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Abstract

For a numerical semigroup S, a positive integer a and a nonzero element m of S, we define a new
numerical semigroup R(S, a, m) and call it the (a, m)-rotation of S. In this paper we study the Frobenius
number and the singularity degree of R(S, a, m). Moreover, we observe that the rotations of N are
precisely the modular numerical semigroups.
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0. Introduction

Given two nonnegative integers a and b, with b 6= 0, we denote by a mod b the
remainder of the division of a by b. A modular Diophantine inequality (see [6]) is
an expression of the form ax mod b ≤ x . The set M(a, b) of the integer solutions
of this inequality is a numerical semigroup, that is, a subset of the set N of the
nonnegative integers that is closed under addition, contains 0 and whose complement
in N is finite. Not all numerical semigroups can be described by an inequality of this
form. We say that a numerical semigroup S is modular with modulus b and factor a if
S = {x ∈ N | ax mod b ≤ x}.

When S is a numerical semigroup, we denote the finite set N \ S by H(S). The
elements of H(S) are called the gaps of S, and its cardinality, denoted #H(S), is
an important invariant of the semigroup which is called the singularity degree of S
(see [2]). Another important invariant of S is the greatest integer that does not belong
to S, which is called the Frobenius number of S and it is denoted by g(S) (see [3]).
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Given m ∈ S \ {0}, the Apéry set (so called due to Apéry’s paper [1]) of S with respect
to m is defined by Ap(S, m) = {s ∈ S | s − m 6∈ S}. It is well known and easy to prove
(see, for instance, [4]) that Ap(S, m) = {w(0), w(1), . . . , w(m − 1)} where w(i) is
the least element in S that is congruent to i modulo m. The set Ap(S, m) completely
determines the semigroup S, since S = 〈Ap(S, m) ∪ {m}〉 (where by 〈A〉 we denote
the submonoid of (N, +) generated by A, that is, the set of nonnegative integer
linear combinations of elements of A). Besides that, Ap(S, m) contains, in general,
much more information than an arbitrary system of generators of S; in particular, the
Frobenius number and the singularity degree can be easily computed from Ap(S, m).

In the first section we will give an explicit form of the set Ap(M(a, b), b). As
a consequence we obtain formulas for g(M(a, b)) and #H(M(a, b)). Note that the
formula we give for #H(M(a, b)) was already obtained in [6]; we offer here an
alternative proof.

In the second section we introduce the concept of rotation of a numerical semigroup
and see how it is related with modular numerical semigroups. More precisely, if
S is a numerical semigroup, m ∈ S \ {0}, Ap(S, m) = {w(0), w(1), . . . , w(m − 1)}

and a is a positive integer, then we define the (a, m)-rotation of S as R(S, a, m)

= {x ∈ N | w(ax mod m) ≤ x}. We will see that R(S, a, m) is a numerical semigroup
that contains m and is contained in M(a, m). Furthermore, we will prove that
R(S, a, m) = M(a, m) if and only if (a, m) ∈ S, where (x, y) denotes the greatest
common divisor of the integers x and y. In particular, we obtain that M(a, b)

= R(N, a, b) for any positive integers a and b.
If S is a numerical semigroup and d is a positive integer, then (S/d) = {x ∈ N |

dx ∈ S} is a numerical semigroup which clearly contains S (see [5]). Such a semigroup
will be called the quotient of S by d .

In Section 3 we will see how to construct Ap(R(S, a, m), m) from Ap(S, m). This
will allow us to give formulas or bounds for the Frobenius number and the singularity
degree of R(S, a, m) in terms of the Frobenius number and the singularity degree of a
quotient of S in Section 5.

In Section 4 we show that when d is a positive divisor of m the set
Ap((S/d), (m/d)) is obtained by dividing by d the elements of Ap(S, m) that are
multiples of d. This will allow us, in Section 5, to prove that if (a, m) = d, then

#H(R(S, a, m)) = d #H(S/d) + (m + 1 − d − (a − 1, m))/2

and that

dg(S/d) + (d − 1) (m/d) ≤ g(R(S, a, m)) ≤ dg(S/d) + m − 1.

