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1. Introduction
In [18], Thurston classified linear automorphisms of the torus into three classes, according
to the eigenvalues of the automorphism A ∈ SL(2, Z):
• diagonalizable automorphisms with eigenvalues of modulus 1 (rotations);
• non-diagonalizable automorphisms (Dehn twists);
• automorphisms with eigenvalues of modulus �= 1 (Anosov diffeomorphisms).
In this same work, Thurston went on to classify homeomorphisms of any surface up to
isotopy class. The principle was quite similar, and is now known as the Nielson–Thurston
classification of elements of mapping class groups. This is summarized in the following
theorem.

THEOREM 1.1. Let M be a compact orientable surface, and let f : M → M be a
homeomorphism. Then f is isotopic to a homeomorphism F satisfying exactly one of the
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following three conditions.
• F is a rotation: there is an integer n for which Fn ≡ Id.
• F is reducible: there is a closed curve in M which F leaves invariant.
• F is pseudo-Anosov.

Of these three isotopy classes, from a dynamical systems perspective, the pseudo-Anosov
maps are the most interesting. The most familiar example of a pseudo-Anosov map
is the Arnold ‘cat map’ of the two-dimensional torus T

2, which is in fact an Anosov
diffeomorphism. No other surface admits an Anosov diffeomorphism, but pseudo-Anosov
homeomorphisms of surfaces besides T

2 form an analogy of Anosov maps to other
surfaces. Like their Anosov cousins, pseudo-Anosov maps admit a pair of transverse
foliations of the state space, and the map uniformly contracts points along the leaves
of one foliation and uniformly dilates points along the leaves of the other. In the
traditional definition of a pseudo-Anosov homeomorphism (see §2), the contraction and
dilation factors are constant and inverses of each other, similarly to a hyperbolic toral
automorphism such as the cat map. (Accordingly, these maps are often referred to as
‘linear pseudo-Anosov maps’; see, for example, [7].) The primary difference between
Anosov and pseudo-Anosov maps is the presence of finitely many singularities in the
foliations. These are points where three or more leaves of one of the foliations meet at
a single point. These leaves are known as ‘prongs’ of the singularity. The constant rate
of contraction and expansion along the transverse foliations means the map is globally
smooth except at the singularities. Pseudo-Anosov homeomorphisms have found their way
into almost every field of geometry, such as Teichmüller theory and algebraic geometry.
However, the ergodic properties of globally smooth realizations of pseudo-Anosov maps
remain a relatively undeveloped area of study.

In [8], Gerber and Katok produced a C∞ realization of pseudo-Anosov homeo-
morphisms by slowing down the trajectories near the isolated singularities. The result
is a surface diffeomorphism that is uniformly hyperbolic away from a finite set of
fixed-point singularities, but whose differential slows down to the identity at these fixed
points, thus admitting Lyapunov exponents of zero. These smooth pseudo-Anosov models
also admit continuous foliations whose leaves are smooth except at the fixed singular
points. Pseudo-Anosov diffeomorphisms constructed in this way are analogues of the
one-dimensional Manneville–Pomeau map of the unit interval to compact surfaces of
arbitrary genus (see [15]), in that they admit finitely many fixed-point singularities where
the differential slows down to the identity, but the map exhibits uniform hyperbolicity away
from these singularities.

To discuss the ergodic properties of these pseudo-Anosov diffeomorphisms, we use
techniques and results from thermodynamic formalism. Thermodynamic formalism has
been used to study ergodic and geometric properties of several classes of non-uniformly
hyperbolic and non-uniformly expanding maps. One objective of thermodynamic for-
malism is to determine the existence and uniqueness of probability measures known as
Sinai–Ruelle–Bowen (SRB) measures. These are invariant measures that admit positive
Lyapunov exponents almost everywhere, and have absolutely continuous conditional
measures on unstable submanifolds (see §4). They are also known as ‘physical measures’,

https://doi.org/10.1017/etds.2021.43 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.43
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in the sense that the set of points x ∈ M for which we have

lim
n→∞

1
n

n−1∑
k=0

ϕ(f n(x)) =
∫
ϕ dμ for any ϕ ∈ C0(M),

has positive measure. More generally, one also may consider equilibrium measures for
a given potential ϕ ∈ C0(M). Equilibrium measures are mathematical generalizations of
Gibbs distributions in statistical physics, which minimize the Helmholtz free energy of
a physical system. Within thermodynamic formalism, Helmholtz free energy is replaced
with the topological pressure Pf (ϕ) = sup{hμ(f )+ ∫

