bound must be passed on to rcsp_node and
rcsp_edge_list until the upper bound arrives at rcsp_edge. The final piece of

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

The resource constrained shortest path problem 41

information, the array left .resources has to follow the same route as the upper
bound, thus adding one more parameter to (most of) the functions.

This leaves open the question of generating left.resources, the array that
contains the minimum amount of resource necessary to travel from a particular
node to the initial node. This information can be computed by the unconstrained
shortest path algorithm, but in the opposite direction (Aneja et al., 1983). The most
effective way to do that is by generating a new graph from the old graph, with all the
edges reversed. Using a reversed graph as well as the original graph is necessary to
be able efficiently to trace the nodes to which all the edges connect. In the programs
that we use, both the normal and the reversed graph are built up while the data are
being read from a file.

The reversed graph can now be used to compute a shortest path based on a
minimum amount of resource consumption rather than on cost as before. The
structure of the shortest path functions on resource (resource_sp_. . .) is similar
to the structure of the shortest path functions on cost (sp_...). The differences are
in the type of the arguments and function results, in the way information arriving
over different edges towards a node is combined (. . . _node), and in the way the
information is generated (. . . _edge). It should be noted that the function used to
combine paths (zip2with min2) takes the point wise minimum of two resource
vectors.

> resource_sp_default :: graph->array [resource]

> resource_sp_default (Graph lo hi upbounds nodes)

> = listarray (descr lo hi) (repeat [0 1 i <- upbounds])

> resource_sp_graph :: graph->array [resource]->array [resource]

> resource_sp_graph (Graph lo hi upbounds nodes) default

> = rs_ar

> where

> rs_ar = accum (\x y.y) default [resource_sp_node rs_ar n I n <- nodes]

> resource_sp_node :: array [resource]->node->assoc [resource]

> resource.sp.node rs.ar (Node from edges)

> = assoc from (foldrl (zip2with min2) (resource.sp.edge.list rs_ar edges))

> resource_sp_edge_list :: array [resource]->[edge]->[[resource]]

> resource_sp_edge_list rs_ar edges

> = [resource_sp_edge rs_ar e I e <- edges]

> resource_sp_edge :: array [resource]->edge->[resource]

> resource.sp.edge rs.ar (Edge to cost resourcesl)

> = zip2with (+) resourcesl (rs_ar ! to)

From a software engineering point of view, we should have written one set of
polymorphic, higher order functions, capable of all three modes of information
propagation over a graph. We have chosen not to do so because such a heavily
parameterised set of functions would be harder to understand. Depending on the
optimising capabilities of the compiler, there may also be a performance penalty
associated with such a higher order approach.

To complete all node RCSP a main program must be provided. The function
rcsp_main follows the model of sp_main, but differs firstly because there is no longer

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

42 P. H. Hartel and H. Glaser

Table 3. Execution times in seconds of four implementations of RCSP with 12 data
sets. The experiments marked with '-m-' ran out of memory; those marked with '-t-'

used more than 1000 seconds execution time.

No.

3
4
7
8

11
12
15
16

19
20
23
24

Nodes

100
100
100
100

200
200
200
200

500
500
500
500

Data set
Edges

959
959
999
999

1971
1971
1960
1960

4978
4978
4868
4868

Resources

1
1

10
10

1
1

10
10

1
1

10
10

SUN 4/690
Initial

1
1
1

•

1
1
3

- t -

3
3
6
6

All

2
11
28

9

2
2

26
11

13
- m -
-m-
- m -

Both

1
1
1

10

1
1
2

11

3
3
7
6

CDC 7600
Fortran

1.9
1.0
4.4
6.3

4.0
3.9
9.2

12.1

11.1
6.4

26.3
26.3

the need to discard paths separately at the initial node, and secondly because the
new function needs to prepare some more information in advance. The parameters
g and rev_g represent the same graph, but in a different orientation, as discussed
earlier:

> rcsp_main :: graph->graph->path
> rcsp_main g rev_g
> = hd (paths_ar ! lo)
> where
> (Graph lo hi upbounds nodes) = g
> paths_ar = rcsp.graph g left_ar (sp_default g)
> left_ar = resource_sp_graph rev_g (resource_sp_default rev_g)

This concludes the presentation of all node RCSP, which differs in essence from
initial node RCSP only in the moment at which infeasible paths are discarded.

