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Abstract

Let D be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space
X and let 6: Alg D — Alg D be a linear mapping. We show that ¢ is Jordan derivable at zero, that
is, 0(AB + BA) = 6(A)B + AS(B) + 6(B)A + B6(A) whenever AB + BA =0 if and only if ¢ has the form
0(A) = 1(A) + AA for some derivation 7 and some scalar .. We also show that if the dimension of X
is greater than 2, then ¢ satisfies 6(AB + BA) = 5(A)B + AS(B) + 6(B)A + BS(A) whenever AB = 0 if and
only if ¢ is a derivation.
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1. Introduction

Throughout this paper, X will denote a nonzero complex reflexive Banach space with
topological dual X*. The terms operator and subspace will mean ‘bounded linear
mapping’ and ‘norm closed linear manifold’, respectively. As usual, the set of all
bounded linear operators on X is denoted by B(X). If ¢* € X* and f € X, then ¢* ® f
denotes the operator (¢* ® f)x =e*(x)f for every x € X. For any nonempty subset
Y C X, Y* denotes its annihilator, that is, Y+ ={f* € X*: f*(y) =0 for every y € Y}.
For any nonempty subset Z C X*, ~Z denotes its pre-annihilator, that is, *Z ={xe€ X :
f*(x) =0 for every f* € Z}.

By a subspace lattice on X we mean a family £ of subspaces of X with (0) and X
in £ such that for every family {L,},cr of elements of £, both (", L, and /e Ly
belong to £, where \/ denotes ‘closed linear span’. For any subspace lattice £ on X,
we define Alg £ by

Alg L={T € B(X): TLC L,forevery L€ L}

and L ={L*:Le L}
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A double triangle subspace lattice on X is a set D={(0), K, L, M, X} of
subspaces of X satisfying KNL=LNM=MNK=0)and KVNVL=LVM=MV
K =X (see [2, 6, 8]). If one of the three sums K + L, L+ M and M + K is closed,
we say that D is a strongly double triangle subspace lattice. It is known from [7,
Proposition 3.1] that Alg O contains no rank-one operators. Observe that D+ =
{(0), K+, L+, M+, X*} is a double triangle subspace lattice on the reflexive Banach
space X*. We follow the notation used in [6, Definition 2.1] and put Ko = K N (L + M),
Lyi=LN(M+K), M\y=MN(K+L) and K, =K-Nn(L* + M"), L,=L"n(M*+ +
K*), M, =M* n(K*++L*). Note that K,,, L, and M, play the same role for D*
as Ky, Ly and M, do for D. By [6, Lemma 2.2], the dimensions of the linear manifolds
Ky, Ly and M), are the same and the common dimension is denoted by m. Similarly,
the dimensions of the linear manifolds K, L, and M), are the same and the common
dimension is denoted by n.

Let A be a unital algebra. Recall that a linear mapping ¢ from A into itself
is a derivation (respectively, a generalized derivation) if 6(AB) =6(A)B + Ad(B)
(respectively, 6(AB) = 6(A)B + A6(B) — A6(I)B) for any A, B€ A. Recall that ¢ is
derivable at Z € A if 6(AB) = 6(A)B + AS(B) for any A, Be A with AB=Z, and ¢
is Jordan derivable at Z € A if 6(AB + BA) = 6(A)B + Ad(B) + 6(B)A + BS(A) for any
A, Be AwithAB+ BA=Z.

In recent years, there have been a number of papers on the study of conditions
under which derivations and Jordan derivations of operator algebras can be completely
determined by the action on some sets of operators (for example, see [1, 3, 4, 9, 10]).
In [9], Pang and Yang showed that every linear mapping 6 which is derivable at zero on
a strongly double triangle subspace lattice algebra has the form 6(A) = 7(A) + 1A for
some derivation 7 and some scalar . Motivated by this, we study the local action
of Jordan derivations on Alg D for a strongly double triangle subspace lattice D.
Our main results are Theorems 2.1 and 2.5. It is shown that every linear mapping 6
which is Jordan derivable at zero from Alg D into itself has the form §(A4) = 7(A) + 1A
for some derivation 7 and some scalar .. We also show that if the dimension of X
is greater than two, then every linear mapping ¢ from Alg D into itself satisfying
0(AB + BA) = 6(A)B + A6(B) + 6(B)A + B5(A) whenever AB =0 is a derivation. We
first recall some results which we require in Section 2.

