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Abstract
We study quantitative relationships between the triangle removal lemma and several of its variants. One
such variant, which we call the triangle-free lemma, states that for each ε > 0 there exists M such that
every triangle-free graph G has an ε-approximate homomorphism to a triangle-free graph F on at most
M vertices (here an ε-approximate homomorphism is a map V(G)→V(F) where all but at most ε |V(G)|2
edges of G are mapped to edges of F). One consequence of our results is that the least possible M in the
triangle-free lemma grows faster than exponential in any polynomial in ε−1. We also prove more general
results for arbitrary graphs, as well as arithmetic analogues over finite fields, where the bounds are close to
optimal.

Keywords: Removal lemma; diamond-free lemma; approximate homomorphism; graph regularity

2020 MSC Codes: Primary: 05C35, Secondary: 05D40, 11B30

1. Introduction
1.1. Graph removal and related results
The triangle removal lemma of Ruzsa and Szemerédi [27] is a fundamental tool in extremal
combinatorics.

Theorem1.1 (Triangle removal lemma). For every ε > 0, there exists δ > 0 such that every n-vertex
graph with fewer than δn3 triangles can be made triangle-free by deleting at most εn2 edges.

Definition 1.2. Let δTRL(ε) denote the largest possible constant δ in Theorem 1.1.

The standard proof of the triangle removal lemma, which uses Szemerédi’s regularity lemma
[30], gives an upper bound on δTRL(ε)−1 which is a tower of 2’s of height ε−O(1). The tower height
was improved to O( log (1/ε)) by Fox [8]. On the other hand, only a slightly superpolynomial
lower bound 1/δTRL(ε)≥ (1/ε)c log (1/ε) is known [27], coming from the Behrend construction of
large sets without 3-term arithmetic progressions [3].

The standard regularity proof of the triangle removal lemma actually shows that edges can be
removed in a bounded complexity way.

Theorem 1.3 (Triangle removal lemma with bounded complexity). For every ε > 0, there exist
δ > 0 and M such that for every n-vertex graph G with fewer than δn3 triangles, there is a vertex
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partition V(G) = V1 ∪ . . .∪VM, and a triangle-free graph G′ on V(G) which is complete or empty
between each pair (Vi,Vj) and satisfying |E(G) \ E(G′)| ≤ εn2.

The above formulation of the removal lemma was highlighted by Tao [33], who gave a
proof of the hypergraph removal lemma with similar bounded complexity features (the hyper-
graph removal lemma was independently proved by Gowers [14] and Rödl and Schacht [26])
and then used it to establish a removal lemma for sparse hypergraphs, which then led to the
Gaussian integer analogue of the Green–Tao theorem [32] (also see [5] for an improvement and
simplification).

We introduce the notion of an approximate graph homomorphism, which allows us to give a
succinct restatement of the above result.

Definition 1.4 (Approximate homomorphisms). Given graphs G and F, a map φ : V(G)→V(F)
is an ε-approximate homomorphism if at most ε|V(G)|2 edges of G do not map to edges of F
under φ.

The usual notion of a graph homomorphism corresponds to ε = 0. With this notion,
Theorem 1.3 is equivalent to the following statement.

Theorem 1.5 (Triangle removal lemma with bounded complexity, rephrased). For every ε > 0,
there exist δ > 0 and M such that every n-vertex graph G with fewer than δn3 triangles has an
ε-approximate homomorphism into some triangle-free graph with at most M vertices.

The following special case of Theorem 1.5 for triangle-free graphs G is already interesting.

Theorem 1.6 (Triangle-free lemma). For every ε > 0, there exists M such that every triangle-free
graph has an ε-approximate homomorphism to a triangle-free graph on at most M vertices.

Definition 1.7. LetMTFL(ε) denote the smallest possibleM in Theorem 1.6.

Note that the triangle removal lemma (Theorem 1.1) and triangle-free lemma (Theorem 1.6)
together imply Theorems 1.3 and 1.5. Indeed, starting with an n-vertex graph with fewer than
δTRL(ε/2)n3 triangles, first delete (ε/2)n2 edges to get rid of all triangles, and then find an ε/2-
approximate homomorphism into a triangle-free graph onMTRL(ε/2) vertices.

Motivated by graph property testing, Hoppen et al. [18] showed that one can deduce
Theorems 1.3, 1.5 and 1.6 using the triangle removal lemma (Theorem 1.1) combined with the
Frieze–Kannan weak regularity lemma [12]. In particular, the deduction does not need the full
Szemerédi graph regularity lemma. This implies that

MTFL(ε)≤ eO(δTRL(ε/C)
−2), (1)

which is already better than the usual bound ofMTFL ≤ tower(ε−O(1)) obtained from the standard
regularity proof (here tower(m) denotes an exponential tower of 2’s of height m). Indeed, (1)
is superior since 1/δTRL(ε)≤ tower(O( log (1/ε))) [8], and potentially 1/δTRL(ε) could be much
smaller. We include a proof sketch of (1) in Section 5.

We provide a complementary lower bound to MTFL(ε) in terms of the following close cousin
of the triangle removal lemma.

Theorem 1.8 (Diamond-free lemma). For every ε > 0, there exists some N such that for every
n≥N, every n-vertex graph where each edge lies in a unique triangle has at most εn2 edges.

Definition 1.9. Let NDFL(ε) denote the smallest constant N so that Theorem 1.8 holds.

The diamond-free lemma is a direct corollary of the triangle removal lemma, yielding
NDFL(ε)≤ 1/δTRL(ε/3). Indeed, suppose we have a graph on n≥ 1/δTRL(ε/3) vertices and each
edge lies in a unique triangle. Then the number of triangles is at most a third times the number of
edges, which is at most n2 ≤ δTRL(ε/3)n3. So by the triangle removal lemma, one can remove at
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most (ε/3)n2 edges to make this graph triangle-free. Since the graph was made up of edge-disjoint
triangles, it has at most εn2 edges.

A notable application of the diamond-free lemma is the graph theoretic proof of Roth’s the-
orem on 3-term arithmetic progressions by Ruzsa and Szemerédi [26]. In fact, this application
was one of the original motivations for the triangle removal lemma. Solymosi [29] also used the
diamond-free lemma to give a short proof of the corners theorem of Ajtai and Szemerédi [1]. The
best known lower bound on NDFL(ε) has the form (1/ε)c log (1/ε), which arises from the Behrend
construction of large sets without 3-term arithmetic progressions (for recent improvements on
the constant c coming from improved lower bound constructions related to the corners theorem,
see [16, 22]).

Here is a representative case of our main result. It gives an exponential lower bound for the
triangle-free lemma in terms of the bounds in the diamond-free lemma.