Notice that when a and b are coprime, as S/1 = S, these results relate the invariants
of S under study with the corresponding invariants of R(S, a, m).

Throughout this paper, and unless otherwise stated, S is a numerical semigroup and
a, d and m are positive integers, with m ∈ S \ {0} and d = (a, m). Furthermore, we
will write Ap(S, m) = {w(0), w(1), . . . , w(m − 1)}. As Proposition 10 states that
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R(S, a, m) is a numerical semigroup containing m, we will introduce the following
notation:

Ap(R(S, a, m), m) = {w(0), w(1), . . . , w(m − 1)}.

For clarity, in the statements of many of our results we recall the notation fixed here.

1. Modular numerical semigroups

The proof of the following result is immediate.

LEMMA 1. Let a and b be positive integers. If i ∈ {0, 1, . . . , b − 1}, then

(b + 1 − a)i mod b =

{
i − (ai mod b) if ai mod b ≤ i,
i − (ai mod b) + b if ai mod b > i.

It is clear that b ∈ M(a, b) and, in addition, that every integer greater than b also
belongs to M(a, b).

PROPOSITION 2. Let a and b be positive integers. Then

Ap(M(a, b), b) = {(ai mod b) + (b + 1 − a)i mod b | i = 0, 1, . . . , b − 1}.

PROOF. By Lemma 1 we know that

(ai mod b) + (b + 1 − a)i mod b =

{
i if ai mod b ≤ i,
i + b if ai mod b > i.

Thus

(ai mod b) + (b + 1 − a)i mod b =

{
i if i ∈ M(a, b),

i + b if i 6∈ M(a, b).

The proof of the proposition now follows easily from the definition of the Apéry set. 2

Recall that if S is a numerical semigroup, then #H(S) and g(S) denote the
singularity degree and the Frobenius number of S, respectively.

LEMMA 3. If S is a numerical semigroup and m ∈ S \ {0}, then

g(S) = max(Ap(S, m)) − m.

As an immediate consequence of Proposition 2, we get the next result.

COROLLARY 4. Let a and b be positive integers. Then

g(M(a, b)) = max{(ai mod b) + (b + 1 − a)i mod b | i = 0, 1, . . . , b − 1} − b.

The next result appears in [7] and shows how to compute the singularity degree of
a numerical semigroup, once the Apéry set with respect to any of its nonzero elements
is known.
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LEMMA 5. Let S be a numerical semigroup and Ap(S, m) = {w(0), w(1), . . . ,

w(m − 1)}, where m ∈ S \ {0}. Then

#H(S) =
1
m

(w(1) + · · · + w(m − 1)) −
m − 1

2
.

A useful reformulation of this lemma is as follows.

LEMMA 6. If Ap(S, m) = {0, k1m + 1, . . . , km−1m + (m − 1)}, then

#H(S) = k1 + k2 + · · · + km−1.

Recall that we are aiming to give a formula for #H(M(a, b)). In view of the
formula given by Lemma 5 and due to the way Proposition 2 allows us to express
the elements of Ap(M(a, b), b), an important step is the observation contained in the
following lemma. It provides a way to calculate the value of expressions of the form∑b−1

i=1 ai mod b.

LEMMA 7. If a and b are positive integers and d = (a, b), then

b−1∑
i=1

ai mod b =
b(b − d)

2
.

PROOF. Clearly

b−1∑
i=1

ai mod b = d
b−1∑
i=1

a

d
i mod

b

d
= d2

(b/d)−1∑
i=1

i

= d2 (b/d)((b/d) − 1)

2
=

b(b − d)

2
. 2

Now we exhibit a formula for #H(M(a, b)), which already appeared in
[6, Theorem 12].

