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Abstract

Commutative idempotent quasigroups with a sharply transitive automorphism group G are
described in terms of so-called Room maps of G. Orthogonal Room maps and skew Room
maps are used to construct Room squares and skew Room squares. Very general direct and
recursive constructions for skew Room maps lead to the existence of skew Room maps of
groups of order prime to 30. Also some nonexistence results are proved.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 05 B 15; secondary 20 N 05.

1. Room squares and orthogonal ci-quasigroups

1.1. Let r be an odd integer.
A Room square of side r is an arrangement of r+1 distinct objects in a square

array of side r satisfying
(i) each of the r2 cells of the array is either empty or contains exactly two

distinct objects,
(ii) each row and each column of the array contains each of the r+\ objects

exactly once,
(iii) every unordered pair of distinct objects occurs in exactly one cell of the

array.
The square is skew, if, in addition,
(iva) cell (/, 0 contains the pair i, oo,
(ivb) cell (i,k) is empty if and only if i^k and cell (k,i) is not empty; here cell

(/, k) is the cell in row / and column k.
A Room square is known to exist if and only if r^3,5; see for example Wallis
(1973a, 1974).
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412 Arnold Neumaier [2]

1.2. We refer to a commutative idempotent quasigroup (Q, *) as a ci-quasigroup.
Two ci-quasigroups (Q, *) and (Q, **) are orthogonal if and only if the equations

x*y = a, x**y = b have at most one solution {x,j}£Q (as unordered pair), for
every a,beQ; they are skew orthogonal if and only if, in addition, x = y = z = t
is the only possibility to satisfy the equations x*y = z**t, x**y = z*t.

Note that the two quasigroups are never orthogonal if considered simply as
quasigroups.

1.3. By row and column permutation and renumbering of elements we may
standardize any Room square such that the diagonal cells (i,i) contain the pair
/,oo, where oo is a fixed element. If we define two operations * and ** on the set
g = {l,...,/•} by

x *y = z if and only if x = y = z, or x^y and the pair x,y is in row z,

x **y = z if and only if x = y = z, or x^y and the pair x,y is in column z,

a simple verification shows that (Q, *) and (Q, **) are a pair of (skew) orthogonal
ci-quasigroups if and only if the given square is a standardized (skew) Room
square.

Conversely, from (skew) orthogonal ci-quasigroups (Q, *), (Q, **) one may
construct a standardized (skew) Room square, defining

x, oo is in cell (x, x) for every xeQ,

x,y is in cell (x*y,x**y) for every pair x,ysQ,x^y,

the other cells are empty.

The proofs are straightforward and thus omitted; see Brack (1963).

2. Room maps and sharply transitive ci-quasigroups

A ci-quasigroup (Q, *) is sharply transitive if and only if it possesses a group G
of automorphisms, sharply transitive on Q. We describe sharply transitive ci-
quasigroups within the group G.

2.1. Let G be a finite group. We call a map <p: G->G a Room map if and only if

0) P ( l ) = l .

(2) ?(x-1) = cp(x) (xeG),

(3) {<p(x)x\xeG} = G.
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A Room map <p satisfying

(4) <p(x) = <pty)^y = x or y = x'1 (x,yeG)

is called strong; if, moreover,

(5) rf*) = ,O0- i * * = j > = l (x,yeG)

then <p is called skew.

EXAMPLE. The trivial map a with o(x) = 1 for every xeG is a Room map.
Suppose fi and p2

 a r e Room maps. If

(6) <Pi(x)<p2(x)-1 = (p1(y)<p2(j>)-1=>y = x or j ; = x'1 (x,yeG)

then we say <px and $?2 are orthogonal; if, in addition,

(7) ft(*)w(*)-1 = ftG0*iO0-J=>* = .>'=l (x,yeG)

then 9?x and f>2 are said to be •s&evv orthogonal.
From the definitions we see immediately that (p is strong if and only if <p and a

are orthogonal, and 95 is skew if and only if 95 and a are skew orthogonal.

2.2. If G has odd order, and if 95 is a Room map of G, define the operation
*9 on G by

(8) M*p v = ?P(X) w where x2 = HI?"1 and M> = xv

(equivalently, u = xw and v = ^ ^ w ) . Since G has odd order, the map x->x2 is a
permutation of G, thus *p is well defined. Because of <p(x) = x*v x~x, distinct
maps <p yield distinct operations.