ϕ dμ : μ ∈ Mf }, where hμ(f ) is
the metric entropy of f with respect to μ, and Mf is the space of f -invariant Borel
probability measures on the manifold M . Equilibrium measures, in other words, are
invariant probability measures that maximize the sum of the metric entropy of f and the
space average of ϕ with respect to μ. The two most important equilibrium measures are
SRB measures (for which the potential is the negative log of the unstable Jacobian, or
ϕ1(x) = − log det |Dfx |Eu(x)|), and measures of maximal entropy (for which the potential
is ϕ0 ≡ 0).

One of the earliest applications of thermodynamic formalism was in studying the
ergodic theory of uniformly hyperbolic and Axiom A diffeomorphisms (see, for example,
[2]). Since then, the theory of thermodynamic formalism has proven useful in other
contexts. For example, the one-dimensional Manneville–Pomeau maps f : [0, 1] → [0, 1],
defined by f (x) = x(1 + axα) mod 1 for a > 0, α > 0, have been extensively studied as
classic examples of one-dimensional non-uniformly expanding maps (see, for example,
[14, 20] for some recent work on the infinite ergodic theory of Manneville–Pomeau maps).
Additionally, in [5], Climenhaga, Pesin, and Zelerowicz proved existence of equilibrium
measures for a broad class of potential functions in the partially hyperbolic setting. These
equilibrium measures include, in particular, a unique measure of maximal entropy and a
unique SRB measure. Finally, in [3], Buzzi, Crovisier, and Sarig showed that any surface
diffeomorphism admits at most finitely many ergodic measures of maximal entropy, and
that there is a unique such measure in the topologically transitive case. Our results are a
special instance of this setting, and develop further statistical and ergodic properties of the
measure of maximal entropy and other equilibrium states.

In this paper we effect a thermodynamic formalism for these pseudo-Anosov diffeomor-
phisms. Specifically, given a pseudo-Anosov diffeomorphism g of a compact surface M ,
we consider the family of geometric t-potentials ϕt (x) = −t log |Dg|Eu(x)| parametrized
by t ∈ R, whereEu(x) is the stable subspace at the point x ∈ M . Our main result, Theorem
4.1, claims that there is a number t0 < 0 such that for every t ∈ (t0, 1), there is a unique
equilibrium measure μt for ϕt that is Bernoulli, has exponential decay of correlations,
and satisfies the central limit theorem with respect to a class of functions containing all
Hölder continuous functions on M . We also show that the pressure function t �→ Pg(ϕt )

is real analytic in the open interval (t0, 1). Since the pseudo-Anosov diffeomorphism
g is topologically conjugate to a pseudo-Anosov homeomorphism f , their topological
entropies agree, and since f has a unique measure of maximal entropy, so does g. We
denote this measure μ0, for the potential ϕ0 ≡ 0. As a corollary to Theorem 4.1, we obtain
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a thorough description of the statistical properties of μ0. Furthermore, we prove that the
map g has a unique SRB measure, and we describe its ergodic properties. We emphasize
that a phase transition occurs at t = 1: in addition to the SRB measure, there is a family of
ergodic equilibrium measures for ϕ1 composed of convex combinations of Dirac measures
at the singularities.