Lemma 1.1 [6, Lemma 2.1]. Let D be a double triangle subspace lattice on X. Then
the following statements hold:

(i) KoCSKC K, LyCLCL,and MyCM - M,

(i) KonNLy=LynNnMy=Myn Ky =(0),

(i) K,NL,=L,NnM,=M,NK,=(0),

(iV) Ko+ Ly=Lyo+ My=My+ Kyg=Koy+ Ly + My,

v) K,+L,=L,+M,=M,+K,=K,+L,+ M,

TueorEM 1.2 [6, Theorem 2.1]. Let D be a double triangle subspace lattice on X.
(1)  Every finite-rank operator of Alg D has even rank (possibly zero).
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(1) Ife, feX ande*, f* € X* are nonzero vectors satisfying e € Ky, f € Ly, e + f €
My and e* €K, f* €Ly, e+ f*eM,, then R=¢"® f — f*®e is a rank-two
operator of Alg D. Moreover, every rank-two operator of Alg D has this form
for some such vectors e, f, e*, f*.

(iii) Every nonzero finite-rank operator of Alg D (if there are any) is a finite sum of
rank-two operators of Alg D.

(iv) Alg D contains a nonzero finite-rank operator if and only if m # 0 and n # 0.

Lemma 1.3 [6, Lemma 3.2]. Let D be a double triangle subspace lattice on X. Let
e, f, € and f* be nonzero vectors satisfying e € Ko, f €Ly, e+ f €My, e €K,
ff€L, and e+ f*€M, and put R=e"Q® f — f*®e. Then e*(f)=-f"(e) and
R?> =¢*(f)R.

TueEOREM 1.4 [6, Theorem 2.3]. Let D be a double triangle subspace lattice on X. If
the vector sum K + L is closed, then:

(i) Kyisdensein K, Ly is dense in L and My = M;

(i1) Ko+ Ly + My is dense in X;

(iii) K, + L, + M, is dense in X*.

The following lemma is essentially included in the proof of [9, Theorem 2.3].

Lemma 1.5. Let D be a strongly double triangle subspace lattice on X. Then every
rank-two operator is a linear combination of at most two rank-two idempotents in
Alg D.

2. Main results

Our first result is Theorem 2.1 which says that every linear mapping Jordan
derivable at zero on a strongly double triangle subspace lattice algebra is a special
kind of generalized derivation.

TueoreM 2.1. Let D be a strongly double triangle subspace lattice on X and let
0 : Alg D — Alg D be a linear mapping. If § is Jordan derivable at zero, then 6(1) = Al
for some scalar A € C, and there is a derivation T such that 5(A) = T(A) + AA for every
A € Alg D. In particular, if 5(I) = 0, then ¢ is a derivation.

To prove Theorem 2.1, we need some lemmas. The first of the following lemmas is
included in the proof of [3, Theorem 3.1]. We leave the proof to the reader.

Lemma 2.2. If 6 is Jordan derivable at zero from a unital algebra A into itself and
o(I) = 0, then for any idempotents P and Q in A, the following statements hold:

(i) 6(P)=06(P)P + P5(P);

(i) S6(PQ + QP)=6(P)Q + P5(Q) + 6(Q)P + Qb(P).