(G, *v) is a ci-quasigroup! Because of u = 1«, W = 1 ~ 1 M we have
M% M = P(0 u = u. If M = xw, f = x~x w then M*ff t) = pipe) w = pC "̂"1) w = »*9 «.
Finally, u*vv = t has the solution u = x2v where pC*)* = v~xt determines x.

We remark that G operates on the constructed ci-quasigroup by right multi-
plication as a sharply transitive group of automorphisms.

If G is abelian and written additively then (8) simplifies to

(8a) M % r

As a curiosity, we obtain from every noncommutative group G of odd order via
the trivial Room map a (commutative!) ci-quasigroup (G,o) by x»y = z if and
only if zx~x zy~x = 1 if and only if x = zy~x z if and only if y = zx~x z if and only
if z = tx where *2 = yx'1.

An application of Room maps of groups of even order will be made in a forth-
coming paper.
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2.3. Let (Q, *) be a ci-quasigroup, and G a sharply transitive group of auto-
morphisms of (Q, *). Fix aeQ. Define a map <p: G-»G by

a*'1' = ax * ax~l (x £ G).

Then ava) = a*a = a, whence <p(l) = 1; moreover

and therefore ^(JC"1) = f>(x). Finally, Q has an odd number of elements, since the
operation ' defined by x' * x = a is an involution fixing only the element a. Now the
order of G equals that number and thus is odd. Therefore the map x->x2 is a
permutation of G. Now a?{x)x = (ax * a*"1)* = a* * a, and we get {a*{x)x \ x e G) = a°,
from where {<p(x)x\xeG} = G follows. Thus <p is a Room map.

If we fix an element b = d^QiteG) instead of a, then we get a Room map <p'
related to q> by <p'(x) = /^(f"1*/)*-1. Therefore, 95 and 55' are equivalent by the
automorphism x-+txt~x of G (in the sense of the next section).

Because of *9 = *, which one verifies easily, we get distinct Room maps from
distinct ci-quasigroups.

2.4. We say, G is a sharply transitive group of automorphisms of a standardized
Room square, if G is a sharply transitive group of automorphisms of both corre-
sponding ci-quasigroups (Q, *) and [Q, **). Then:

THEOREM 1. A (skew) Room square with a sharply transitive group G of auto-
morphisms exists if and only if G has odd order, and G admits a pair of (skew)
orthogonal Room maps. In particular, if there is a strong (skew) Room map of G
then we may construct from it a (skew) Room square.

PROOF. From the preceding, it suffices to prove the following.

LEMMA 1. Let 95, >p be Room maps of G. *9 and *^ are (skew) orthogonal if and
only if <p and ip are (skew) orthogonal.

PROOF (of the Lemma). From the definition, u*9v = a, u*^v = b if and only if
x2 = uv~\ a = <p(x)xv, b = ifi(x)xv. Thus every x leads to at most one solution
{u, v}. Since x and x' give the same solution only if x' = x or x' = x'1, *v and *f

are orthogonal if and only if a = cp(x)xv, b = i//(x)xv determines {x.x"1} uniquely,
or, eliminating v, if and only if the equation <p(x) ^(x)-1 = ab~x determines {x,x~v)
uniquely. But this is equivalent to (6), that is ep and if/ are orthogonal.

Now suppose x*vy = z*^t, x*^y = z*vt. Then with u2 = xy*1, v2 = zt'1 this
is equivalent to <p(u) uy = ifi(v) vt, <p(u) uy = <p(v) vt, or, eliminating t and y, to
^(u)^)-1 = f(v) ijjty)-1. Now *9 and *^ are skew orthogonal if and only if we
may conclude u = v = 1, that is if and only if <p and tft are skew orthogonal.
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3. Equivalence and multipliers

3.1. Let G be a finite group and Aut G the full group of automorphisms of G.

LEMMA 2. If <p is a Room map, then, for every teAatG, the map <ft, defined by

rfx) = fQ<!-ly

is a Room map. We say <pl is a shift of <p.

(1) and (2) are easily verified; (3) follows from the computation

{j}(x)x\xeG} = V O c V l x e G } = {<p(xy*\xeG) = {<p(x)x\xeG}> = G> = G.

Call two Room maps equivalent if one is a shift of the other. Two equivalent
Room maps lead to isomorphic ci-quasigroups (G, *9) and (G, *y); in fact t is an
isomorphism from (G, *f) to (G, *^).