Theorem 1.10. There exists a constant C> 0 such that, for every ε > 0,

MTFL(ε)≥ eεNDFL(Cε)/C.

Using the best known lower bound on NDFL(ε), we deduce the following superexponential
lower bound onMTFL(ε) in terms of 1/ε.

Corollary 1.11. There exists a constant c> 0 such that for all 0< ε < 1/2,

MTFL(ε)≥ e(1/ε)
c log (1/ε)

.

We suspect thatNDFL(ε) and 1/δTRL(ε) have similar growth. The next result provides evidence
for this suspicion. We show that if NDFL(ε) grows subexponentially in ε−1, then 1/δTRL(ε) does
as well. The proof of the theorem is based on a similar proof in the arithmetic setting by Fox and
Lovász [9] but uses vertex subset sampling instead of subspace sampling.

Theorem 1.12. Fix 0< c< 1. If NDFL(ε)≤ 2ε−c+ o(1) as ε→ 0, then δTRL(ε)≥ 2−ε−c/(1−c)+o(1) as
ε→ 0.

If NDFL(ε) and 1/δTRL(ε) have similar growth (as is the case ifNDFL(ε) grows subexponentially
by Theorem 1.12), then Theorem 1.10 and the inequality (1) would give comparable lower and
upper bounds on MTFL(ε). Below we also discuss the arithmetic analogue, in which case the best
lower and upper bounds indeed match.

Here is the proof strategy for Theorem 1.10. We start with a graph satisfying the hypotheses
of the diamond-free lemma, namely that every edge lies in a unique triangle. We blow up this
graph and then carefully construct a triangle-free subgraph. By the triangle-free lemma, this final
graph we constructed must have an ε/C-approximate homomorphism to a triangle-free graph on
MTFL(ε/C) vertices, which then implies, by a novel entropy argument, that the original graph has
at most Cε−1 logMTFL(ε/C) triangles.

We state below extensions of the triangle removal lemma, the triangle-free lemma, and the
diamond-free lemma from a triangle to an arbitrary graph H. These results are standard in the
area, and their proofs use the same techniques as the triangle case.

Although some of these results are commonly stated in terms of H-free graphs (with caveats),
it will be more natural and relevant for us to discuss them using the following formulations with
H-homomorphism-free graphs. We say that a graph G is H-homomorphism-free if there is no
graph homomorphism from H to G. A homomorphic copy of H in G is a subgraph of G that is the
image of a homomorphism from H. The core of a graph H, denoted core(H), is defined to be the
smallest subgraph ofH that can arise as the image of a homomorphism ofH (see [17]). The core of
H is well-defined, that is, it is unique up to graph isomorphism. Indeed, suppose φ,ψ : H →H are
both homomorphisms with images φ(H) and ψ(H), then ψ gives a homomorphism from φ(H)
to ψ(H), and vice-versa with φ, so that the two images cannot both be minimal homomorphic
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copies of H unless they are isomorphic. For example, if H is a clique or an odd cycle, then
core(H)=H. Also, the core ofH consists of a single edge if and only ifH is bipartite and has at least
one edge.

Theorem 1.13. Let H be a graph. Let ε > 0.

a. There exists δ > 0 such that every n-vertex graph with fewer than δn|V(H)| homomorphic
copies of H can be made H-homomorphism-free by removing at most εn2 edges.

b. There exists some M such that every H-homomorphism-free graph has an ε-approximate
homomorphism to an H-homomorphism-free graph on at most M vertices.

c. Further suppose that H is connected and non-bipartite. There exists some N such that for
every n-vertex graph G with n≥N, if every edge of G lies in a unique homomorphic copy of
core(H), then G has at most εn2 edges.

Definition 1.14. Let δH(ε), MH(ε), and NH(ε) denote the optimal constants δ, M, and N,
respectively, in Theorem 1.13.

Nowwe state our results comparing the bounds in Theorem 1.13, extending the earlier inequal-
ity (1) and Theorem 1.10 from triangles to general H. The lower bound is new. The upper bound
below was already proved in [18], though we sketch a proof in Section 5.

Theorem 1.15 (Main theorem for graphs). For every connected non-bipartite graph H, there is
some constant C = CH > 0 such that, for every 0< ε < 1,

eεNH(Cε)/C ≤MH(ε)≤ eCδH(ε/C)
−2
.

1.2. Arithmetic analogue
Green [15] developed an arithmetic analogue of Szemerédi’s graph regularity lemma and used it
to prove the following arithmetic analogue of the triangle removal lemma.

Let G be an abelian group. Given X, Y , Z ⊆G, a triangle in X × Y × Z is a triple (X, Y , Z) ∈
X × Y × Z with x+ y+ z = 0.

Theorem 1.16 (Arithmetic triangle removal lemma). For every ε > 0, there exists δ > 0 such that
for every finite abelian group G, and subsets X, Y , Z ⊆G with fewer than δ|G|2 triangles in X × Y ×
Z, we can remove all triangles by deleting at most ε|G| elements from each of X, Y, Z.

Green’s proof was Fourier analytic. It was later shown by Král, Serra, and Vena [20] that the
arithmetic triangle removal lemma actually follows from the triangle removal lemma for graphs
and even extends to all groups.

Here is the arithmetic analogue of the diamond-free lemma. It is a corollary of the arithmetic
triangle-free lemma.

Theorem 1.17 (Arithmetic diamond-free lemma). For every ε > 0, there exists N such that for
every finite abelian group G with |G| ≥N, and x1, . . . , xl, y1, . . . , yl, z1, . . . , zl ∈G satisfying xi +
yj + zk = 0 if and only if i = j = k, one has l≤ ε |G|.

The sets {x1, . . . , xl}, {y1, . . . , yl}, {z1, . . . , zl} in Theorem 1.17 are commonly known as
‘tricolor sum-free sets’.

From now on, we restrict to the setting of G= F
n
p for a fixed p.

Definition 1.18. Let δp(ε) denote the largest possible constant δ in Theorem 1.16 when restricted
to groups of the form G= F

n
p for fixed prime p.
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Definition 1.19. Let Np(ε) denote the smallest positive integer so that Theorem 1.17 holds when
restricted to groups of the form G= F

n
p with pn ≥Np(ε) and fixed prime p.

In this setting, Green’s arithmetic regularity proof of Theorem 1.16 also gives us the following
stronger statement, analogous of Theorems 1.3 and 1.5.

Theorem 1.20 (Arithmetic triangle removal lemma with bounded complexity). For every ε > 0
and prime p, there exist δ > 0 and a positive integer m such that if X, Y , Z ⊆ F

n
p are such that

X × Y × Z has fewer than δp2n triangles, then there exist X′, Y ′, Z′ ⊆ F
m
p with X′ × Y ′ × Z′ being

triangle-free, and a linear map φ : Fn
p → F

m
p such that at most εpn elements from each of X, Y, Z do

not get mapped to X′, Y′, Z′, respectively.
A special case is the following analogue of the triangle-free lemma (Theorem 1.6).