For every A € Alg D and every rank-two operator R € Alg D, the operator AR
(respectively, RA) has rank at most two, so since Alg O contains no rank-one operators,
it is zero or has rank two.
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Lemma 2.3. Let D be a strongly double triangle subspace lattice on X. If 6 is Jordan
derivable at zero from Alg D into itself and 6(I) = O, then for every A € Alg D and
every rank-two operator R € Alg D, we have 6(AR + RA) = 6(A)R + AS6(R) + 6(R)A +
RO(A).

Proor. Combining Lemmas 1.5 and 2.2, for any rank-two operators Ry, R, € Alg D,
we have 6(R1R2 + R2R1) = 6(R1)R2 + R15(R2) + 6(R2)R1 + Rzé(Rl). For every Ae
Alg D and every rank-two idempotent R € Alg D, since R*AR*R + RR*AR* = 0, by
assumption we have

S(R*AR*R + RR*ARY)
= S(RARR + REARS(R) + S(R)R*AR* + RS(R-AR™Y). @D
Since RA is zero or a rank-two operator in Alg D, it follows that
S(RAR + RRA) = §(RA)R + RAS(R) + S(R)RA + RS(RA). (2.2)

Similarly, we have
S(R*ARR + RR*AR) = 5(R*AR)R + R*ARS(R) + 6(R)R*AR + RS(R*AR). (2.3)

Since A = R*AR* + RA + R*AR, it follows from (2.1)—=(2.3) that 6(AR + RA) =
S(A)R + AS(R) + 6(R)A + R5(A). Hence by Lemma 1.5, for every rank-two operator
R € Alg D, we have 5(AR + RA) = 5(A)R + AS(R) + 6(R)A + RS(A). O

For a double triangle subspace lattice, each x in K can be expressed uniquely in the
form x; + x,, where x; € Ly and x, € M. Similarly, each f* in K, can be expressed
uniquely in the form f" + /7, where f|" € L, and f € M,,.

Lemwma 2.4. Suppose that D is a strongly double triangle subspace lattice on X with
K+L=X. Let ®:KyXK,— AlgD be a bilinear mapping. If O(x, f*)(ker(f*) N
ker(f})) C span{x, x1}, for every x = x1 + x» € Ko and every f* = f; + f; € K,, where
x1 € Ly, x2 € Mo, f € L, and f5 € M), then there exist linear mappings S : Ly — Lo,
T:Ko— Ko, V:K,— X" and W : K,, » X* such that

O, = @S+ f{Tx+Vf @x+Wf ®x,
Jor every x = x1 + x2 € Ko and every f* = f" + f; € K),.

Proor. For any nonzero vectors x€ Ky and f*e€K,, since ®(x, f*)(ker(f*) N
ker(f])) C span{x, x1}, there exist linear functionals V, and W, on ker(f*)N
ker(f;") such that for every z € ker(f™) N ker(f}),

O(x, 2= Vi (x + Wy p-(2)x1.

Since K + L is closed and K N L =(0), we have V, ;- and W, s are continuous by
[5, Corollary 1.8.8].

Let wy- be in Ly such that f*(ws) =1 and y; be in Ky such that f(ys)=1.
Then X = Cwy @ Cyp & (ker(f*) Nker(f})). Let Vi y and W, be continuous
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extensions of Vs and W,y to X. Then Vx, o= \7,(, rlwp) f* = \7,(, r(yp)fy and
Wy g = Wy p(wp) f* = Wy p-(yp) f7 are also continuous extensions of V. - and W, s-
and vanish at span{w -, ys-}. We use V, s~ and W, s+ to denote such extensions.

Now define linear mappings Sy« : Lo — Lo by Sp-y1 = ®(y, fwyp- and Ty : Ko —
Ko by Ty = ®(y, f*)yys-, for every y = y; + y» € Ko, where y; € Ly and y, € My. Then
for A, u € C and every z € ker(f*) N ker(f}"),

O(x, f*)(/la)f* +uyp +2) = ASpx1 + uTpx + Ve p(D)x + Wy 4 (2)x1
= ffAwp +pyp + 2)Spx1 + fi(Awp + pyp +2)Tpx
+ Vx,f* (/lwf* T Uy + z)x + Wx,f* (/la)f* + uyp + z)xl.
Hence
O, )= @Spx1+ f{®Tpx+V,p ®x+ W,y ®xy, (2.4)
for every x € Ky and every f~ € K,,.