PROBLEM. Are there in any group G inequivalent Room maps leading to iso-
morphic ci-quasigroups?

3.2. Call an automorphism feAutG a multiplier of <p, if p' = <p. Denote
by Mult <p the set of all multipliers of <p. We show that Mult <p is a group: If
j , f eMul tp then, using the multiplier property and the definition

Therefore is'1 e Mult <p, and Mult <p is indeed a group.

LEMMA 3.1fte Mult <p,aeG, then the map (t, a) defined by

x«-«» = x'a

is an automorphism of(G, *v).

PROOF. u
('-a) *ipv

('-a) = « ' a*vv*a = fix^Wa if and only if ula = xivta,
t/a = (jty-^vta. Since t is an automorphism of G, this is equivalent to u = xw,
v = x~x w. Thus we have u *9 v = <p(x) w or

9 ( f ( x ) wya = 9(xytfa = <ft(x?) w>a.

But f is a multiplier of <p, that is g?* = <p. Therefore

(u *^!,)«.«) = <pf(xt) tfa = tfxt) rfa = uu'a)

and the lemma is proved.
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By a straightforward computation we get the product and inversion rules:

is, a) (t, b) = (st,<fb), (t, a)-1 = (t~\ (a*-1)-1)-

Consequently, (Mult <p) x G is a split (semidirect) product.

3.3. Now we characterize the group (Mult <p)xG within the group of all auto-
morphisms of (G, *9):

THEOREM 2. Let G be a group of odd order, and <p a Room map of G. Then the split
product (Mult <p)xG is the normalizer ^V(G) of G in the full group of auto-
morphisms of (G, *,,). Moreover, if G is abelian and <p = a is the trivial Room map,
then Mult y = AutG, and(AutG)xG is the full group of automorphisms of(G,*v).

PROOF, (a) We compute easily (t,a)-1(l,b)(t,a) = (l,a-1bta); thus the
normalizer in question contains the group (Mult <p) x G.

(b) Let s be an element of JV{G). Setting t = s(\, I8)-1 we have 1' = l^l*)"1 = 1,
and f£^r(G),thatis

(9) t-xGt = G,

(10) {x *vyj = x1 *(fy
l for every x,y e G.

From (9), for every zeG, G contains an element z' with t~l{\,z)t = (\,z'). We
have z' = l«v> = I'"1*1-*" = l(1-*>' = z' for all zeG. Thus we get

and t is an element of Aut G.
Finally, since from (10)

rfpc) = pOO' = (^"' % (^"1)-1)' = x *v x-1

t is in Mult 95, and we have s = t(l, Is) = {t, l8)e(Multp) x G.
Thus proceeding for every se^V(G) we arrive at Jf (G)£(Mult9?) x G, and the

first part follows.
(c) If p = a then trivially Mult <p = Aut G. It remains to show that, if G is

abelian, every automorphism of (G,* ) is in (AutG)xG. We use the additive
notation (8a), and obtain u*9v = (u+v)/2. Thus any automorphism s of ((/,*,,)
satisfies [(x+y)/2Y = (x*+y)/2. Define the permutation tby xi = xs-0B. Then

(11) (^)' = ^ , tf-0.

^ = 0 gives (x/2y = x*l2 for every xeG, and (11) simplifies to (x+j) '=
that is f is an automorphism of G. Thus s = /(1,0s) = (/, 0") e (Aut G) x G.
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I was not able to modify the proof of the last part to include the nonabelian case.
Therefore we may ask:

PROBLEM. IS there a group G (necessarily nonabelian) such that the ci-quasigroup
constructed from the trivial Room map possesses an automorphism not contained
in(AutG)xG?

4. A general lemma for constructing strong room maps

4.1. We begin with a very general construction lemma and then specialize more
and more to get more concrete results.

LEMMA 4. Let G be a group of odd order, and H a subset of G with the property

(12)

where H~1 denotes the set of inverses of elements of H. If IT, a. are permutations of
G such that

( 1 3 ) 1 * = 1 < * = 1 ,

( 1 4 ) (x-1)*" = x" x* for every x eG,

(15) H<* = H,

then the map <p defined by

(16)

is a Room map. <p is strong if

(17) {x»x\xeG} = G.

REMARKS. (17) is only a convenient sufficient condition for <p to be strong!
A set H satisfying (12) exists in every group of odd order: For x^\, put one of
x,x~x in H, the other in H~x; we have x^x'1 since x2 = 1 implies x = 1.