PROPOSITION 8. Let a and b be positive integers. Then

#H(M(a, b)) =
b + 1 − (a, b) − (a − 1, b)

2
.

PROOF. By Proposition 2 and Lemma 5 we know that

#H(M(a, b)) =
1
b

(b−1∑
i=1

ai mod b +

b−1∑
i=1

(b + 1 − a)i mod b

)
−

b − 1
2

.

By Lemma 7,

b−1∑
i=1

ai mod b =
b(b − (a, b))

2
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and

b−1∑
i=1

(b + 1 − a)i mod b =
b(b − (b + 1 − a, b))

2
=

b(b − (a − 1, b))

2
.

Thus

#H(M(a, b)) =
1
b

(
b(b − (a, b))

2
+

b(b − (a − 1, b))

2

)
−

b − 1
2

=
b − (a, b)

2
+

b − (a − 1, b)

2
−

b − 1
2

=
b + 1 − (a, b) − (a − 1, b)

2
. 2

2. Rotations and modular semigroups

The main result of this section, Theorem 17, shows that (a, m) ∈ S if and only if
R(S, a, m) = M(a, m).

The following result is clear from the definitions (and also can be easily deduced
from [4, Proposition 10.5]). It plays an important role in the proofs of Proposition 10
and Lemma 14.

LEMMA 9. Let x ∈ N. Then x ∈ S if and only if w(x mod m) ≤ x. Furthermore, if
i, j ∈ {0, 1, . . . , m − 1}, then w(i) + w( j) ≥ w((i + j) mod m).

PROPOSITION 10. R(S, a, m) is a numerical semigroup containing m.

PROOF. As 0 = w(0) = w(am mod m) ≤ m, we have that 0, m ∈ R(S, a, m).
Let x, y ∈ R(S, a, m). Then w(ax mod m) ≤ x and w(ay mod m) ≤ y. By
applying the preceding lemma, we have that w(a(x + y) mod m) ≤ w(ax mod m)

+ w(ay mod m) ≤ x + y, and therefore x + y ∈ R(S, a, m). Let α = max{w(0),

w(1), . . . , w(m − 1)}. Clearly if x is an integer such that x ≥ α, then
x ∈ R(S, a, m). Thus N \ R(S, a, m) is finite and consequently R(S, a, m) is a
numerical semigroup. 2

Now we can fix the notation

Ap(R(S, a, m), m) = {w(0), w(1), . . . , w(m − 1)}

already introduced.
When (a, m) ∈ S the following lemma guarantees that if i ∈ {0, 1, . . . , m − 1} is a

multiple of (a, m), then w(i) is not greater that m − 1. As a consequence we will be
able to prove a part of the main result of this section.

LEMMA 11. If (a, m) = d ∈ S and w(i) = ki m + i for all i ∈ {0, 1, . . . , m − 1},
then kd = k2d = · · · = k((m/d)−1)d = 0.
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PROOF. As d ∈ S we have that {d, 2d, . . . , ((m/d) − 1)d} ⊆ S. From ((m/d) − 1)

d < m, it follows that id − m 6∈ S for all i ∈ {1, 2, . . . , (m/d) − 1}. Thus
{d, 2d, . . . , ((m/d) − 1)d} ⊆ Ap(S, m). Hence w(id) = id for all i ∈ {1, . . . ,

(m/d) − 1} and consequently kid = 0. 2

PROPOSITION 12. If (a, m) = d ∈ S, then R(S, a, m) = M(a, m).

PROOF. Recall that x ∈ R(S, a, m) if and only if w(ax mod m) ≤ x . Let us suppose
again that w(i) = ki m + i for all i ∈ {0, 1, . . . , m − 1}. As

ax mod m = d((a/d)x mod (m/d))

and
w(ax mod m) = kd((a/d)x mod (m/d))m + ax mod m,

by applying Lemma 11, we have that w(ax mod m) = ax mod m. Thus x ∈

R(S, a, m) if and only if ax mod m ≤ x . This proves that R(S, a, m) = M(a, m). 2

Since (a, m) always belongs to N, the previous proposition has as an immediate
consequence that the set of all modular numerical semigroups coincides with the set
of all rotations of N, as is stated in the following corollary.