We claim that V, ;- and W, depend only on f*. To see this, fix a nonzero
functional f* = f" + f; € K,, where f{ €L, and f; € M,. Let x=x; + x; and y=
y1 + y» be nonzero vectors in Ky, where xi,y; € Ly and xp,y, € My. Then x +y=
()Cl +y1) + (X2 +y2), where x +ye Ky, x; + Y1 € Ly and X2+ Y2 € M.

Suppose that x and y are linearly independent. Since Ky N Ly =Ly N My=MyN
Ky = (0), we have that x; and y; are linearly independent and x, and y, are linearly
independent. Then for every z € ker(f*) Nker(f}), by (2.4),

Ox +y, [N wp +yp +2)
= Sp (01 + 91) + T (0 3) + Viy - @ + ) + Wiy - ()1 +31)

and
O(x +y, [N wp +yp +2)

= O(x, ) wp +yp +2) + OO, [N wp + ¥y +72)
= Sf*xl + Tf*x + Vx,f*(z)x + Wx,f*(Z))q + Sf*yl + Tf*y + Vy,f*(z)y + Wy,f*(z)yl.

Comparing the above equations,
(Vx+y,f* (Z) - Vx,f* (Z))X + (Vx+y,f* (Z) - Vy,f* (Z))y
= (Wx,f* (Z) - Wx+y,f* (Z))xl + (Wy,f* (Z) - Wx+y,f* (Z))yl €KoNLy= (O)

Hence Vx+y,f* = Vx,f* = Vy,f* and Wx+y,f* = Wx,f* = Wy,f*.
Suppose that x and y are linearly dependent. Let y = kx. Then y; = kx; and y, = kx,.
By (2.4),

D@y, H=f"® Spe(kx1) + fl* QT (kx)+ Vyp @y + W, p« ® (kxy)
and
D@y, [)=kD(x, [)=kf @Spx1 +kff @Tpx+kV,p ® x + kW, s ® X1,

which yields (Vy p = Vi p) @ y = (Wy g — Wy, 1) ® x1. It follows from Ky N Ly = (0)
that V, g~ =V, p- and W, p- = W, ;. We establish the claim.

https://doi.org/10.1017/5S0004972711002449 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711002449

[6] Jordan derivations on Alg D 305

Therefore, for every f* € K),, there exist unique functionals V¢ and Wy in X* which
vanish at span{w-, y,-} such that

O, )= @Spxi + f{®Tpx+ Ve @x+ Wp ®x1, (2.5)

for every x € Kj.

Let f* = f; + f; and g* = g] + g5 be nonzero vectors in K,, where f', g} € L, and
f5»8 € Mp. We claim that if f* and g are linearly independent, then Sg. — Sy
is a scalar multiple of the identity I7, on Ly and Ty — Ty~ is a scalar multiple of
the identity Ik, on K,. The independence of f* and g* gives ker(f™) ¢ ker(g*) and
ker(g*) € ker(g*), so there exist two vectors u € ker(f*) and v € ker(g*) such that
g'(w)=1 and f*(v)=1. For every x| € Ly, there exist unique vectors x € K, and
Xy € My such that x; = x — x,. By (2.5),

O, fT+8)=(f"+8)®Spueg X1 + (ff +8) ®Tfrsgx+ Viig @x+ Wpepoe ® X3
and
O(x, [ +8) = Ox, f7) + O(x, &)
=" RSpxi+fi®Trpx+ Ve @x+ Wp ®x
+8 ®Spx1 +81®Tpx+ Ve @x+ Wy ® xp.
Comparing the above equations and applying them to u — v,
Sex1 = Spx1 + Wee(u = v)xy + Wee(u —v)x1 — Wpeyoe(u — v)x1 € Lo N Ko = (0).