PROOF (of Lemma 4). Verifications of (1) and (2) are trivial. To prove (3),
consider {<p(x)x\xeG} = {l}u{(x-1y\xeH}u{x7rx^xeH-1}. By (13) and (14),
this is equal to {l*}u{(x-1y\xeH}u{(x-

1)°"'\xeH-1} = {{ijuH^uH01)". By
(15), Ha = H, and with (12) the expression reduces to Gn = G. From the definition
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of strongness, <p is strong if all xnx with xeH'1 are different. But this is guaranteed
by (17).

The construction of Lemma 4 is very general, since every Room map <p may be
constructed in this way: The permutation n, defined by x" = p(x)x~l for all x,
and the identity mapping a satisfies (13)-(15) and the condition (18) below for
any H with (12). (n is a permutation since <p is a Room map and (2) and (3) hold.)

The value of the construction lies in the freedom of H. If we take for a, 77
workable permutations, for example automorphisms of G, which satisfy (13),
(14) and (17), then we may try to find a set H meeting (12) and (15) to obtain a
strong Room map.

4.2. To analyze the conditions under which (12) and (15) are soluble, denote by — 1
the permutation x^-x~x. Let A be the group generated by a and (—l)a(—1).
Then seA if and only if it has a representation £ = u i l ( - l )« i ! ( - l ) . . . a i " ( - l )
where n is an even integer. Thus we have

and therefore ( - \)A = A{-\). Denote by xA the set of all xB, eeA.

LEMMA 5. A set H satisfying (12) and (15) exists if and only if

(18) xAnx<-1)A = 0 for every x^ I,

or, equivalently, if and only if

(18a) x*1 $xA for every x^l.

PROOF. The equivalence of (18) and (18a) is immediate.
(a) Necessity: We have 1<* = 1, Ha = H, and from (12) we get H^1)<x = H'1.

Hence H is fixed under A. Let H = \JxeX
xA De t n e partition of H into ,4-orbits.

Then H~* = UxeX^1"11 = UxexX^1)A. From (12), 0 = HnH~1^xAnx^1)A,
and we obtain (18).

(b) Sufficiency: Set Ho = 0. Suppose we have already found a subset Ht of G with

(19) ^ 0 / ^ 1 = 0, \^Ei and Hf = Ht.

If G = {1}UH;UHr1 we are finished. Otherwise we take an xeG with x ^ l ,
x^Hf, x$Hjx, and we define Hi+1 = HiuxA.

Clearly, Hf+1 = Hi+1. If leHi+1 then lexA, and we have the contradiction
x = 1. If zeH^nHr^ then by (18), either ze i^ or zeHj1. If the second holds,
replace z by z~x; hence we may assume zeHt. Now by (19) z^Hj1, thus zexA,
from which we may deduce the contradiction xeHt. Therefore such a z cannot
exist, and we conclude Hi+1 n Hr^ = 0.

Repeating this process we finally arrive at a subset H = Hm satisfying (12) and (15).
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5. Direct constructions for skew room maps

5.1. Let R be a commutative, associative ring with identity 1. A (not necessarily
abelian) group G is an R-group provided that R operates on G, and the following
assertions hold:

la=l,x1 = x for every oceR,xeG,

x^+P = x* xp for every <x,peR,xeG,

x<xp = (x<*y for e v e r y

Note that nothing is required for the operation of R on products in G!
R* denotes the group of units of R.

LEMMA 6. Let G be an R-group. Suppose R contains an element a such that

(20) a-l,a,a+leiJ*,

(21) there is an odd integer t satisfying a* = 1.

Then we may construct a set H satisfying (12) and (15), and for every such set H
the map defined by

1 ifx= 1,

x° ifxeH,

x-' ifxeH-1

(where e = (1 — a)(l +a)-1) is a skew Room map over G.

(22) <p(x) =

PROOF, (a) We have (—l)a(—l) = a since — \,a.eR and R is commutative.
Hence A is generated by <x. Now, if x~1exA then x"1 = xa* for some integer i.
But then xati = x. Since <x has odd order, xa< = x, or x = x'1, whence x= 1, and
(18a) holds. By Lemma 5 we may construct a subset H of G with the required
properties.