The techniques we employ to establish our results are similar to those used by
Pesin, Senti, and Zhang in [13] to effect thermodynamic formalism of the Katok map.
The latter is an area-preserving diffeomorphism of the torus with non-zero Lyapunov
exponents. Similarly to the smooth pseudo-Anosov models, the Katok map is obtained
by slowing down trajectories near the origin to produce an indifferent fixed point (that is,
a fixed point of the map whose differential is equal to the identity). However, there are
substantial differences between the Katok map of the torus and the Gerber–Katok smooth
pseudo-Anosov models. These include the following.
• The Katok map acts on the torus, and thus can be lifted to R

2, while pseudo-Anosov
maps do not in general admit a lift to R

2. The lift of the Katok map to R
2 plays

an essential role in simplifying the analysis in [13], and some adjustments to this
argument are required to carry out similar analysis of globally smooth pseudo-Anosov
diffeomorphisms.

• The foliations of pseudo-Anosov diffeomorphisms are singular. In particular, the
singularities do not admit a locally stable or unstable subspace forming a curve, but
rather forming the prongs that meet at the singularity. Furthermore, one cannot use
coordinate charts whose interiors contain the singularities if the coordinates corre-
spond to the stable and unstable foliations. Instead, the analysis must be performed in
stable and unstable sectors whose vertices are the singularities (see §3).

• Whereas the slowdown function used to construct the Katok map depends only on
the radius of the slowed-down neighborhood, the choice of slowdown function of the
pseudo-Anosov homeomorphism depends on the number of prongs of the singularity.
This affects the analysis of the behavior of the trajectories near the singularities.

The development of thermodynamics of the Katok map in [13] uses the technology of
Young diffeomorphisms, which are generalizations of hyperbolic maps. The definition of
Young diffeomorphisms relies on hyperbolicity of an induced map on a small subset of the
state space with local hyperbolic product structure. This induced map can be carried over to
a derived dynamical system on the corresponding Rokhlin tower. The thermodynamics of
Young diffeomorphisms have been thoroughly investigated in [12, 17]. Young towers have
been used to study thermodynamic and ergodic properties of a variety of non-uniformly
hyperbolic dynamical systems (see [4]), including almost Anosov toral diffeomorphisms
(see [19]).

This paper is structured as follows. In §2 we define pseudo-Anosov homeomorphisms
and discuss some of their dynamical properties, including measure invariance and Markov
partitions. In §3 we describe the smooth models of pseudo-Anosov homeomorphisms and
state some important dynamical and topological properties of these maps. In §4 we state
our main results. Section 5 is devoted to the study of dynamics near the singularities
and includes some technical calculations needed to prove our main result. Some of these
calculations are similar to those performed in [13, §5] but require some modifications
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and adjustments. Section 6 gives a brief survey of the thermodynamic properties of Young
diffeomorphisms and inducing schemes we will be using. Section 7 proves that our smooth
models of pseudo-Anosov homeomorphisms are Young diffeomorphisms, and finally §8
uses this fact to prove our main results.

2. Preliminaries
We begin with a discussion on measured foliations of a compact two-dimensional C∞
Riemannian manifold M , where we assume M is without boundary. Our exposition is
adapted from the presentation in [1, §6.4]. For the reader’s convenience, we have restated
their exposition here and have included additional details and remarks on the notation
concerning pseudo-Anosov maps and their behavior.

Definition 2.1. A measured foliation with singularities is a triple (F, S, ν), where:
• S = {x1, . . . , xm} is a finite set of points in M , called singularities;
• F = F̃ � S is a partition ofM , where S is a partition of S into points and F̃ is a smooth

foliation of M \ S;
• ν is a transverse measure; in other words, ν is a measure defined on each curve on M

transverse to the leaves of F̃.
The triple satisfies the following properties.
(1) There is a finite atlas of C∞ charts φk : Uk → C for k = 1, . . . , �, � ≥ m.
(2) For each k = 1, . . . , m, there is a number p = p(k) ≥ 3 of elements of F̃ meeting at

xk ∈ S (these elements are called prongs of xk) such that:
(a) φk(xk) = 0 and φk(Uk) = Dak := {z ∈ C : |z| ≤ ak} for some ak > 0;
(b) if C ∈ F̃, then the components of C ∩ Uk are mapped by φk to sets of the form