Hence for every xi € Ly, Sgx1 — Spx1 = Ag- o-x1 for some scalar Ay € C. The
independence of f* and g* implies that f;" and g} are independent. Similarly, we have
that for every x € Ko, Tg-x — Ty X = i - o« x for some scalar py- - € C. We establish the
claim.

Now fix a nonzero functional f; = f;, + f, € K, where f;, € L, and fj, € M).
Set § =Sy and T =Ty Let f*= f"+ f; € K), where f{ €L, and f; e M,. If f*
and f; are linearly independent, then there exist scalars Ay and uy- in C such that
Spexy —Sx; = Ap-x; for every x; € Ly and Tp-x — Tx = up-x for every x € Ky. Then
by (2.5),

O, )= @ x1 +Apx) + [y @(Tx+ppx)+ Ve @x+ Wp @ x4
= f* ®Sx; + fl* QTx+ (ﬂfxf* + Wf*) ® X + (luf*fl* + Vf*) R X,

for every x € Ko. If f* and f; are linearly dependent, we may assume that f* =5z f;
for some scalar 7+ € C. Then f}" =y fi, and f; = ny fo,. By (2.5),

(2.6)

O(x, f*) = nf*(D(x, f(;‘) = qf*(f(;F ®Sf5x1 +f(;k] ® ngx + Vfa Rx + ng ® x1) 27
=feSx+ffeTx+npVie@x+n,Wp®x, '

for every x € K. It follows from (2.6) and (2.7) that there exist unique functionals
Vf*and Wf* in X" such that ®(x, f*) = f*®Sx1 + f{ @ Tx+ Vf* ®@x+ Wf @ x1. It
is easy to see that the mappings V, W : K, — X" are well defined and linear. The proof
is complete. O
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Proor or THeorEM 2.1. Assume that the vector sum K + L is closed. We divide the
proof into several claims.

Claim 1. 6(I) = Al for some scalar A € C.

For any idempotent Pe AlgPD, since P(I-P)+(I—-P)P=0, we have
6(P)(I - P)+ P6(I — P)+ 6 — P)P + (I — P)6(P) =0, which implies that 6(/)P =
Pé(I). By the proof of [9, Theorem 2.3], we have 6(I) = Al for some scalar A € C.

Now define 7(A) = 6(A) — 1A for every A € AlgD. 1t is easy to see that 7 is
Jordan derivable at zero and 7(I) =0. For every x € Ky and every f* € K,, there
exist unique vectors x| € Lo, x, € My, f € L, and f; € M, such that x = x; + x, and
ff=f+/f. Then f*®x - ff ® xe Alg D by Theorem 1.2. Define a mapping
D: Ko XK, = Alg D by O(x, f*)=7(f*®x; — f ®x). It is easy to see that © is
bilinear.

Claim 2. By the above notation, ®(x, f*)(ker(f*) Nker(f]")) C span{x, x;}, for every
x € Ko and every f* € K.

If one of x and f™ is 0, then ®(x, f*) = 0. We now assume that x # 0 and f* # 0.
Case 1. Suppose that f*(x;) =m # 0. Then (1/m)(f* ® x; — f; ® x) is an idempotent
in Alg D. By Lemma 2.2,

1 1
ET(f*‘g’xl -fi®x)= ﬁ‘r(f* x1 = fiR0)(f ®x —ff ®x)
1 * % *
+ ﬁ(f*ébx] -fi®0T(f ®x — f; ®x).

Applying the above equation to z in ker(f*) Nker(f;), we obtain ®(x, f*)z €
span{x, x1}.