(b) Now we want to apply Lemma 4. (13) is satisfied by hypothesis, and as
to (14), with 7T = -2(1 + a)-1, (x-1)*" = *~a* = x+2o<a+1)"1 = x-

2a+a)~1+2 = x»x2.
Application of Lemma 4 yields the Room map (22) from (16); for

and similarly (x^Yx-1 = x*. Since e is a unit, (17) is valid, and <p is strong.
(c) It remains to show that tp is skew. Indeed, if ^(x) = ^(j)""1, * # 1 , y^l,

then we may assume x,yeH since ^(z"1) = <p(z) for all z. But then by (22) Xs = y~",
or (xy)' = 1. Now e is a unit, hence we get xy — 1, or y = x~Y. But xeH,y = x~x e H,
contradicting (12). Thus, (5) holds, and <p is skew.
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REMARK. If R operates faithfully on G, and if a subset H of G satisfying (12)
and (15) exists then (21) is valid: For suppose the least positive integer with
a' = 1 be even, t = 2s. Then a ' - 1 = (a*- l)(a»+1), and a 8 -1 ^ 0, that is there
is an xeG with x*'"1 ̂  1, since R is faithful on G. Taking z = x*''1, we obtain
z01' = z"1 ezAn z(~1M, opposing Lemma 5.

5.2. Now we are able to prove concrete, that is existence, results. There are
three important classes of .R-groups G:

I. G is any finite group of exponent e, and R is the Ring Z/eZ of integers
modulo e,

II. G is an abelian group, and R is the ring of all endomorphisms of G,
III. G is any finite group, a an automorphism of G satisfying

(23) xxa = xax for every xeG,

and R is the ring of all rational expressions in a, which are well denned (that is
the denominator is a permutation). R operates on G in an obvious way. We note
that/(a) possesses an inverse if and only if/(a) is an automorphism. From Lemma
6 we obtain immediately:

THEOREM 3. Let G be a group of odd order. If there is an automorphism a. such that

(24) a-l,a,a-leAutG,

(23) xxa = xax for every xeG,

(21) a* = 1 for an odd integer t,

then G admits a skew Room map.

A Fermat prime is a prime of the form 2 '+1; from elementary number theory,
t = 2k follows. Write fk = 22*+1 if/fc is prime. The only known Fermat primes are
the primes/0 = %fx = 5, /2 = 17,/3 = 257,/4 = 65537. (/5,/6,/7 and/g are known
to be composite.)

THEOREM 4.IfG is the elementary abelian group of order q = pl, p an odd prime,
then, with possible exception of p = 3, / = 2, and p =fk,i=\,G possesses a skew
Room map.

PROOF. Let R = GF(q) be the Galois field of order q. We may assume that G be
the additive group of R. If p is a primitive element of GF (</), then, with q — 2s t +1
and t odd, a = p2' is an endomorphism of G of odd order t. a — 1, a, a +1 are auto-
morphisms if and only if a. ̂ 0 , ± 1. But 0#p2 ' for every /, and 1 = P

2H,-\ = p2'~H;
hence a^O, ± 1 if and only if t^ 1. Thus, if / # 1 then we may apply Lemma 6 to
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obtain the theorem; if t = 1 then q = pi = 22+l and the rest of the theorem
follows from the next lemma.

LEMMA 7. If p is a prime, andp1 = 2s+1 then either i = 2, p = 3, or / = 1 andp
is a Fermat prime p =/&.

PROOF. For i = 1, the lemma is clear; thus let />2 . From pi = 2s +1 we get

(25) pd-l\pi-l =2a for every rf which divides i.

In particular, p— 1 = 2r, and r| s since / ^ 2 . Hence (2r+1)'' = 2s +1, and modulo
2r+1 we obtain H-/2 r =2 8 +1 or 2r+1\i2r. Thus 2| /, and from (25) we seep 2 -1 = 2".
But p=l+2r, and from 1 +2" = p2 = (1 +2r)2 we get, after simplification,
2«-r _ 2 + 2r. This equation is only valid if r = 1, u = 3, and we have/? = 1 +2 r = 3.
Now, if j = 2ab,b odd, then by (25) 36— 1 is a power of 2. But we just had shown
that b had to be even if b^2. Therefore b = 1, i = 2a, and for a^2 we have the
contradiction 5|2", for 5 divides 80 = 3* — 1, which divides 3 ^ - 1 , which divides 2s.
Hence a < 1, or i = 1,2.

THEOREM 5. Let G be a finite group of odd exponent e. If e contains no Fermat
prime divisor fk then G admits a skew Room map.