5 Experiments

Table 3 shows the experimental results that have been obtained by measuring the
execution time for RCSP programs applied to 12 data sets from the Operational
Research Library. The table shows the number of the data set, the number of nodes,
the number of edges, the number of elements in the resource vectors, followed by
a row of four execution times (in seconds). Some experiments ran out of memory,
because a large number of paths were generated. The entries in the table show
no execution time if this happened. The last column marked Fortran shows the
measurements reported by Beasley and Christofides (1989).

Our measurements were carried out on a SUN SPARC 4/690, running SunOS 4.1.2.
Each program has 8 Mbytes of heap space available. Beasley and Christofides used a

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

The resource constrained shortest path problem 43

Control Data CDC 7600. Unfortunately, we have not been able to obtain a copy of
the Fortran program, so we could not measure its performance on our SUN SPARC
system. However, according to a benchmark comparison by Dongarra (1994) these
systems are roughly similar in (floating point) performance: the CDC 7600 has
performance of 3.3 Mflop/s and the SUN 4/600 has a performance of 4.3 Mflop/s.

The numbers reported for the SUN system in Table 3 have to be interpreted with
care, because the margin of error is perhaps as large as 50%. As other researchers
in the field (Hammond et al., 1993), we have observed on various occasions that an
insignificant change to a program, such as the removal of the source of an unused
function, caused a significant change in performance. However, the numbers do
show a trend in that our best performance figures are similar to those found for
Fortran.

The column marked initial uses the initial node RCSP program, which discards
infeasible paths at the initial node only. This implementation fails to deliver only on
two data sets (8 and 16). Comparing the remaining entries with those in the Fortran
column shows, that the performance of initial node RCSP is good. The reason is
that in all cases except for data sets 8 and 16, a feasible path appears amongst the
first few hundred shortest paths generated.

The column marked all applies to the all node RCSP, which generally does more
work than initial node RCSP. The execution times are therefore higher.

Two observations should be made regarding the all node RCSP. Firstly, as
expected, the number of paths generated and discarded is not so large as with the
initial node RCSP. For data sets 8 and 16 execution completes without exceeding
the available memory capacity.

The second observation is that for the large graphs (data sets 20-24), all node
RCSP starts to run out of memory whereas initial node RCSP does not. This
confirms the theory that discarding infeasible paths is sometimes wasted effort.

The column marked both shows the result of a combination of the previous two
columns. Here a new main program is used, which first uses sp_graph to generate
at most 10 x n paths at the initial node, checking each path for feasibility. If this
fails, the function rcsp_graph is called to solve RCSP. This heuristic works well for
the data sets in the Operational Research Library. It is easy to adapt to other data
sets through some experimentation.

The final column marked Fortran reports the timings as measured by Beasley
and Christofides (1989). This code used sophisticated network reduction techniques
based both on the original problem and the Lagrangean relaxation (Reeves, 1993).
As reported above we have had difficulty in making exact comparisons between
our timings and those of Beasley and Christofides, particularly for the integer
performance of the two machines involved. The evidence available to us suggests
however, that it is reasonable to make a direct comparison.

6 Conclusions

We have developed three variants of a program which solves the Resource Con-
strained Shortest path Problem (RCSP).

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

44 P. H. Hartel and H. Glaser

Laziness helps to build compact and modular implementations of RCSP in three
ways: firstly the technique of separately generating solutions and pruning unwanted
solutions has been found useful on a number of occasions. Secondly, the knot tying
technique allows one to postulate a solution. When this solution is elaborated, it can
be used immediately. This constitutes an efficient implementation of the dynamic
programming technique in a lazy functional language. Thirdly, lazy evaluation avoids
the computation of unused results in a natural way.

There are also disadvantages to purely functional programming. The first is the
fact that information must be threaded explicitly from its source to its destination.
Secondly, it is necessary to be careful with polymorphic, higher order functions, as
there is a cost in both understandability and performance.