Theorem 1.21 (Arithmetic triangle-free lemma). For every ε > 0 and prime p, there exists a pos-
itive integer m such that if X, Y , Z ⊆ F

n
p are such that X × Y × Z is triangle-free, then there exist

X′, Y ′, Z′ ⊆ F
m
p with X′ × Y ′ × Z′ being triangle-free, and a linear map φ : Fn

p → F
m
p such that at

most εpn elements from each of X, Y, Z do not get mapped to X′, Y′, Z′, respectively.

Definition 1.22. Letmp(ε) denote the smallestm in Theorem 1.21. LetMp(ε)= pmp(ε).

Following a breakthrough of Croot, Lev, and Pach [6] and Ellenberg and Gijswijt [7] on the cap
set problem, a number of developments together led to the following tight bound on Np(ε). The
upper bound on Np(ε) was shown by Blasiak et al. [4] and independently Alon (unpublished).
The lower bound was first established by Kleinberg and Fu [13] for p= 2, and then in general
by Kleinberg, Sawin, and Speyer [19] conditional on a conjecture later proved independently by
Norin [24] and Pebody [25].

Theorem 1.23 (Optimal bounds in arithmetic diamond-free lemma for Fn
p). For fixed prime p, as

ε→ 0, one has

Np(ε)= ε−1/cp+o(1)

with constant 0< cp < 1 given by

p1−cp = inf
0<t<1

t−(p−1)/3(1+ t + t2 + · · · + tp−1). (2)

Fox and Lovász [9] proved a polynomial dependence of parameters for the arithmetic triangle
removal lemma over Fn

p , and in fact determined the optimal exponent.

Theorem 1.24 (Optimal bounds in arithmetic triangle removal lemma for Fn
p). For fixed prime p,

as ε→ 0, one has

δp(ε)= ε1+ 1/cp + o(1)

where cp > 0 is the same constant defined in Theorem 1.23.

We prove the following analogue of Theorem 1.15.

Theorem 1.25 (Main theorem, arithmetic analogue). For any 0< ε < 1 and prime p,

pεNp(5ε)/p ≤Mp(ε)≤ p27δp(ε/4)
−2
.

Corollary 1.26. For any fixed prime p, as ε→ 0,

ε−1/cp + 1+ o(1) ≤ logp Mp(ε)≤ ε−2/cp − 2+ o(1).
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One can check that cp = (0.172 · · · + o(1))/ log p as p→ ∞. Indeed, by writing t = 1 − x/p
we can deduce that limp→∞ (RHS of (2))/p= infx> 0 ex/3(1 − e−x)/x= e−0.172···. In particular,
cp =�(1/ log p). So we obtain the following bound.

Corollary 1.27. There exists a universal constants C> 0 so that for all 0< ε < 1/2 and prime p,

ε−( log p)/C ≤ logp Mp(ε)≤ ε−C log p

For generalisations from triangles to longer cycles in F
n
p , Lovász and Sauermann [23] extended

the arithmetic diamond-free lemma with an optimal exponent, and Fox, Lovász, and Sauermann
[10] extended the arithmetic removal lemma with a polynomial dependence but left open the
optimal exponent.

It is possible to extend the above results from triangles to many other arithmetic patterns
(including cycles), though we do not pursue this direction here so as not to further complicate
matters. See [21, 28] for how to deduce removal lemmas for systems of linear equations over Fp
from graph and hypergraph removal lemmas.

Organisation. In Section 2, we prove the lower bound in Theorem 1.15, showing that the
triangle-free lemma implies the diamond-free lemma with good bounds, as well as for general
H. In Section 3, we prove Theorem 1.12, which shows that if the diamond-free lemma holds with
subexponential bounds, then so does the triangle removal lemma. In Section 4, we prove the arith-
metic analogue of the above, namely the lower bound in Theorem 1.25, which is based on similar
ideas but has a somewhat cleaner execution. In Section 5, we prove the upper bounds in Theorems
1.15 and 1.25 by showing that, both for the graph version and the arithmetic analogue, the triangle
removal lemma combined with the weak regularity lemma implies the diamond-free lemma with
good bounds.

2. Diamond-free versus triangle-free: graphs
Now we prove the lower bound eεNH(Cε)/C ≤MH(ε) in Theorem 1.15. Note that being H-
homomorphism-free is equivalent to being core(H)-homomorphism-free. So it suffices to con-
sider H = core(H), which will be the case for the rest of this section.

Construction 2.1 (Partial binary blow-up). SupposeH = core(H) is connected and has more than
one edge.

Let G be an n-vertex graph where every edge is contained in a unique homomorphic copy
of H. Suppose there are exactly m homomorphic copies of H in G, and we enumerate them by
H1, . . . ,Hm. We arbitrarily partition the edge set of each Hi into two non-empty sets, resulting in
Hi =H(0)

i ∪H(1)
i .

Let G′ be a subgraph of the 2m-blow-up of G constructed as follows. The vertices of G′
are indexed by V(G)× {0, 1}m. For each i ∈ [m], s ∈ {0, 1}, and uv ∈ E(H(s)

i ), the two vertices
(u, x1, . . . , xm) and (v, y1, . . . , ym) in G′ are adjacent if xi = yi = s. These are the only edges
in G′.

See Figure 1 for an example of the construction.

Lemma 2.2. The graph G′ obtained in Construction 2.1 is H-homomorphism-free.

Proof. Suppose we have a homomorphism φ : H →G′. We obtain a homomorphism ψ : H →
G by composing φ with the homomorphismG′ →G obtained by projection on the first coordinate
of V(G′)=V(G)× {0, 1}m. Since every edge of G lies on a unique homomorphic copy of H, ψ
must map H to some Hi (notated as in Construction 2.1). Consider the i-th binary coordinate of
φ(v) for v ∈V(H). This coordinate must equal to 0 whenever ψ(v) is an endpoint of an edge of
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Figure 1. Illustration of the partial binary blow-up, Construction 2.1, for H= K3.

H(0)
i , and equal to 1 whenever ψ(v) is an endpoint of an edge of H(1)

i . This is impossible to satisfy
simultaneously since H is connected.

Next, we show that the G constructed above has no ε-approximate homomorphism to an H-
homomorphism-free graph on a small number of vertices.

Proposition 2.3. Suppose H = core(H) and |E(H)|> 1. Let G be an n-vertex graph where every
edge is contained in a unique homomorphic copy of H. Let m be the number of homomorphic copies
of H in G. Let G′ be as in Construction 2.1.