PROOF. Let e = irpy, where the pt are distinct primes, and ri are positive integers.
Let ei be a primitive root modulo/^', a n d ^ = 2Siti+\, ?{odd. Sincep{ is not Fermat,
<t>l. The element ai = ei2

8' has modp? odd order, and, since ti>l, a ^ O ,
± 1 modpt, that is af — 1, af, ai+1 are prime to/»{.

From the Chinese remainder theorem, we get an integer a of odd order such that
a— 1, a, a + 1 are prime to e. Applying Lemma 6 with R = Z/eZ the ring of integers
modulo e, the theorem follows.

REMARK. Theorem 4 was proved originally by MuUin and Nemeth (1969) for
starters of G, which are equivalent to Room maps by Section 8.

6. The product construction

THEOREM 6. Let Go be a group of odd order with abelian normal subgroup G of
exponent e, prime to 3. If both G and GJG admit a pair of (skew) orthogonal Room
maps then a pair of (skew) orthogonal Room maps of Go exists. In particular, if
both G and Go/G admit strong (skew) Room maps, then so does Go.
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PROOF, (a) Let To be a left transversal of GJG, 1 e To. The map ' defined by
t-1G = t'G(t,t'eT0) is an involution of To fixing only 1. Select one of t,t' for
every {t, t'}^T0—{\} and call the resulting set S. Then we have

T: =SuS-1u{l}, SnS-1 = 0, 1$S, G0 = TG, \T\ = (G0:G).

The maps
t:g^gt=t-1gt (teT,geG)

are automorphisms of G. Considering / as a unit in the ring of endomorphisms
of G, exponents such as — t~x, \+t,... make sense.

We identify Go with GJG x G by

(tG,g) = tg (teT,geG),

and one verifies the equation

(b) Now we take (skew) orthogonal Room maps <p, <p' of G, and <1>, O' of GJG.
We may find an integer k satisfying

(k,e) = (k + \,e) = (k'-l,e) for every odd/

/k\
(take, for example, k with I -1 = - 1 , k$ -1 mod/? for every prime p dividing 3;

this is possible since there are (p—1)/2> 1 quadratic nonresidues mod/?). Define

( ift=\.

g-* ifteS-1,

We verify easily

<Po(g) =

<p'0(xG) ifxeG,

and a straightforward proof yields: <p'o is a Room map, and is trivial if and only if
both <p and O' are trivial,

(c) To prove that $»0 is a Room map first note that

(26) oit-Ag-1'1) =
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For t = 1, the left side equals pQ?"1) = 9(s) = "><(£)• F ° r teS we have

and for J C T ) ( g Y
Now 9?0(l) = ?(1) = 1, and by (26), if

x = (tG,g):

Therefore (1) and (2) are valid.
Finally suppose <po(x)x = <p<fj?)y. I n t n e factor group we have

Q>(xG)xG = <po(x)GxG = <po(y)GyG = 4>(yG)yG,

and, since O is a Room map, xG = yG. Suppose xG = yG = fG, O(fG) = uG,
where f,wer, and x = (tG,g), y = (;G,/i). Then

uco,(g) tg = (O(fg), cjt(g)) tg = yo(f G, g) tg = 9>0(x) x,

and similarly, uu)^h)th = f o W j ' whence utot(g)tg = uwt(h)th, or:

If / = 1 then we obtain <p(g)g = <p{h)h, or g = h since 9s is a Room map. If teS
then g^'g1'1 = hu'lH~\ or g ^ 1 = A*+1, or g = h since ()t+ l,e) = 1. If / e S " 1

then g~kgi'1 = h~kh'~1. Setting m = gh'1 we obtain m = mu (since G is abelian).
Now the order / of t divides the order of Go and thus is odd. By hypothesis,
(k'-l,e) = 1, and from m = mw = mk\ or m^'1 = 1 we get m = 1, that is g = h.
In every case we arrived at g = h, thus x = y. Therefore all the <po(x)x are distinct,
and (3) follows. Thus <p0 is a Room map.