COROLLARY 13. Let a and b be positive integers. Then M(a, b) = R(N, a, b).

From Lemma 9 or directly one may deduce easily the following result.

LEMMA 14. Let S and T be numerical semigroups containing the positive integer m.
Let

Ap(S, m) = {w(0), w(1), . . . , w(m − 1)}

and
Ap(T, m) = {w̃(0), w̃(1), . . . , w̃(m − 1)}.

Then S ⊆ T if and only if w̃(i) ≤ w(i) for all i ∈ {0, 1, . . . , m − 1}.

PROPOSITION 15. Let S and T be numerical semigroups such that S ⊆ T and let
m ∈ S \ {0}. Then R(S, a, m) ⊆ R(T, a, m).

PROOF. Suppose that Ap(S, m) = {w(0), w(1), . . . , w(m − 1)} and that Ap(T, m)

= {w̃(0), w̃(1), . . . , w̃(m − 1)}. If x ∈ R(S, a, m), then w(ax mod m) ≤ x . By
Lemma 14 we know that w̃(ax mod m) ≤ w(ax mod m) ≤ x , and therefore x ∈ R
(T, a, m). 2

COROLLARY 16. If S is a numerical semigroup and m ∈ S \ {0}, then R(S, a, m)

⊆ M(a, m).

PROOF. Since S ⊆ N, by Proposition 15 we know that R(S, a, m) ⊆ R(N, a, m) and
by Corollary 13 we have that R(N, a, m) = M(a, m). 2
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Next we show that the converse of Proposition 12 also holds, thus completing the
proof of the result announced.

THEOREM 17. Let S be a numerical semigroup, a be a positive integer, m ∈ S \ {0}

and d = (a, m). Then R(S, a, m) = M(a, m) if and only if d ∈ S.

PROOF. As we pointed out above, in view of Proposition 12 we only have to
prove necessity. Let Ap(S, m) = {w(0), w(1), . . . , w(m − 1)} and suppose that
R(S, a, m) = M(a, m). Then from Proposition 2 we deduce that

ai mod m + (m + 1 − a)i mod m ∈ R(S, a, m) for all i ∈ {0, 1, . . . , m − 1}.

Thus

w(a(ai mod m + (m + 1 − a)i mod m) mod m) ≤ ai mod m + (m + 1 − a)i mod m

and consequently

w(ai mod m) ≤ ai mod m + (m + 1 − a)i mod m.

Since w(ai mod m) is congruent to ai mod m modulo m and (m + 1 − a)i mod m
∈ {0, 1, . . . , m − 1}, we deduce that w(ai mod m) = ai mod m. It follows that
ai mod m ∈ S for all i ∈ {0, 1, . . . , m − 1}. As (a/d, m/d) = 1, there exists
t ∈ {1, . . . , (m/d) − 1} such that (a/d)t mod (m/d) = 1. Then d = d((a/d)t mod
(m/d)) = at mod m ∈ S. 2

3. The Apéry set of a rotation

Recall that we have fixed some notation. Namely, the elements of Ap(S, m)

and Ap(R(S, a, m), m) are denoted by w(i) and w(i), respectively, where
i ∈ {0, 1, . . . , m − 1}.

The next result establishes a relationship between these elements. It is then
reformulated in a more convenient way in Theorem 19.

LEMMA 18. If w(i) = ki m + i for all i ∈ {0, 1, . . . , m − 1}, then

w(i) =

{
kai mod m · m + i if ai mod m ≤ i,
(kai mod m + 1) · m + i if ai mod m > i.