Case 2. Suppose that f*(x;) = 0. Then there exists a vector y; € Ly such that f*(y;) #
0. Hence there exist unique vectors y € Ky and y; € My such that y; =y —y,. By
Case 1, for every z € ker(f*) Nker(f}),

Q@ +x, fHz=ki(y+x)+ L+ x1),
Oy = x, [Hz=k(y = x) + Ly — x1),
and
Oy, [*)z = kay + Ly,
for some scalars k;, [; (i = 1,2, 3) in C. Comparing the above equations gives
ki(y+x) + Ly + x1) + ko(y — ) + b(y1 — x1) = 2kzy + 213y1,
which yields
ki(y + x) + ka(y — x) = 2ksy = 2131 — [i(y1 + x1) — (y1 — x1) € Ko N Lo = (0).

Since x; and y; are linearly independent and x and y are linearly independent, we have
Iy =L =13 and k| = ky = k3. Hence ®(x, f*)z = kjx + [1x; € span{x, x;}.

https://doi.org/10.1017/5S0004972711002449 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711002449

[8] Jordan derivations on Alg D 307

Claim 3. 7 1s a derivation.

By Claim 2 and Lemma 2.4, there exist linear mappings S : Ly — Lo, T : Ko — Ko,
V:K, - X"and W: K, — X* such that

(f"Qxi—fie0)=f"Sxi+f{Tx+Vf @x+Wf ' ®ux, (2.8)

for every x = x1 + x2 € Ko and every f* = f;" + f; € K,,. It follows from Lemma 2.3
that for every A € Alg D,

T(f"®Ax| — f{ ®Ax+ A fF®x1 — A" f{ ® x)
= @1A)x — f{ @ T(A)x + AT(f" @ x1 — f; ® x)
+7(f"®x1 — f{ WA+ TA) [T @ x1 —T(A) i ®x,

which according to (2.8) implies that

f®SAx + [{@TAx+ VA'f* @ x + WA™ f* @ x
=f@1A)x — f{f ®T(A)x + [T ®ASx; + ff ® AT x
+AVRx+ AW @x1 +T(A)' fF @ x1 —T(A)" f; ® x.

Applying the above equation to u in X such that f;"(u) = 1, we have that there exists a
linear mapping u : Alg D — C such that

T(A)x=ATx—-TAx + u(A)x, (2.9)
for every A € Alg D and every x € K. Hence by (2.9), for A, B € Alg D and x € K,
T(AB)x = 1(A)Bx + AT(B)x + u(AB)x — u(A)Bx — u(B)Ax. (2.10)

In the following, we show that u(A) = 0 for every A € Alg D. Since the vector sum
K + Lis closed, we have m = dim My # 0 and n = dim M, # 0. Hence by Theorem 1.2,
there exists a rank-two idempotent in Alg D. Let R=u"® v —v* ® u be a rank-two
idempotent in Alg D, where u, v € X and u*, v € X* are nonzero vectors satisfying
uelo,veMyu+veKyandu* €Ly, v €My, u*+v* €K, By Lemma 1.3, u"(v) =
—v*(u) =1. Putting A=B=R and x=u + v in Equation (2.10) gives 7(R)(u +v) =
T(R)(u + v) + Rt(R)(u + v) — u(R)(u + v), and Lemma 2.2 implies that 7(R)(u + v) =
T(R)(u + v) + Rt(R)(u + v). Hence u(R) = 0 for every rank-two idempotent R in Alg D.
Now fix a rank-two idempotent R in Alg D. For every A € Alg D, if u*(Av) =m #0,
then u(AR) = mu(u* @ (1/m)Av) —v* ® (1/m)Au)) = 0; if u*(Av) =0, then u(AR) =
U @ (v+Av) — v ® (u + Au)) — u(u* ® v —v* ® u) = 0. Hence u(AR) =0 for every
A € Alg D. Similarly, u(RA) = 0 for every A € Alg D.