(d) To prove orthogonality we have to show that

is possible only for x = y or x = y~x. Since (2) is valid we may assume
x . j e G u S ^ G . In the factor group we get 0>(xG)O'(xG)-1 = O(jG)O'Q-G)-1,
whence xG = yG since O and O' are orthogonal. Now if x ,yeG then

and x = y or x = j - 1 from the orthogonality of 9?, p' . And if x,yetG, teS"1,

x = (tG,g), y = (/G,/*), <D(fG) = uG, O ' ( ^ ) = "' we have

= uw,(g)u'~l = ug-ku'~\
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and similarly <po(j) <p'o(y)~1 = uh~ku'~1. Thus we have

ug~ku'~1, = uh~k u'~1g~k = h~k,

and g = h because of (k,e) = I. Therefore x = y.
(e) Now suppose <p, <p' and <J>, O' are skew orthogonal. From

we get from the skew orthogonality in the factor group xG = yG = G, that is
x,yeG, and then JC = y = 1 since 9? and <p' are skew orthogonal in G. Thus p0

and <p'o are skew orthogonal.
From the proof, we restate the simplest part as

COROLLARY. If Gt is a group of odd order, and G2 is an abelian group of order

prime to 2.3, and if <Pi,<p[ resp. <P2,,<p'2
 are (skew) orthogonal Room maps of Gx

resp. G2 then the maps <p, <p' of the direct product Gl x G2 defined by

f(l,ft(*)) ifa=\,
ma, x) =

((^00,1) i

( (l,<p'2(x)) ifa=\,

<p'(a,x) = l (<p[(a),x*) ifaeH,

{ (9'M),x~*) ifasH-\

where H is a set with HnH'1 = 0 , HuH"1 = ^ - { l } , are a pair of (skew)
orthogonal Room maps.

PROBLEM. IS there a product construction if G is nonabelian or if the order of
G is not prime to 3 ?

6.2. Now we use the theorem to prove

THEOREM 7. Every group G of order prime to 2.3.5 admits a skew Room map.

PROOF. G has odd order, and thus is solvable. Now any minimal normal sub-
group H of G is elementary abelian, and has an order prime to 2.3.5. For groups
of Fermat prime order ^ 3 , 5 , Chong (1972) proves the existence of skew strong
starters which are equivalent to skew adders for the patterned starter, and by
Theorem 9 (Section 8) these groups admit skew Room maps. For the other
elementary abelian groups of order prime to 2.3.5, Theorem 4 guarantees the
existence of a skew Room map. Thus H admits a skew Room map.

Induction on the order of G (beginning with the trivial group of order 1 where
a is a skew Room map) proves the theorem.

We may slightly extend Theorem 7:
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THEOREM 7a. Let G be a group of odd order. Suppose G possesses a chain

(27) G = G0>G1>...>Gk=l

with normal subgroups Gt of G and abelian factors GJGi+1 of an order prime to 3
(for i^ 1; for i = 0 nothing is required). Then, if all factors GJGi+1 (including i = 0)
possess strong (skew) Room maps, G admits a strong (skew) map, too.

PROOF. The theorem is trivial if k = 1. Now proceed by induction on k. If G
satisfies the stated conditions then G/Gk_1 does, but with £—1 instead of k. By
induction, GIGk_x admits a strong (skew) Room map. Since Gk_1 = Gk_1jGk

possesses a strong (skew) Room map, we may apply Theorem 6 yielding a strong
(skew) Room map of G.

REMARK. Every solvable group possesses a chain (27) with normal subgroups Gi

of G and abelian factors GJGi^ for all i.

7. A nonexistence theorem for skew room maps

LEMMA 8. Let G be a group of odd order, and H a set with HnH-1 = 0 ,
H<JH~X = G — {\}. If <p is a skew Room map of G, then

{?(x),?(x)-1\xeH} = G-{l},

and every element is obtained exactly once on the left.

PROOF. Since $? is strong, all <p(x), where x runs over H, are distinct; the same
holds for the f(x)~x. But 99 is skew, and therefore every <p(x) is distinct from every

POC'^CKVXSM). Thus {pOO.pOO"1!*^} is a set o f l^l + l-tflHGl-1

elements. But since <p is strong and <p(l) = 1, the element 1 is not in that set, and
the assertion follows.

Now let 93 be a Room map of G, and T: G->Z/WZ a homomorphism of G onto
Z/nZ. Then the kernel Ker T has order | G | n~x. From (3), counting multiplicities,

{xT\xeG} = GT = {<p(x)T+xT\xeG}.

Summing up the squares of the elements we obtain (x runs over G):

or

since
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Therefore, if <p is skew,

since — <p(x)T = (^(x)"1)7, <p(\)T = 0, and the preceding lemma. But

Thus

or

(28)

From this we deduce

THEOREM 8. Suppose a group G of odd order contains a normal subgroup K of
order prime to 3 with cyclic factor group of order divisible by 3. Then G admits no
skew Room map.