PROOF. Let x ∈ N be such that x mod m = i ∈ {0, 1, . . . , m − 1}. Then x ∈

R(S, a, m) if and only if w(ai mod m) ≤ x , which is equivalent to kai mod m · m +

(ai mod m) ≤ x . Thus w(i) is the least integer congruent to i modulo m that is greater
than or equal to kai mod m · m + (ai mod m). The proposition is then easily deduced. 2

THEOREM 19. If i ∈ {0, 1, . . . , m − 1}, then

w(i) = w(ai mod m) + (m + 1 − a)i mod m.
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PROOF. From Lemma 18, and taking into account the fact that w(ai mod m)

= kai mod m · m + ai mod m, we deduce that if i ∈ {0, 1, . . . , m − 1}, then

w(i) = w(ai mod m) +

{
i − ai mod m if ai mod m ≤ i,
i − ai mod m + m if ai mod m > i.

The rest of the proof follows by Lemma 1. 2

As we have seen above, by having a good description of the Apéry set of a
numerical semigroup we can obtain important data of the given numerical semigroup.
Theorem 19 will be used in the rest of this paper to take profit from this fact.

EXAMPLE 20. Let S = 〈5, 7, 9〉. We will use Theorem 19 to compute R(S, 2, 5) and
R(S, 6, 9), where S = 〈5, 7, 9〉.

Since

Ap(S, 5) = {w(0) = 0, w(1) = 16, w(2) = 7, w(3) = 18, w(4) = 9},

we get that

Ap(R(S, 2, 5), 5) = {w(0) = 0, w(1) = 11, w(2) = 12, w(3) = 18, w(4) = 19}.

Thus R(S, 2, 5) = 〈5, 11, 12, 18, 19〉.
Since

Ap(S, 9) = {w(0) = 0, w(1) = 10, w(2) = 20, w(3) = 12, w(4) = 22, w(5) = 5,

w(6) = 15, w(7) = 7, w(8) = 17},

we get that

Ap(R(S, 6, 9), 9) = {w(0) = 0, w(1) = 19, w(2) = 20, w(3) = 3, w(4) = 22,

w(5) = 14, w(6) = 6, w(7) = 16, w(8) = 17}.

Thus
R(S, 6, 9) = 〈9, 19, 20, 3, 22, 14, 6, 16, 17〉 = 〈3, 14, 16〉.

The next example shows that the function assigning to each integer a ∈ {0, 1, . . . ,

m − 1} the numerical semigroup R(S, a, m) is not injective.

EXAMPLE 21. Let S = 〈5, 6, 7, 8, 9〉. Then

Ap(S, 5) = {w(0) = 0, w(1) = 6, w(2) = 7, w(3) = 8, w(4) = 9}.

Using Theorem 19 we get that both Ap(R(S, 2, 5), 5) and Ap(R(S, 4, 5), 5) are equal
to {0, 11, 12, 8, 9}. Consequently, R(S, 2, 5) = R(S, 4, 5).

REMARK 22. Recall that the Euler function ϕ is defined by ϕ(n) = #{i ∈ N |

1 ≤ i ≤ n and (n, i) = 1}, for any positive integer n. Observe that we have the
equality R(S, a, m) = R(S, a mod m, m) and therefore #{R(S, a, m) | (a, m) = 1}

≤ ϕ(m). Example 21 shows that the previous bound is not attainable.

From Theorem 19 we deduce that max Ap(R(S, a, m)) ≤ max Ap(S, m) + m − 1.
By applying Lemma 3 we get the following result.
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COROLLARY 23. g(R(S, a, m)) ≤ g(S) + m − 1.

We intend now to continue the study of the Frobenius number and the singularity
degree of R(S, a, m). The study for the general case will only be done in Section 5,
since we need to study previously the quotients of a numerical semigroup by a positive
integer, and this will be done in Section 4. However, the case of co-prime rotations, that
is, (a, m)-rotations with (a, m) = 1, is easier. We leave the result on the singularity
degree as a corollary to Theorem 35, but we give here the result concerning the
Frobenius number, since this result motivates an example and the reader may benefit
from reading a simpler proof which contains the main ideas, although the result is not
as general as possible.