Now for every A € Alg D, by (2.10),

T(AR)(u +v) =1(A)(u + v) + AT(R)(u + v) — u(A)(u + v)

and
T(RA)(u + v) = T(R)A(u + v) + Rt(A)(u + v) — u(A)(u + v).

https://doi.org/10.1017/5S0004972711002449 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711002449

308 Y.-H. Chen and J.-K. Li 9]

By Lemma 2.3,
T(AR + RA)(u +v) = 1(A)(u + v) + AT(R)(u + v) + T(R)A(u + v) + Rt(A)(u + v).

Hence p(A) = 0 for every A € Alg D.

Now for A, Be€ Alg D, by (2.10), we have 7(AB)x = 7(A)Bx + At(B)x for every
x € Ky. Since K| is dense in K, we have T(AB)x = 7(A)Bx + At(B)x for every x € K.
Similarly, we have 7(AB)x = 7(A)Bx + At(B)x for every x€ L. Since K + L =X, it
follows that 7 is a derivation. The proof is complete. O

THEOREM 2.5. Let D be a strongly double triangle subspace lattice on X of dimension
greater than two and let 6:AlgD — AlgD be a linear mapping satisfying
0(AB+BA) = 6(A)B+A8(B)+6(B)A+ B6(A) whenever AB = 0. Then ¢ is a derivation.

To prove Theorem 2.5, we need the following lemma.

LemMmaA 2.6. If 6 is a linear mapping from a unital algebra A into itself satisfying
O(AB + BA) = 6(A)B + Ad(B) + 6(B)A + B6(A) whenever AB=0, then for every
idempotent P in A and every A in A, the following statements hold:

(1) 6P = Ps(I) and 5(P) = 5(P)P + PS(P) — 5(1)P;

(2) 6(PA+AP)=06(P)A + P5(A) + 6(A)P + A6(P) — 6(I)PA — PAS(D);

(3) 6(PA+ AP)=6(P)A + PS(A) + 6(A)P + AS(P) — 6(1)AP — APS(I).

Proor. (1) For every idempotent Pe A, it follows from P(I—-P)=0 that
6(PYI - P)+ P6(I — P)+ 6 — P)P+ (I —P)S(P)=0. This implies that 26(P) =
26(P)P + 2P6(P) — 6(I)P — P6(I). Multiplying the above equation from the left
and right by P, respectively, we have Po(I) = 6(I)P, which yields 6(P) = 6(P)P +
P6(P) — 6(1)P.

(2) For every idempotent P € A and every A € A, since P(I — P)A= (I — P)PA =0,
we have

O(P(I-P)A+(I-P)AP) =56(P)(I{-P)A+ P5((I-P)A)+6((I—P)A)P + (I - P)A6(P)
and
0((I-P)PA+PA(I-P))=6(I — P)PA+(I—P)5(PA) + 6(PA)(I - P)+ PAS(1 - P).

Comparing the above equations, we arrive at 6(PA + AP) = §(P)A + P5(A) + 6(A)P +
AS8(P) — 6(I)PA — PAS(D).

(3) Since AP(I — P) = A(I — P)P =0, we similarly have that 6(PA + AP) = 6(P)A +
P6(A) + 5(A)P + AS(P) — 6(1)AP — APS(D). O

Proor oF THEOREM 2.5. We claim that 6(7) = 0. Similar to the proof of [9,
Theorem 2.3], we have 6(/) = Al for some scalar 4 € C. Suppose that 1 #0. Then
by Lemma 2.6(2) and (3), AP = PA for every idempotent P in Alg O and every A in
Alg D. By the proof of [9, Theorem 2.3] again, we have that A = u(A)I for some scalar
u(A) € C. That is, for every A € Alg D, the range of A is X or 0. However, since D is
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strongly double triangle subspace lattice, Alg D contains a rank-two operator. This is
a contradiction. Hence 6() = 0. Then by the proof of Theorem 2.1, we may show that
¢ 1s a derivation. O

RemARrk 2.7. In Theorem 2.5, if dim X =2, § may not be a derivation since Alg D=CI.
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