Arrays are necessary to build efficient algorithms for RCSP but destructive arrays,
or monad based state transformers are not necessary for this problem. Purely
functional, monolithic arrays with 0(1) access are sufficient.

Lazy functional programs can be as efficient as Fortran programs when solving
RCSP. We found it essential to develop the implementations of RCSP starting from
first principles, rather than from an imperative implementation. In the development
we have used the optimisation techniques from the literature, but not without
questioning their appropriateness to the functional programming solution.

Following this we are now investigating the applicability of more advanced
heuristic techniques, including the pruning of nodes and edges and the use of
Lagrangean relaxation.

Acknowledgements

We thank Marcel Beemster, Andy Gravell, Hugh McEvoy, Jon Mountjoy and the
two referees for their comments on draft versions of the paper.

This work was supported in part by the Netherlands Organization for Scientific
Research (NWO) and the British Council under grant No. BR 62-416.

References

Aneja, Y. P., Aggarwal, V. and Nair, L. P. K. (1983) Shortest chain subject to side constraints.
Networks, 13(2): 295-302.

Beasley, J. E. and Christofides, N. (1989) An algorithm for the resource constrained shortest
path problem. Networks, 19(4): 379-394.

Bird, R. S. (1984) Using circular programs to eliminate multiple traversals of data. Acta
informatica, 21(3): 239-250.

Christofides, N. (1975) Graph Theory: An algorithmic approach. Academic Press.
Dongarra, J. J. (1994) Performance of various computers using standard linear equations soft-

ware. Technical report CS-89-85, Computer Science Department, University of Tennessee,
February.

Reeves, C. R. (ed.) (1993) Modern Heuristic Techniques for Combinatorial Problems. Blackwell
Scientific.

Hammond, K., Burn, G. L. and Howe, D. B. (1993) Spiking your caches. In: K. Hammond
and J. T. O'Donnell, editors, Functional Programming, pp. 58-68. Springer-Verlag.

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

The resource constrained shortest path problem 45

Handler, G. Y. and Zang, I. (1980) A dual algorithm for the constrained shortest path
problem. Networks, 10(4): 293-310.

Harrison, R. (1993) Abstract Data Types in Standard ML. Wiley.
Harrison, R. and Glass, C. A. (1992) Dynamic programming in a pure functional language.

Technical report CSTR 92-02, Department of Electrical and Computer Science, University
of Southampton.

Hartel, P. H., Glaser, H. W. and Wild, J. M. (1994) Compilation of functional languages using
flow graph analysis. Software—Practice and Experience, 24(2): 127-173, February.

Hudak, P., Peyton Jones, S. L. and Wadler, P. L. (eds.) (1992) Report on the programming
language Haskell - a non-strict purely functional language, version 1.2. ACM SIGPLAN
Notices, 27(5): R1-R162, May.

Hughes, R. J. M. (1985) Lazy memo-functions. In: J.-P. Jouannaud, editor, 2nd Functional
Programming Languages and Computer Architecture: Lecture Notes in Computer Science
201, pp. 129-146, Nancy, France, September. Springer-Verlag.

Kashiwagi, Y. and Wise, D. S. (1991) Graph algorithms in a lazy functional program-
ming language. Technical report 330, Computer Science Department, Indiana University,
Bloomington, Indiana, April.

King, D. J. and Launchbury, J. (1993) Functional graph algorithms with depth first search
(preliminary summary). In: K. Hammond and J. T. O'Donnell, editors, Functional Pro-
gramming, pp. 145-155. Springer-Verlag.

Turner, D. A. (1985) Miranda: A non-strict functional language with polymorphic types. In:
J.-P. Jouannaud, editor, 2nd Functional Programming Languages and Computer Architecture:
Lecture Notes in Computer Science 201, pp. 1-16, Nancy, France, September. Springer-
Verlag.

Wadler, P. L. (1990) Comprehending monads. In: Lisp and Functional Programming, pp.
61-78, Nice, France, July. ACM.

https://doi.org/10.1017/S0956796800001568 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001568