PROPOSITION 24. If (a, m) = 1, then g(S) ≤ g(R(S, a, m)) ≤ g(S) + m − 1.

PROOF. By Corollary 23 it suffices to prove that g(S) ≤ g(R(S, a, m)). By
Theorem 19 we know that

w(i) = w(ai mod m) + (m + 1 − a)i mod m for all i ∈ {0, 1, . . . , m − 1}.

As (a, m) = 1, then

{w(0), w(1), . . . , w(m − 1)} = {w(ai mod m) | i ∈ {0, 1, . . . , m − 1}}.

Thus max Ap(S, m) ≤ max Ap(R(S, a, m), m). Using Lemma 3 we get that
g(S) ≤ g(R(S, a, m)). 2

The following example shows that the upper bound given in the previous
proposition is attainable. The lower bound is clearly attainable, since if we take a = 1,
we get R(S, 1, m) = S.

EXAMPLE 25. Let S = 〈3, 34〉. Then

Ap(S, 3) = {w(0) = 0, w(1) = 34, w(2) = 68}.

By Lemma 3 we have g(S) = 65. Now applying Theorem 19,

Ap(R(S, 2, 3), 3) = {w(0) = 0, w(1) = 70, w(2) = 35}.

By Lemma 3 we have g(R(S, 2, 3)) = 67.

4. The quotients of a numerical semigroup

Given a numerical semigroup S and a positive integer p, let S/p = {x ∈ N |

px ∈ S}. Clearly S/p is a numerical semigroup containing S. Furthermore, S/p = N
if and only if p ∈ S. The semigroup S/p is called a quotient numerical semigroup of
S by the integer p (see [5]). In this section d is a positive divisor of m.
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LEMMA 26. Let i ∈ {0, . . . , (m/d) − 1}. Then w(id) is a multiple of d.
Furthermore, w(id)/d is congruent to i modulo m/d.

PROOF. Since w(id) = km + id for some k ∈ N, w(id) is a multiple of d and
w(id)/d = k(m/d) + i . 2

Observe that (m/d) ∈ (S/d), and therefore it makes sense to talk about
Ap(S/d, m/d). The next result shows how to obtain this set from Ap(S, m).

THEOREM 27. The set Ap(S/d, m/d) is obtained by dividing by d the elements of
Ap(S, m) that are multiples of d.

PROOF. Let ` ∈ {0, . . . , m − 1} and w(`) ∈ Ap(S, m). Then w(`) = km + ` for
some k ∈ N. As d is a divisor of m we deduce that w(`) is a multiple of d if and
only if ` is a multiple of d . Therefore, {w(0), w(d), . . . , w(d((m/d) − 1))} is the
set formed by the elements of Ap(S, m) that are multiples of d . Furthermore, from
Lemma 26 we know that if i ∈ {0, . . . , (m/d) − 1}, then w(id)/d is congruent to
i modulo m/d . To conclude the proof it suffices to show that w(id)/d is the least
element of S/d that is congruent with i modulo m/d. Let x ∈ S/d be such that x
is congruent to i modulo m/d . Then dx ∈ S and, applying Lemma 9, we have that
w(dx mod m) ≤ dx . Therefore, w(di) ≤ dx and consequently (w(id)/d) ≤ x . 2

EXAMPLE 28. Let S = 〈5, 6, 8〉. Then Ap(S, 6) = {0, 13, 8, 15, 10, 5}. By the
previous theorem we get that Ap((S/2), 3) = {0, 4, 5}. Therefore, (S/2) = 〈3, 4, 5〉.

As an immediate consequence of Theorem 27, making use of Lemmas 6 and 3, we get
the following corollary.