{z ∈ C : Im(zp/2) = constant} ∩ φk(Uk);
(c) the measure ν|Uk is the pullback under φk of

|Im(dzp/2)| = |Im(z(p−2)/2dz)|.
(3) For each k > m, we have:

(a) φk(Uk) = (0, bk)× (0, ck) ⊂ R
2 ≈ C for some bk , ck > 0;

(b) if C ∈ F̃, then components of C ∩ Uk are mapped by φk to lines of the form

{z ∈ C : Im z = constant} ∩ φk(Uk);
(c) the measure ν|Uk is given by the pullback of |Im dz| under φk .

An archetypal singularity with p = 3 prongs is shown in Figure 1.

Remark 2.2. Henceforth, we refer to the C∞ curves that are elements of F as ‘leaves (of
the foliation)’; in particular, despite the technical fact that the singleton sets of singularities
{x1}, . . . , {xk} are elements of F, we do not refer to these points when we refer to ‘leaves
of the foliation’.

Remark 2.3. The transverse measure ν is not a measure on M itself, in the
measure-theoretic sense of the word. What ν is measuring is the ‘distance traveled’
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FIGURE 1. A three-pronged singularity of a measured foliation with singularities.

transverse to the leaves of the foliation, similarly to how the 1-form dx measures distance
traveled transverse to the leaves {x = x0}. To make this more explicit, properties (2) and
(3) in the above definition ensure that ν is holonomy-invariant. In particular, if γ and γ ′
are isotopic curves inM \ S transverse to the leaves of F, and the initial points of γ and γ ′
lie in the same leaf F0 and the terminal points lie in the same leaf F1, then ν(γ ) = ν(γ ′).

Definition 2.4. A surface homeomorphism f of a manifold M is pseudo-Anosov if there
are measured foliations with singularities (Fs , S, νs) and (Fu, S, νu) (with the same finite
set of singularities S = {x1, . . . , xm}) and an atlas of C∞ charts φk : Uk → C for k =
1, . . . , �, � > m, satisfying the following properties.
(1) f is differentiable, except on S.
(2) For each xk ∈ S, Fs and Fu have the same number p(k) of prongs at xk .
(3) The leaves of Fs and Fu intersect transversally at non-singular points.
(4) Both measured foliations Fs and Fu are f -invariant.
(5) There is a constant λ > 1 such that

f (Fs , νs) = (Fs , νs/λ) and f (Fu, νu) = (Fu, λνu).

(6) For each k = 1, . . . , m, we have xk ∈ Uk , and φk : Uk → C satisfies:
(a) φk(xk) = 0 and φk(Uk) = Dak for some ak > 0;
(b) if C is a curve leaf in Fs , then the components of C ∩ Uk are mapped by φk to

sets of the form

{z ∈ C : Re(zp/2) = constant} ∩Dak ;
(c) if C is a curve leaf in Fu, then the components of C ∩ Uk are mapped by φk to

sets of the form

{z ∈ C : Im(zp/2) = constant} ∩Dak ;
(d) the measures νs |Uk and νu|Uk are given by the pullbacks of

|Re(dzp/2)| = |Re(z(p−2)/2dx)|
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FIGURE 2. A singular neighborhood with a three-pronged singularity. The solid lines and broken lines
respectively represent the stable and unstable foliations Fs and Fu, for example.

and

|Im(dzp/2)| = |Im(z(p−2)/2dx)|
under φk , respectively.

(7) For each k > m, we have:
(a) φk(Uk) = (0, bk)× (0, ck) ⊂ R

2 ≈ C for some bk , ck > 0;
(b) if C is a curve leaf in Fs , then components of C ∩ Uk are mapped by φk to lines

of the form

{z ∈ C : Re z = constant} ∩ φk(Uk);
(c) if C is a curve leaf in Fu, then components of C ∩ Uk are mapped by φk to lines

of the form

{z ∈ C : Im z = constant} ∩ φk(Uk);
(d) the measures νs |Uk and νu|Uk are given by the pullbacks of |Re dz| and |Im dz|

under φk , respectively.
For k = 1, . . . , m, we call the neighborhood Uk ⊂ M described in part (6) of this

definition a singular neighborhood, and for k > m, we call Uk a regular neighborhood
(see Figure 2).