If ε ≤m/(32n2), then there is no ε-approximate homomorphism from G′ to an H-
homomorphism-free graph on at most exp (cHm/n) vertices, where cH > 0 is some constant that
depends only on H.

We first give some intuition for the proof. Suppose φ : V(G′)→V(F) is an ε-approximate
homomorphism and F is H-homomorphism-free. Consider the vertices and edges of G′ corre-
sponding to the vertices of some Hi, which is a homomorphic copy of H in G. Consider the
bipartition Pi of V(Hi)× {0, 1}m ⊆V(G′) into two parts separated by the value of the i-th binary
coordinate. If φ is nearly orthogonal toPi onV(Hi)× {0, 1}m (in the sense that the two associated
random variables are nearly independent, as quantified by their mutual information), then the
behaviour of φ on V(Hi)× {0, 1}m would be similar to if the construction giving G′ had instead
used a full 2m-blow-up of Hi (without taking a subgraph, but with edge-weights 1/4 for normali-
sation). It would then follow that many edges of G′ inside V(Hi)× {0, 1}m cannot map to F, since
F is H-homomorphism-free.

So φ cannot be nearly orthogonal to too many different Pi’s. We then show that this would
force its image V(F) to be large. To illustrate this argument in an extreme scenario, consider a
typical vertex of G that lies in cm/n homomorphic copies of H, each of which corresponds to
some bipartition Pi. If φ were to refine cm/n such Pi’s, then the image of φ has size at least 2cm/n.
We use entropy to give an approximate version of this argument.

Given joint discrete random variables X and Y , letH(X) denote the (natural base) entropy ofX,
H(X|Y)=H(X, Y)−H(Y) the conditional entropy, and I(X;Y)=H(X)−H(X|Y) their mutual
information.

Definition 2.4. Let P0 and P1 be two finite disjoint sets of equal size. We say that a non-empty
subset Q⊆ P0 ∪ P1 is η-nearly bisected by {P0, P1} if the entropy of Bernoulli( |Q∩ P0| / |Q| ) is at
least log 2 − η2.

Every Bernoulli random variable W satisfies (as can be verified by direct calculation or an
application of Pinsker’s inequality, e.g., see [31])

∣∣∣∣P(W = 0) − 1
2

∣∣∣∣ ≤
√
log 2 − H(W)

2
.
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Thus, every Q that is η-nearly bisected by {P0, P1} satisfies∣∣∣∣ |Q∩ P0|
|Q| − 1

2

∣∣∣∣ ≤ η√
2
. (3)

The next technical lemma says that, if P0 ∪ P1 is a partition with |P0| = |P1|, and Q is another
nearly orthogonal partition of the same ground set, then the following two random processes
are roughly equivalent: (i) choosing uniform random vertex of P0 and (ii) first choosing a nearly
bisected part Q of Q with probability proportional to |Q|, and then picking a uniform element of
P0 ∩Q.

Lemma 2.5. Let P0 ∪ P1 and Q1 ∪ · · · ∪Qk be two partitions of some finite set U. Suppose
|P0| = |P1|.

Let u be a uniform random element of U and define random variables X ∈ {0, 1} and Y ∈ [k] so
that u ∈ PX ∩QY. Let η < 1/5. Suppose I(X;Y)≤ η3.

Let Jnb = {j ∈ [k] :Qj is η-nearly bisected by {P0, P1}}. Let Unb = ⋃
j∈Jnb Qj. Then |Unb| ≥ (1−

η) |U|.
Choose a random j ∈ Jnb where each j ∈ Jnb is chosen with probability proportional to

∣∣Qj
∣∣. And

then choose an element of P0 ∩Qj uniformly at random. Let μ be the distribution of this ran-
dom element. Then the total variation distance between μ and the uniform distribution on P0 is at
most 8η.

Proof.We have

I(X;Y)=H(X) − H(X|Y)= log 2 − H(X|Y)=
k∑

j= 1
P(u ∈Qj)( log 2 − H(X|u ∈Qj))

Since H(X|u ∈Qj)< log 2 − η2 for every part Qj which is not η-nearly bisected by {P0, P1}, the
above inequality combined with I(X;Y)≤ η3 implies

|Unb| ≥ (1− η) |U| . (4)

Then, for any E⊆ P0,

μ(E)=
∑
j∈Jnb

∣∣Qj
∣∣

|Unb|
∣∣E∩Qj

∣∣∣∣P0 ∩Qj
∣∣

= (2± 4η)
∑
j∈Jnb

∣∣E∩Qj
∣∣

|Unb| [by (3)]

= (2+ η± 4η)
∑
j∈Jnb

∣∣E∩Qj
∣∣

|U| . [by (4)]

If the final sum had been taken over all j (not just j ∈ Jnb), then it would sum to exactly |E| / |U|.
On the other hand, the j’s not in Jnb contribute at most η to the sum due to (4). Thus, this sum
is at least |E| / |U| − η. Therefore, μ(E) differs from 2 |E| / |U| = |U| / |P0| by at most 8η, which
gives the claimed upper bound on total variance distance.

Proof of Proposition 2.3. Let ε ≤m/(16n2) and φ : G′ → F be an ε-approximate homomor-
phism where F is H-homomorphism-free.

For v ∈V(G), let Uv denote the set of vertices in G′ of the form (v, x1, . . . , xm) for some
x1, . . . , xm ∈ {0, 1}. Let Uv,i→0 ⊂Uv be those vertices with xi = 0, and Uv,i→1 ⊂Uv those vertices
with xi = 1. Then for each i ∈ [m], there is a partition Uv =Uv,i→0 ∪Uv,i→1.
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Figure 2. Illustration for Claim ( † ) in the proof of Proposition 2.3 with H= K3. The vertices in Qja all map to ja ∈ V(F)
under φ, and likewise with Qjb and Qjc .

For i ∈ [m] and v ∈V(G), write

Ii,v := I(X; Y)

where X is the i-th binary coordinate of a uniform random vertex u ∈Uv and Y ∈V(F) is the
image of the same u under φ.

Let η= 1/(32 |E(H)| ).
( † ) Claim: For a fixed i, if Ii,v ≤ η3 for all v ∈V(Hi), then at least 22m−3 edges of G′ in⋃
ab∈E(Hi) Ua ×Ub do not map to an edge of F under φ.
The reader may find Figure 2 helpful when following the proof of this claim. The idea is that

for each a ∈V(Hi) we are going to select a pair of vertices (ua,0, ua,1) ∈Ua,i→0 ×Ua,i→1 that agree
on φ. Then for each ab ∈ E(Hi), one of ua,0ub,0 and ua,1ub,1 must be an edge of G (which one
depends on whether ab ∈ E(H(0)

i ) or ab ∈ E(H(1)
i )). If all these edges map to edges of F under φ,

then we would obtain a homomorphic copy of H in F, which is impossible. So one of these edges
does not get mapped to an edge of F, which then implies the claim by an averaging argument. The
averaging argument uses that each ua,0 (and ua,1) is nearly uniformly distributed on its domain by
Lemma 2.5.