COROLLARY 29. If Ap(S, m) = {0, k1m + 1, . . . , km−1m + (m − 1)}, then:

(1) Ap(S/d, m/d) = {0, kd(m/d) + 1, . . . , k((m/d)−1)d(m/d) + ((m/d) − 1)};
(2) #H(S/d) = kd + k2d + · · · + k((m/d)−1)d ;
(3) g(S/d) = max{0, kd(m/d) + 1, . . . , k((m/d)−1)d(m/d) + ((m/d) − 1)} − m/d.

5. Singularity degree and Frobenius number of a rotation

In this section we will obtain bounds for the Frobenius number and a formula for
the singularity degree of a rotation in terms of the same invariants of the original
semigroup. The following lemma exhibits an element of R(S, a, m) which proves to
be fundamental in this task. Recall that d = (a, m).

LEMMA 30. (m/d) ∈ R(S, a, m).

PROOF. As w(a(m/d) mod m) = w(0) = 0, we have that w(a(m/d) mod m)

≤ (m/d) and therefore (m/d) ∈ R(S, a, m). 2

As (m/d) ∈ R(S, a, m) it makes sense to talk about Ap(R(S, a, m), (m/d)), the
elements of which will be denoted by w′(0), w′(1), . . . , w′((m/d) − 1). This set is
contained in Ap(R(S, a, m), m), as shown in the following lemma.
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LEMMA 31. If x ∈ Ap(R(S, a, m), (m/d)), then x ∈ Ap(R(S, a, m), m).

PROOF. If x − m ∈ R(S, a, m) then x − (m/d) ∈ R(S, a, m), since x − (m/d)

= x − m + (d − 1)m/d and (m/d) ∈ R(S, a, m). 2

Now we are able to present a very convenient way to express the elements of
Ap(R(S, a, m), m/d).

THEOREM 32. If i ∈ {0, . . . , (m/d) − 1}, then

w′(i) = w(ai mod m) + (m + 1 − a)i mod
m

d
.

PROOF. Observe that, by using Lemma 31 and the definition of an Apéry set,
one immediately concludes that Ap(R(S, a, m), m/d) consists of the elements of
Ap(R(S, a, m), m) that after subtraction of m/d do not belong to R(S, a, m).

By Theorem 19 we know that

w( j) = w(aj mod m) + (m + 1 − a) j mod m

for every j ∈ {0, . . . , m − 1}. Applying the definition of R(S, a, m) we have that
w( j) − (m/d) 6∈ R(S, a, m) if and only if

w(a(w(aj mod m) + (m + 1 − a) j mod m − (m/d)) mod m)

> w(aj mod m) + (m + 1 − a) j mod m − (m/d).

Observe that

w(a(w(aj mod m) + (m + 1 − a) j mod m − (m/d)) mod m) = w(aj mod m).

Thus w( j) − (m/d) 6∈ R(S, a, m) if and only if

w(aj mod m) > w(aj mod m) + (m + 1 − a) j mod m − (m/d)

and this is equivalent to (m + 1 − a) j mod m < (m/d). Observe now that this occurs
if and only if

(m + 1 − a) j mod m = (m + 1 − a) j mod (m/d).

Consequently, w( j) − (m/d) 6∈ R(S, a, m) if and only if

w( j) = w(aj mod m) + (m + 1 − a) j mod (m/d).

As

aj mod m = d((a/d) j mod (m/d)) = d((a/d)( j mod (m/d)) mod (m/d))

= a( j mod (m/d)) mod m

and
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(m + 1 − a) j mod (m/d) = (m + 1 − a) ( j mod (m/d)) mod (m/d),

we can say that w( j) − (m/d) 6∈ R(S, a, m) if and only if

w( j) = w(a( j mod (m/d)) mod m) + (m + 1 − a)( j mod (m/d)) mod (m/d).