Remark 2.5. The notation f (Fu, νu) = (Fu, λνu) means two things. First, it means that
if γ is a subset of a leaf of Fu, then so is f (γ ), and in particular, so is f−1(γ ). Second,
it means if γ is an open interval in Fs , or more generally any arc in M transverse to the
foliation Fu, then νu(f−1(γ )) = λνu(γ ). That is, f∗νu = λνu, with f∗νu the pushforward
transverse measure. Likewise for the notation f (Fs , νs) = (Fs , νs/λ). So points on the
same Fs-leaf contract in the νu-measure by a factor of λ, and points on the same Fu-leaf
dilate in the νs-measure by a factor of λ.
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Remark 2.6. Since f is a homeomorphism, f permutes the singularities; that is, the
singular set S is f -invariant. However, our arguments assume the singularities are fixed
under the pseudo-Anosov homeomorphism. If the singularities are not fixed points, one
could consider an appropriate iterate of f and study the dynamics of this iterate, arriving
at the same results.

We state a few important properties of pseudo-Anosov homeomorphisms we will use
over the course of our arguments.

PROPOSITION 2.7. Let f : M → M be a pseudo-Anosov homeomorphism. For x ∈ M \
S, TxM = TxFs(x)⊕ TxFu(x), and in these coordinates, Dfx(ξs , ξu) = (ξ s/λ, λξu),
where ξ s and ξu are non-zero vectors in TxFs(x) and TxFu(x), Fs(x) and Fu(x) represent
the curve containing x in the respective foliation, and λ is the dilation factor for f .

Proof. This follows immediately from the definition of pseudo-Anosov diffeomorphisms
after a calculation in coordinates (see Remark 2.5).

PROPOSITION 2.8. (See [6, Exposé 10]) A pseudo-Anosov surface homeomorphism f :
M → M preserves a smooth invariant probability measure ν defined locally as the product
of νs on Fu-leaves with νu on Fs-leaves. In any coordinate chart of M , this probability
measure ν has a density with respect to the measure induced by the Lebesgue measure on
R

2, and this density vanishes at singularities.

PROPOSITION 2.9. (See [6, Exposé 10]) Every pseudo-Anosov homeomorphism of a
surfaceM admits a finite Markov partition of arbitrarily small diameter. Conjugated to the
symbolic system induced by this Markov partition, with the measure ν as in the preceding
proposition, (M , f , ν) is Bernoulli.

3. Pseudo-Anosov diffeomorphisms
Generally speaking, pseudo-Anosov homeomorphisms as defined in Definition 2.4 are
differentiable everywhere except at the singularities xk with p(k) ≥ 3. This is a conse-
quence of the fact that f contracts (respectively, expands) points in the stable (respectively,
unstable) leaves of the foliation, so the differential of f cannot possibly be linear at the
singularities.

In this section we construct a surface diffeomorphism g : M → M that is topologically
conjugate to the pseudo-Anosov homeomorphism f , and whose differential at the
singularity is the identity. (Since we assume the singularities are fixed, this is a reasonable
statement.)

Before proceeding with the construction, we point out that some literature refers to the
maps defined in Definition 2.4 as ‘pseudo-Anosov diffeomorphisms’, despite the fact that
these maps are not differentiable at the singularities. To avoid any confusion, we reserve
the word ‘diffeomorphism’ only for those maps that are differentiable on all ofM , and use
the phrase ‘pseudo-Anosov homeomorphism’ for the maps described in Definition 2.4.