Now we proceed with the actual proof. Independently for each a ∈V(Hi), consider the fol-
lowing process for choosing a pair of vertices ua,0, ua,1 ∈Ua. Recall the partition of Ua into
Ua,i→0 ∪Ua,i→1 according to the value of the coordinate xi. Also partition Ua into Qj’s accord-
ing to fibres of φ, that is, set Qj = φ−1(j)∩Ua for each j ∈V(F). As in Lemma 2.5, we choose a
random partQja that is η-nearly bisected by {Ua,i→0,Ua,i→1}, where eachQja is chosen with prob-
ability proportional to

∣∣Qja
∣∣.We choose a random vertex ua,0 ∈Ua,i→0 ∩Qja uniformly at random.

Independently, we choose another random vertex ua,1 ∈Ua,i→1 ∩Qja uniformly at random.
For each s ∈ {0, 1} and each ab ∈ E(H(s)

i ), consider the edge ua,sub,s ofG′ formed by the random
vertices chosen earlier (both ua,s and ub,s have their i-th binary coordinate equal to s, so ua,sub,s
is indeed an edge of G′ by Construction 2.1). At least one of these |E(H)| edges of G′ cannot be
mapped to F under φ, or else they would give a homomorphic copy of H in F. It follows that∑

s∈{0, 1}

∑
ab∈E(H(s)

i )

P
(
φ(ua,s)φ(ub,s) /∈ E(F)

) ≥ 1.

Now choose u′a,0 ∈Ua,i→0 and u′a,1 ∈Ua,i→1 independently and uniformly at random for each
a ∈V(Hi). By Lemma 2.5, the total variation distance between these random variables satisfies
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(using the triangle inequality and independence of random variables)

dTV(ua,0ub,0, u′a,0u′
b,0)≤ dTV(ua,0ub,0, u′a,0ub,0)+ dTV(u′a,0ub,0, u′a,0u′

b,0)
= dTV(ua,0, u′a,0)+ dTV(ub,0, u′

b,0)≤ 16η.

Thus, combining the above two displayed inequalities,∑
s∈{0, 1}

∑
ab∈E(H(s)

i )

P
(
φ(u′a,s)φ(u′

b,s) /∈ E(F)
) ≥

∑
s∈{0, 1}

∑
ab∈E(H(s)

i )

(P
(
φ(ua,s)φ(ub,s) /∈ E(F)

) − 16η)

≥ 1− 16 |E(H)| η≥ 1
2
.

The left-hand side, multiplied by 22m−2, equals the number of edges in
⋃

uv∈E(Hi) Uu ×Uv that do
not map to F under φ. This implies the Claim ( † ).

For a fixed v ∈V(G), choose X1, . . . , Xm ∈ {0, 1} independently and uniformly at random. Let
Y be the image under φ of the vertex (v, X1, . . . , Xm). We have

m∑
i= 1

Ii,v =
m∑

i= 1
I(Xi;Y)=

m∑
i=1

(H(Xi) − H(Xi|Y))

=m log 2 −
m∑
i=1

H(Xi|Y)

≤m log 2 − H(X1, . . . , Xm|Y)
=H(Y)≤ log |V(F)| .

Summing over v ∈V(G), we obtain
∑

v∈V(G)

m∑
i=1

Ii,v ≤ n log |V(F)| .

Since φ is an ε-approximate homomorphism, at most εn222m edges of G′ do not map to an
edge of F. Thus, the hypothesis of Claim ( † ) is satisfied for at most 8εn2 different i ∈ [m]. For all
other i, one has Ii,v >η3 for some v ∈V(Hi), and thus

∑
v∈V(G) Ii,v ≥ η3. Summing over all i, we

obtain ∑
v∈V(G)

m∑
i=1

Ii,v ≥ (m − 8εn2)η= m − 8εn2

(32 |E(H)| )3 ≥ m
2(32 |E(H)| )3 .

Comparing the above two displayed inequalities, we obtain log |V(F)| ≥ cHm/n, as claimed.

Proof of the lower bound in Theorem 1.15. LetH be connected and non-bipartite and 0< ε < 1.
We would like to show that if eεn/C ≥MH(ε/C), where C = CH > 0 is a sufficiently large constant,
then any n-vertex graph G where every edge lies in a unique homomorphic copy of core(H) has at
most εn2 edges.

Since being H-homomorphism-free is equivalent to being core(H)-homomorphism-free, we
can replace H by its core, and assume from now on that H = core(H), which has more than one
edge sinceH was originally not bipartite. Suppose for contradiction that the number of homomor-
phic copies of H in G ism> εn2/ |E(H)|. Obtain G′ using Construction 2.1. Then by Lemma 2.2,
G′ isH-homomorphism-free. Hence by Theorem 1.13(b), there exists an ε/C-approximate homo-
morphism from G′ to anH-homomorphism-free graph on at mostMH(ε/C)≤ eεn/C vertices. On
the other hand, by Proposition 2.3, making sure that C is large enough so that ε/C ≤m/(32n2),
there is no ε-approximate homomorphism from G′ to anH-homomorphism-free graph on fewer
than ecHm/n vertices, which contradicts the previous sentence if C is large enough.
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3. Diamond-free versus triangle removal: graphs
In this section, we prove Theorem 1.12, following the techniques in [9]. Assuming that NDFL(ε)
grows subexponentially in ε−1, it shows that NDFL(ε) and δTRL(ε) have similar growth.

Let g : (0, 1]−→R
+ satisfy that g(β) increases as β decreases, g(β)β decreases as β decreases,

and
∑∞

i= 1 1/g(2−i)< 1/2. For example, we may take g(x) = 100 log (100/x)( log log (100/x))2.

Lemma 3.1. Suppose G is a graph on n vertices with δn3 triangles and at least εn2 edges need to be
deleted to make G triangle-free. Then G has a subgraph with αn3 triangles for some 0<α ≤ δ and
no edge is in more than g(α/δ)αn/ε triangles.

Proof.We repeatedly delete edges from G one at a time in the most triangles until we arrive at
the desired subgraph. Suppose that after removing a certain number of edges, the current remain-
ing subgraph G′ has βn3 triangles with β ≤ δ. If no edge is in more than g(β/δ)βn/ε triangles in
G′, then we will see that G′ is the desired subgraph as less than εn2 edges are deleted in total so we
have β > 0. Otherwise, we delete the edge in G′ in the most triangles.