Consequently, the elements of Ap(R(S, a, m), m) that after subtraction of m/d do not
belong to R(S, a, m) are those of the form

w(ai mod m) + (m + 1 − a)i mod m/d

with i ∈ {0, . . . , (m/d) − 1}. 2

EXAMPLE 33. Let S = 〈5, 7, 9〉. We will use the preceding theorem to compute
R(S, 6, 9). By Example 20 we know that

Ap(S, 9) = {w(0) = 0, w(1) = 10, w(2) = 20, w(3) = 12, w(4) = 22, w(5) = 5,

w(6) = 15, w(7) = 7, w(8) = 17}.

Using Theorem 32 we have that Ap(R(S, 6, 9), 3) = {0, 16, 14}. Thus R(S, 6, 9)

= 〈3, 14, 16〉.

Next we get bounds for the Frobenius number of R(S, a, m).

COROLLARY 34.

dg((S/d)) + (d − 1) (m/d) ≤ g(R(S, a, m)) ≤ dg((S/d)) + m − 1.

PROOF. By Theorem 32 we know that

w′(i) = w(d((a/d)i mod (m/d))) + (m + 1 − a)i mod (m/d)

for all i ∈ {0, . . . , (m/d) − 1}. We observe that

w(d((a/d)i mod (m/d)))

is an element of Ap(S, m) that is a multiple of d . Applying Theorem 27, we then have
the inequalities

d(max Ap((S/d), (m/d))) ≤ max Ap(R(S, a, m), (m/d))

≤ d(max Ap((S/d), (m/d))) + (m/d) − 1.

If we now apply Lemma 3 we obtain that

d(g((S/d)) + (m/d)) ≤ g(R(S, a, m)) + (m/d)

≤ d(g((S/d)) + (m/d)) + (m/d) − 1.
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Consequently,

dg((S/d)) + (d − 1) (m/d) ≤ g(R(S, a, m)) ≤ dg((S/d)) + m − 1. 2

Notice that, since (S/1) = S, Proposition 24 is an immediate consequence of
Corollary 34. Observe also that by Example 25 the bounds are attainable. Now comes
the announced result that relates the singularity degrees of a rotation and a quotient
of S.

THEOREM 35. #H(R(S, a, m)) = d #H(S/d) + (m + 1 − d − (a − 1, m)/2).

PROOF. Let us suppose that

Ap(S, m) = {k0m + 0, k1m + 1, . . . , km−1m + (m − 1)}.

Then by Lemma 18 we know that w(i) = kai mod mm + i where

kai mod m =

{
kai mod m if ai mod m ≤ i,
kai mod m + 1 if ai mod m > i.

By Lemma 6 we know that

#H(R(S, a, m)) =

m−1∑
i=1

kai mod m

and by Proposition 8 that

m−1∑
i=1

kai mod m =

m−1∑
i=1

kai mod m +
m + 1 − d − (a − 1, m)

2
.

Observe that ai mod m = a(i mod (m/d)) mod m. Thus

m−1∑
i=1

kai mod m = d
(m/d)−1∑

i=1

kd((a/d)i mod (m/d)) = d(kd + · · · + k((m/d)−1)d).

Applying (2) of Corollary 29 we have that kd + · · · + k((m/d)−1)d = #H((S/d)) and
the result follows. 2

Observing that S/1 = S we get the following corollary.

COROLLARY 36. If (a, m) = 1, then

#H(R(S, a, m)) = #H(S) +
m − (a − 1, m)

2
.
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A proof of this result could have been given without using quotients. Notice
that, as (a, m) = 1, the function σ : {1, . . . , m − 1} → {1, . . . , m − 1} defined by
σ(i) = ai mod m is a bijection. From Lemma 18 we could then deduce that

Ap(R(S, a, m), m) = {0, kσ(1)m + 1, . . . , kσ(m−1)m + (m − 1)},

where

kσ(i) =

{
kσ(i) if σ(i) ≤ i,
kσ(i) + 1 if σ(i) > i.

The result would then follow by using Lemma 6 and Proposition 8.
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