COROLLARY. An abelian group of odd order possessing a nontrivial cyclic 3-Sylow-
group admits no skew Room map.

PROOF. Suppose G admits a skew Room map. By hypothesis, G/K is cyclic,
isomorphic to Z/nZ, say. Therefore a homomorphism from G onto Z/nZ exists,
and (28) is valid. By assumption, «=0mod3 . (28) yields SUG^- 1 . But | Gin"1

is the order of K and prime to 3, a contradiction.

REMARK. The corollary was proved in terms of skew strong starters (compare
with Section 8) in Wallis and Mullin (1973).

8. Room maps and starters

8.1. For Room squares with a sharply transitive group of automorphisms
another description is available: the starter-approach. Starters are widely used in
the literature on Room squares and one-factorizations of complete graphs; see for
example Mullin and Nemeth (1969), Wallis et al. (1972), Wallis (1973b), Wallis
and Mullin (1973) and Anderson (1974). We derive a one-to-one correspondence
between starters and Room maps.

Let G be a group of odd order.
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A starter for G is a partition X = {{x^y^iel} of G—{1} into 2-sets such that

i y T \ } { y i ^ \ } {}
A right adder for A'is a subset A = {aj /e l } of G—{1} such that all â  are distinct,

and {xiai\iel}u{yiai\iel} = G — {1}; similarly, a /e/f aaffifer for A' is a subset
A = {at\iel} of G—{1} such that all ^ are distinct, and

{aiXi\ieI}u{aiyi\ieI} = G-{1}.

The adder A is sfcew if and only if {a^aj^iel} = G—{1}.
Every group of odd order admits a starter Jf0 = {{x, x~x} | x e H}, where /f is a

subset of G with HnH~1 = 0, HuH-1 = G-{1}. This starter is called the
patterned starter.

THEOREM9. Let G be a finite group of odd order, H a subset of G with H n H-1 = 0 ,
fl'uF-1 = G-{l}.
1. If <pis a Room map of G then

is a starter for G. If <p is a Room map (skew) orthogonal to <p then

is a right (skew) adder for X9. In particular, X is the patterned starter, and if <p is a
strong (skew) Room map then

is a right (skew) adder for the patterned starter.
2. If X = {{Xi,y^\iel} is a starter for G then the map <px defined by

where t\ = x ^ 1 is a Room map. IfA={ai\ieI} is a right (skew) adder for X then

the map <Px^t defined by

where t\ = x^j1 is a Room map (skew) orthogonal to <px.

PROOF. Since G has odd order the map x^-x2 is a permutation; so the ^'s are
well denned. By definition of a starter, {t^tj^iel} = G-{1}, and therefore <px

and <pXiA are well defined. The verification of the starter resp. Room map axioms
is then straightforward and will be omitted.
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8.2. During preparation of this paper I received a paper of Gross and Leonard
(1975) on adders for the patterned starter in nonabelian groups proving some of the
results above. They work with left adders for the patterned starter which are
related to Room maps by Theorem 9 via the following.

LEMMA 9. If A = {ai\iel) is a right adder for the patterned starter then
A' = {aj1\iel} is a left adder for the patterned starter, and conversely.

PROOF. Let the patterned starter be X = {{xiyxr1}\iel}. Then A is a right adder
for X if and only if {Xia^x^a^ iel} = G—{1}, or, taking inverses, if and only if
{ariXY\ar^Xi\ iel} = G-{1}, that is if and only if A' is a left adder for X.

COROLLARY. TO every strong Room map (p a left adder of the patterned starter
{{x^-^xeH} is associated by A' = {<p(x)\xeH}; conversely, every left adder of
the patterned starter corresponds to a strong Room map.

By the corollary, Theorem 1 of Gross and Leonard (1975), together with their
Theorem 4 is, if H is abelian, equivalent to the special case of Theorem 6 of this
paper, where the pairs of orthogonal Room maps are composed of the trivial
map and a strong Room map, each.

By Lemma 9, the existence of right adders is equivalent to the existence of left
adders (for the patterned starter only!); in particular Theorem 2 of Gross and
Leonard (1975) may be replaced by the 'dual' of Theorem 1, giving an existence
criterion for right adders in extensions of abelian groups not depending on the
factor system.

Theorem 6 of Gross and Leonard (1975) is equivalent to Theorem 7 here.
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