Let xk ∈ S, let p = p(xk), and let φk : Uk → C be the chart described in part (6) of
Definition (2.4). The stable and unstable prongs at xk are the leaves P skj and Pukj , j =
0, . . . , p − 1 of Fs and Fu, respectively, whose endpoints meet at xk . Locally, they are
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given by

P skj = φ−1
k

{
ρeiτ : 0 ≤ ρ < ak , τ = 2j + 1

p
π

}
,

Pukj = φ−1
k

{
ρeiτ : 0 ≤ ρ < ak , τ = 2j

p
π

}
.

For simplicity, assume f (P skj ) ⊆ P skj for all j = 1, . . . , p. Furthermore, we define the
stable and unstable sectors at xk to be the regions inUk bounded by the stable (respectively,
unstable) prongs:

Sskj = φ−1
k

{
ρeiτ : 0 ≤ ρ < ak ,

2j − 1
p

π ≤ τ ≤ 2j + 1
p

π

}
,

Sukj = φ−1
k

{
ρeiτ : 0 ≤ ρ < ak ,

2j
p
π ≤ τ ≤ 2j + 2

p
π

}
.

The strategy for creating our diffeomorphism g is adapted from [1, §6.4.2]. In each stable
sector, we apply a ‘slowdown’ of the trajectories, followed by a change of coordinates
ensuring the resulting diffeomorphism g preserves the measure induced by a convenient
Riemannian metric.

Let F : C → C be the map s1 + is2 �→ λs1 + is2/λ. Note F is the time-1 map of the
vector field V given by

ṡ1 = (log λ)s1, ṡ2 = −(log λ)s2.

Let 0 < r1 < r0 < min{a1, . . . , a�}, and define r̃0 and r̃1 by r̃j = (2/p)rp/2j for j = 0, 1
and for each p = p(k). Define a ‘slowdown’ function 
p for the p-pronged singularity on
the interval [0, ∞) so that:
(1) 
p(u) = (p/2)(2p−4)/pu(p−2)/p for u ≤ r̃2

1 ;
(2) 
p is C∞ except at 0;
(3) 
̇p(u) ≥ 0 for u > 0;
(4) 
p(u) = 1 for u ≥ r̃2

0 .
Consider the vector field V
p on Dr̃0 ⊂ C defined by

ṡ1 = (log λ)s1
p(s2
1 + s2

2) and ṡ2 = −(log λ)s2
p(s2
1 + s2

2). (3.1)

Let Gp be the time-1 map of the vector field V
p . Assume r1 is chosen to be small
enough so that Gp = F on a neighborhood of the boundary of Dr̃0 , and assume r0 is
chosen to be small enough so that the open neighborhood U0 := ⋃m

k=1 φ
−1
k (Dr0) of S

is disjoint from the open set
⋃�
k=m+1 φ

−1
k (Dak ). We also define the open neighborhood

Ũ0 := ⋃m
k=1 φ

−1
k (Dr̃0) ⊂ U0, as well as U1 and Ũ1 defined analogously with Dr1 and Dr̃1 ,

respectively.
Let ãk = (2/p)ap/2k , and define the coordinate change �kj : φkSskj → {z : Rez ≥ 0} ∩

Dãk by
�kj (z) = (2/p)zp/2 = w = s1 + is2.

Define g : M → M by g(x) = f (x) for x �∈ U0, and meanwhile for 1 ≤ k ≤ m, 1 ≤ j ≤
p(k), define g on each sector Sskj ∩ φ−1

k (Dr0) by

g(x) = φ−1
k �−1

kj Gp�kjφk(x).
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PROPOSITION 3.1. (See [1]) The map g defined above is well defined on the unstable
prongs and singularity. It is in fact a diffeomorphism topologically conjugate to f , and
for any ε > 0, r0 and r1 can be chosen so that ‖f − g‖C0 < ε. In particular, g admits a
Markov partition of arbitrarily small diameter.