To go from βn3 triangles to at most βn3/2 triangles, we remove at least g(β/(2δ))(β/2)n/ε
triangles for each edge deleted, so in total we delete at most

βn3

g( β2δ )
βn
2ε

= 2εn2

g( β2δ )

edges in halving the total number of triangles from βn3 to at most βn3/2. In total, we delete
at most

∑∞
i= 1 2εn2/g(1/2i)< εn2 edges in this process. As the original graph G we assumed

required at least εn2 edges to be deleted to make triangle-free, the remaining subgraph when the
process terminates still has at least one triangle and satisfies the desired properties.

Lemma 3.2. Suppose G is a graph on n vertices with αn3 triangles and each edge is in at most
t ≤ n/100 triangles. There is a subgraph of G with N = n/(9t) vertices and more than αN3 edges in
which every edge is in exactly one triangle.

Proof. Pick a random subset S of N = n/(9t) vertices. Call a triangle T of G good if it is a
subset of S but no edge of T is in another triangle in S. The probability T is a subset of S is(n/(9t)

3
)
/
(n
3
) ≥ 1/(1000t3). For each triangle T, there are at most 3t − 3 other vertices that together

with an edge of T make a triangle in G. Conditioned on T being a subset of S, the probability that
another particular vertex is in S is at most n/(9t)− 3

n−3 ≤ 1/(9t). Thus, conditioning on T is in S,
the probability that T is good is at least 1− (3t − 3)/(9t) > 2/3. Hence, the expected number
of good triangles in S is at least 1

1000t3 · 2
3 · αn3 = 2α(n/t)3/3000. The edges in the good triangles

form a subgraph of G with N = n/(9t) vertices in which each edge is in exactly one triangle and
there are at least α(n/t)3/500>αN3 edges.

Now we prove Theorem 1.12, which, as a reminder, says that for fixed 0< c< 1, if NDFL(ε)≤
2ε−c+o(1) as ε→ 0, then δTRL(ε)≥ 2−ε−c/(1−c)+o(1) as ε→ 0.

Proof of Theorem 1.12. Let g(x) = 100 log (100/x)( log log (100/x))2. Let G be a graph on n
vertices with δn3 triangles such that at least εn2 edges need to be removed to makeG triangle-free.
By Lemma 3.1, G has a subgraph G′ with αn3 triangles for some 0<α ≤ δ and no edge is in more
than t := g(α/δ)αn/ε triangles. Let g = g(α/δ). So α/δ = 2g1−o(1) as g → ∞. Also let ε0 = ε/

(
9g

)
.

Applying Lemma 3.2 to G′, there is a subgraph G′′ of G′ on N = n/(9t) = ε0/α vertices with
more than αN3 = ε0N2 edges and each edge is in exactly one triangle.

The graph G′′ shows that NDFL(ε0)≥N = ε0/α. On the other hand, by assumption,
NDFL(ε0)≤ 2ε

−c+o(1)
0 as g → ∞. These two bounds on NDFL(ε0) together imply

ε−1
0 2ε

−c+o(1)
0 ≥ α−1 = (δ/α)δ−1 = 2g

1−o(1)
δ−1.
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This bound gives

δ−1 ≤ 2ε
−c+o(1)
0 −g1−o(1) = 2(9g/ε)

c−o(1)−g1−o(1) ≤ 2−ε−c/(1−c)+o(1)
.

The middle term is maximised when g = ε−c/(1−c)+oε→0(1) and gives the last inequality.

4. Diamond-free versus triangle-free in Fnp
In this section, we prove the lower bound in Theorem 1.25 showing that, in F

n
p , the triangle-free

lemma (Theorem 1.21) implies the diamond-free lemma (Theorem 1.17) with good quantitative
bounds. The idea is to construct a blow-up similar to that done in Section 2 for graphs, though the
proof is cleaner here since partitions into cosets are much more rigid than arbitrary partitions.

Construction 4.1. Suppose x1, . . . , xl, y1, . . . , yl, z1, . . . , zl ∈ F
n
p satisfy xi + yj + zk = 0 if and

only if i = j = k.
Let X′i denote the set of all elements of Fn+l

p whose first n coordinates form xi, and whose
(n+ i)-th coordinate lies in {0, . . . , ⌊(p− 2)/3

⌋}. Let X′ = ⋃l
i= 1 X′i.

Let Y ′i denote the set of all elements of Fn+l
p whose first n coordinates form yi, and whose

(n+ i)-th coordinate lies in {0, . . . , ⌊(p− 2)/3
⌋}. Let Y ′ = ⋃l

i= 1 Y ′i.
Let Z′i denote the set of all elements of Fn+l

p whose first n coordinates form zi, and whose (n+
i)-th coordinate lies in {1, . . . , ⌊(p− 2)/3+ 1

⌋}. Let Z′ = ⋃l
i= 1 Z′i.

Note thatX′ × Y ′ × Z′ above is triangle-free. Indeed, the first n coordinates of any such triangle
must form (xi, yi, zi) for some i, but then the (n+ i)-th coordinate cannot sum to zero.

Proposition 4.2. Let x1, . . . , xl, y1, . . . , yl, z1, . . . , zl ∈ F
n
p and X′, Y ′, Z′ ⊂ F

n+l
p be as in

Construction 4.1.

Let φ : Fn+l
p → F

m
p be any linear map. Let X′′, Y ′′, Z′′ ⊂ F

m
p . Suppose X′′ × Y ′′ × Z′′ is triangle-

free. Then ∣∣X′ \ φ−1(X′′)
∣∣ + ∣∣Y ′ \ φ−1(Y ′′)

∣∣ + ∣∣Z′ \ φ−1(Z′′)
∣∣ ≥ (l − m)pl/4.

Proof. Since the rank of φ is at mostm, there is some w= (w1, . . . ,wn+l) ∈ F
n+l
p with φ(w)= 0

such that the first n coordinates of w are all zero and w has at least l−m nonzero coordinates. Say
that i ∈ [m] is ‘good’ if wn+i �= 0.

Fix a good i. Writing X′i, Y ′i, Z′i as in Construction 4.1, we claim that∣∣X′i \ φ−1(X′′)
∣∣ + ∣∣Y ′i \ φ−1(Y ′′)

∣∣ + ∣∣Z′i \ φ−1(Z′′)
∣∣ ≥ pl−1(

⌊
(p− 2)/3

⌋ + 1)≥ pl/4. (5)

Summing over all good i yields the claim.
Let us prove (5). Say that x′ ∈ F

n+l
p lies above x ∈ F

n
p if their first n coordinates agree. Choose

x′, y′, z′ ∈ F
n+l
p uniformly at random among triples with x′ + y′ + z′ = 0 such that x′, y′, z′ lie above

xi, yi, zi, respectively and furthermore the (n+ i)-th coordinates of x′, y′, z′ are all zero.
Let a,b,c be independent uniform random elements from {0, . . . , ⌊(p− 2)/3

⌋}. Multiplying w
by a scalar, we may assume that its (n+ i)-th coordinate equals to 1. Let

x= x′ + aw ∈ X′i, y= y′ + bw ∈ Y ′i, and z = z′ + (c+ 1)w ∈ Z′i.

Note that x is uniformly distributed in X′i, and likewise with y in Y ′i and z in Z′i.
Since x′ + y′ + z′ = 0 and φ(w)= 0, we have φ(x)+ φ(y)+ φ(z)= 0. Due to the hypothesis on

X′′, Y ′′, Z′′, we cannot simultaneously have φ(x) ∈ X′′, φ(y) ∈ Y ′′, φ(z) ∈ Z′′. Therefore,
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P(φ(x) /∈ X′′)+ P(φ(y) /∈ Y ′′)+ P(φ(z) /∈ Z′′)≥ 1.

Multiplying both sides by pl−1(
⌊
(p− 2)/3

⌋ + 1) establishes (5).

Proof of the lower bound in Theorem 1.25. Suppose x1, . . . , xl, y1, . . . , yl, z1, . . . , zl ∈ F
n
p satisfy

xi + yj + zk = 0 if and only if i = j = k. Let m=mp(ε/5). It suffices to show that if pn ≥ 5m/ε
then l≤ εpn. Indeed, this would imply Np(ε)/p≤ 5m/ε since Np(ε) is defined to be the smallest
possible pn (with n being a positive integer, which is why we have Np(ε)/p on the left-hand side)
so that we can guarantee the conclusion l≤ εpn.

Apply Construction 4.1 to obtain sets X′, Y ′, Z′ ⊆ F
n+l
p . Since X′ × Y ′ × Z′ is triangle-free, by

Theorem 1.21 there exist X′′, Y ′′, Z′′ ⊆ F
m
p with X′′ × Y ′′ × Z′′ triangle-free and a linear map

φ : Fn+l
p → F

m
p such that at most (ε/5)pn+l elements from each of X′, Y ′, Z′ do not get mapped

to X′′, Y ′′, Z′′, respectively. On the other hand, Proposition 4.2 tells us that at least (l−m)pl/4
elements in total from X′, Y ′, Z′ combined do not get mapped to X′′, Y ′′, Z′′, respectively. So
(l−m)pl/4≤ (ε/5)pn+l, and hence l≤ (4ε/5)pn +m≤ εpn.

5. Triangle-free versus triangle removal
5.1. Sketch of the argument for graphs

Here we sketch the proof of upper boundMH(ε)≤ eCδH(ε/C)−2 in Theorem 1.15, which was proved
in [18, Section 3.3]. In the next subsection, we give the details of the analogous argument in the
arithmetic setting.

First one shows that the graph removal lemma Theorem 1.13(a) can be extended to allow edge-
weights on the n-vertex graph with edge-weights in [0, 1]. When countingH in a weighted graph,
we weigh each homomorphic copy of H by the product of the edge-weights.

Theorem 5.1 (Weighted graph removal lemma). For every H and ε > 0, there exists δ > 0 such
that for every n-vertex edge-weighted graph G with edge-weights in [0, 1], if the weighted number of
homomorphisms from H to G is less than δn|V(H)|, then G can be made H-homomorphism-free by
removing edges with total weight at most εn2.

In [18], the weighted version of the removal lemmawas derived from the unweighted version as
follows. Starting with a weighted graphG, consider the unweighted graphG′ consisting of all edges
whose edge-weight is at least ε/2. If G hasH-homomorphism-density at most δH(ε/2)(ε/2)|E(H)|,
thenG′ hasH-homomorphism-density at most δH(ε/2), so by the removal lemma,G′ can bemade
H-homomorphism-free by removing at most εn2/2 edges. Now we remove the same edges from
G, along with all edges with individual weight less than ε/2, and then the resulting weighted graph
is H-homomorphism-free.

The above argument shows that in Theorem 5.1, one can take δ = δH(ε/2)(ε/2)|E(H)|. This
is good for most purposes, though we sketch a different argument showing that one can take
δ = δH( ε

|E(H)|+1 ) in Theorem 5.1 (the latter bound is superior when δH(ε)= ε�(1), which is the
case if and only if H is bipartite [2], but also in the arithmetic analogue below). See Theorem 5.4
below for the details of a completely analogous argument in the arithmetic setting.

Let G be a weighted n-vertex graph withH-homomorphism density less than δ = δH( ε
|E(H)|+1 ).

Randomly blow G up to an mn-vertex graph G′. This means replacing every edge xy ∈ E(G)
with edge-weight w(x,y) by a random bipartite graph with m vertices in each part and ran-
dom edges appearing independently with probability w(x,y). We view G as fixed and consider
m→ ∞. Then with probability 1− o(1), the H-homomorphism density in G is less than δ. So by
the graph removal lemma (Theorem 1.13(a)), one can delete at most εm2n2/( |E(H)| + 1) edges
from G′ to make it H-homomorphism-free. For each edge xy of G, delete it from G if more than
w(x, y)m2/( |E(H)| + 1) edges sitting above it were deleted from G′. This then deletes edges from

https://doi.org/10.1017/S0963548321000572 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000572


734 J. Fox and Y. Zhao

G with total weight at most εn2. Furthermore, with probability 1− o(1), no homomorphic copy
ofH remains. Indeed, suppose some homomorphic copyH0 ofH were to remain. Consider a ran-
dom copy of H0 in G′ above H0. A linearity of expectations argument (here we use that with high
probability all edges of G′ between the same pair of parts lie in roughly the same number of copies
of H0, as can be verified by a Chernoff bound argument) shows that with positive probability one
of these copies ofH0 does not contain any deleted edges, which violates that we had deleted edges
from G′ and made it H-homomorphism-free.

Nowwe sketch the argument in [18] that derives Theorem 1.13(b) from Theorem 1.13(a) yield-
ing the bound MH(ε)≤ eCδH(ε/C)−2 in Theorem 1.15. Starting with an H-homomorphism-free
graph G, we can apply the Frieze–Kannan weak regularity lemma to obtain a δ/C-weak-regular
partition P of G with M = eO(δ−2) parts. Let G/P be the corresponding reduced weighted graph
whose vertices are the parts of the partition and weights being the edge densities between the cor-
responding pairs of parts. By the counting lemma, theH-homomorphism-densities inG andG/P
differ by OH(δ/C). We can choose the constant C so that G/P has H-homomorphism density at
most δ. Then Theorem 1.13(a) allows us to make the reduced graph H-homomorphism-free by
removing weighted edges in G/P corresponding to at most εn2 edges in G. Then the map from
V(G) to P gives an ε-approximate homomorphism from G to an H-homomorphism-free graph
withM parts.