Next we define a Riemannian metric ζ = 〈·, ·〉 onM \ S with respect to which the map g
is invariant. In the stable sector Sskj ∩ φ−1

k (Dãk ), we consider the coordinatesw = s1 + is2

given by �kj ◦ φk defined above. Outside of this neighborhood, we use the coordinates
z = s1 + is2. In both sets of coordinates, the stable and unstable transversal measures are
νs = |ds1| and νu = |ds2|. On stable sectors inM \ S, we define the Riemannian metric ζ
to be the pullback of (ds2

1 + ds2
2)/
p(s

2
1 + s2

2) under �kj ◦ φk . In regular neighborhoods
(Uk , φk), we define ζ = φ∗

k (ds
2
1 + ds2

2). Since r̃0 is chosen so that φ−1
k (Dr̃0) is disjoint

from regular neighborhoods, and 
p(u) ≡ 1 for u ≥ r̃2
0 , ζ is consistently defined on chart

overlaps. One can further show that ζ agrees with the Euclidean metric in φ−1
k (Dr̃0). So ζ

can be extended to a Riemannian metric on all of M .

PROPOSITION 3.2. (See [1]) Letting z = t1 + it2 be the coordinates given by (φk , Uk),
1 ≤ k ≤ m, the Riemannian metric ζ is actually the Euclidean metric dt21 + dt22 . In
particular, the diffeomorphism g : M → M is μ1-area-preserving, whereμ1 is the volume
determined by ζ .

For stable sectors Sskj , we use the coordinates w = �skj (z) = s1 + is2, and in regular
neighborhoods Uk , k ≥ m, we use the coordinates z = s1 + is2. Then s1 represents the
coordinate in the unstable foliation, and s2 is the coordinate in the stable foliation. Define
the coordinates (ξ1, ξ2) in each tangent space TxM , x ∈ M \ S, to be the coordinates with
respect to

(�kj ◦ φk)−1∗
(

p(s

2
1 + s2

2)
∂

∂si

)
, i = 1, 2, (3.2)

in each stable sector, and with respect to (φk)
−1∗ (∂/∂si), i = 1, 2, in each regular

neighborhood. For x ∈ M \ S, let C+
x be the cone in TxM bounded by the lines ξ1 = ±ξ2,

respectively, and containing the tangent line to the Fu leaf through x. Respectively define
C−
x to be the cone containing the Fs leaf.

PROPOSITION 3.3. (See [1]) For x ∈ M \ S, the cones C+
x , C−

x satisfy the following
assertions.
(1) C+

x and C−
x depend continuously on x ∈ M \ S.

(2) C+
x (respectively, C−

x ) is strictly invariant under Dg (respectively, Dg−1) on x ∈
M \ S.

(3) For each x ∈ M \ S, the intersections

Eu(x) :=
∞⋂
n=0

DgnC+
g−n(x) and Es(x) :=

∞⋂
n=0

Dg−nC−
gn(x)

are one-dimensional subspaces of TxM . Moreover, if x ∈ M \ S is on an unstable
leaf, then Eu(x) is tangent to the unstable leaf (and similarly for Es(x) on a stable
leaf).
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(4) Eu(x) and Es(x) depend continuously on x ∈ M \ S.

We will need a stronger condition on cone invariance. For x ∈ M \ S and for 0 < α < 1,
define the families of cones K+(x) and K−(x) by

K+(x) = {v = (ξ1, ξ2) ∈ TxM : |ξ2| < α|ξ1|},
K−(x) = {v = (ξ1, ξ2) ∈ TxM : |ξ1| < α|ξ2|}.

In the original construction of pseudo-Anosov diffeomorphisms yielding Proposition 3.3,
we have α = 1. But for certain later arguments, we will require α < 1.

LEMMA 3.4. There exists a 0 < α0 < 1 such that for all α0 < α < 1, and for all x ∈ M ,

DgxK
+(x) ⊆ K+(g(x)) and Dg−1

g(x)K
−(g(x)) ⊆ K−(x).