5.2. Arithmetic analogue
Now we provide the arithmetic analogue of the argument sketched above, thereby showing the
upper boundMp(ε)≤ p27δp(ε/4)−2 in Theorem 1.25.

Given a function f : Fn
p →R, and a subspace H ≤ F

n
p , we write fH : Fn

p →R for the function
that is constant on every H-coset, so that on x+H the value of fH equals to the average of f on
x+H. We say that H is ε-weakly-regular for f the L∞ norm of the Fourier transform of f − fH
is at most ε. We say that H is ε-weakly regular for a set X ⊆ F

n
p if it is so for its indicator function

f = 1X . Here the normalisation of the Fourier transform is given by f̂ (y)=Exf (x)e−2π i(x·y)/p. Also
we write ‖f ‖1 =Ex

∣∣f (x)∣∣.
We recall the weak regularity lemma and the associated counting lemma, both of which are

standard (e.g., see [11, Section 2]). These are versions of Green’s arithmetic regularity results [15]
analogous to the Frieze–Kannan weak regularity lemma [12].

Lemma 5.2 (Weak arithmetic regularity lemma). Let p be a prime and ε > 0. For every X, Y , Z ⊆
F
n
p, there exists a subspace H of Fn

p of codimension at most 3ε−2 that is ε-weakly-regular for each of
X, Y, Z.

A quick proof sketch: take H to be the subspace orthogonal to all non-trivial characters with
Fourier transform magnitude at least ε for any of X,Y ,Z. There are at most ε−2 such characters
for X by Parseval, and likewise with Y and Z.

For f , g, h : Fn
p → [0, 1], let us denote their triangle density by

�(f , g, h) := Ex,y,z∈Fnp : x+y+z=0f (x)g(y)h(z).

The following counting lemma is also standard (e.g., see [11, Lemma 4] for a proof).

Lemma 5.3 (Counting lemma). Let p be a prime and ε > 0. For every f , g, h : Fn
p → [0, 1] and a

subspace H of Fn
p that is ε-regular with respect to each of f,g,h, then∣∣�(f , g, h) − �(fH , gH , hH)

∣∣ ≤ 3ε.

We need the following weighted version of the arithmetic triangle removal lemma. The proof
follows the second argument sketched in the previous subsection (the first argument sketched
there, by considering edges with weight at least ε/2, would be too lossy).
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Theorem 5.4 (Weighted arithmetic triangle removal lemma). If f , g, h : Fn
p → [0, 1] are such that

�(f , g, h)< δp(ε/4), then there exist f ′, g, h′ : Fn
p → [0, 1] such that�(f ′, g′, h′)= 0 and

∥∥f − f ′
∥∥
1,∥∥g − g′∥∥

1,
∥∥h− h′∥∥

1 ≤ ε.
Proof. In this proof, we fix f , g, h : Fn

p → [0, 1] with �(f , g, h)< δp(ε/4). All the asymptotics
are with respect to a new parameterm→ ∞.

We say that y ∈ F
n+m
p is above x ∈ F

n
p if the first n coordinates of y form x.

Let X be a random subset of Fn+m
p obtained by independently keeping each element above

every x ∈ F
n
p with probability f (x). Likewise define Y , Z ⊆ F

n+m
p from g,h, respectively.

With high probability (meaning probability 1− o(1) as m→ ∞), X × Y × Z has at most
δp(ε/4)p2(n+m) triangles, so by the arithmetic triangle removal lemma (Theorem 1.16), we can
remove all triangles by deleting at most εpn+m/4 elements from each of X,Y ,Z.

For each x ∈ F
n
p , we set f ′(x)= 0 if we deleted least f (x)pm/4 elements of X above x, and

set f ′(x)= f (x) otherwise. Then the number of elements deleted from X is at least
∑

x∈Fnp (f −
f ′)(x)pm/4. Thus,

∥∥f − f ′
∥∥
1 ≤ ε. Similarly, define g′ and h′.

Finally, we claim with high probability, �(f ′, g′, h′)= 0. Suppose otherwise. Fix some x+ y+
z = 0 in F

n
p with f ′(x), g′(y), h′(z)> 0. Among all triples (x′, y′, z′) ∈ X × Y × Z sitting above (x, y,

z) and satisfying x′ + y′ + z′ = 0, choose a triple uniformly at random. One of x′, y′, z′ must be
deleted to make X,Y ,Z triangle-free, so

P(x′ is deleted)+ P(y′ is deleted)+ P(z′ is deleted)≥ 1.

On the other hand, the total variation distance between x′ and a uniform random element of
X above x is o(1) with high probability (e.g., a second moment argument shows that almost all
x′ lies in nearly the same number of such triples (x′, y′, z′)). So if rx is the fraction of elements
above x that are deleted, then rx + ry + rz ≥ 1− o(1) with high probability, thereby contradicting
rx, ry, rz ≤ 1/4.

Proof of the upper bound in Theorem 1.25. We want to show that the arithmetic triangle-free
lemma (Theorem 1.21) holds with somem≤ 27δ−2, where δ := δp(ε/4).

Let X, Y , Z ≤ F
n
p be such that X × Y × Z is triangle-free. Applying the arithmetic weak reg-

ularity lemma (Lemma 5.2), we find a subspace H of Fn
p with codimension m≤ 27δ−2 that is

δ/3-weakly-regular to each of X,Y ,Z.
Let φ : Fn

p → F
m
p be a linear map with kernelH. Define f , g, h : Fm

p → [0, 1] by setting, for each
x ∈ F

m
p , f (x)=

∣∣φ−1(x)∩ X
∣∣ /pn−m. In other words, f (x) is the fraction of the coset H + φ−1(x)

that belongs to X. Likewise define g and h based on Y and Z.
Applying the counting lemma (Lemma 5.3),

�(f , g, h)=�((1X)H , (1Y )H , (1Y )H)≤�(1X , 1Y , 1Y )+ δ = δ.

By the weighted arithmetic triangle removal lemma, Theorem 5.4, there are f ′, g′, h′ : Fm
p → [0, 1]

so that �(f ′, g′, h′)= 0 and
∥∥f − f ′

∥∥
1,

∥∥g − g′∥∥
1,

∥∥h− h′∥∥
1 ≤ ε. The conclusion of Theorem 1.21

follows then by taking X′, Y ′, Z′ to be the respective supports of f ′, g′, h′.
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