Proof. We prove invariance only for K+(x); the invariance of the stable cones is proven
similarly by considering g−1. Assume x ∈ Ũ0, as the result is clearly true outside of Ũ0.
Consider the vector field (3.1) defined on C. The variational equations for (3.1) give us

dζ1

dt
= log λ((
p(u)+ 2s2

1
̇p(u))ξ1 + 2s1s2
̇p(u)ξ2)

and
dζ2

dt
= − log λ(2s1s2
̇p(u)ξ1 + (
p(u)+ 2s2

2
̇p(u))ξ2),

where u := s2
1 + s2

2 . The ‘slope’ η := ξ2/ξ1 of a tangent vector in C changes under the
flow of (3.1) as:

dη

dt
= −2 log λ((1 + η2)s1s2
̇p(u)+ (
p(u)+ (s2

1 + s2
2)
̇p)η). (3.3)

Suppose r̃2
1 ≤ u ≤ r̃2

0 . Since 
p > 0, and 
̇p > 0 is decreasing, we have


p(u)


̇p(u)
≥ 
p(̃r

2
1 )


̇p(̃r
2
1 )

= p

p − 2
r̃2

1 ≥ p

p − 2

(
r̃1

r̃0

)2

u.

Meanwhile, if 0 < u < r̃2
1 , we have


p(u)


̇p(u)
= p

p − 2
u ≥ p

p − 2

(
r̃1

r̃0

)2

u.

If η > 0, this gives us

dη

dt
≤ −2 log λ
̇p(u)

(
(1 + η2)s1s2 +

(
1 + p

p − 2

(
r̃1

r̃2

)2)
(s2

1 + s2
2)η

)
= −2 log λ
̇p(u)

(((
1 + p

p − 2

(
r̃1

r̃0

)2)
η − 1

2
(1 + η2)

)
(s2

1 + s2
2)

+ 1
2
(1 + η2)(s1 + s2)

2
)

≤ −2 log λ
̇p(u)ψ(η)(s2
1 + s2

2),
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where ψ(η) := p/(p − 2)(̃r1/̃r2)2 − 1
2 (η − 1)2. Since ψ(1) > 0, there is a α0 ∈ (0, 1)

with ψ(η) > 0 for α0 < η < 1. Therefore dη/dt < 0 for α0 < η < 1. For η < 0, we have

dη

dt
= 2 log λ((
p(u)+ (s2

1 + s2
2)
̇p(u))|η| − s1s2(1 + η2)
̇p(u))

≥ 2 log λ
̇p(u)
((

1 + p

p − 2

(
r̃1

r̃0

)2)
(s2

1 + s2
2)|η| − s1s2(1 + η2)

)
.

A similar argument will show dη/dt > 0 for −1 < η < −α0. Letting α = η, for z ∈ C,
we have D(Gp)zK+

0 (z) ⊆ K+
0 (Gp(z)) and D(Gp)−1

Gp(z)
K−

0 (Gp(z)) ⊆ K−
0 (z), where

K+
0 (z) = {(ζ1, ζ2) ∈ TzC : |ζ2| < α|ζ1|},

K−
0 (z) = {(ζ1, ζ2) ∈ TzC : |ζ1| < α|ζ2|}.

Note that α0 does not depend on the distance of z ∈ C from 0. Applying the coordinate map
φ−1
k ◦�−1

kj : {z : Re(z) ≥ 0} ∩Dãk → M , the cones K+(x) and K−(x) defined using the
coordinates in (3.2) for TxM satisfy the same invariance property as K+

0 and K−
0 . This

proves the lemma.

4. Main results
We begin by defining the relevant ergodic properties under consideration. Given a con-
tinuous potential function ϕ : M → R, a probability measure μϕ on M is an equilibrium
measure for ϕ if

Pg(ϕ) = hμϕ (g)+
∫
M

ϕ dμϕ ,

where hμϕ (g) is the metric entropy of g with respect to μϕ , and Pg(ϕ) is the topological
pressure of ϕ; that is, Pg(ϕ) is the supremum of hμ(g)+ ∫

M
ϕ dμ over all g-invariant

probability measures μ on M .
A special instance of equilibrium measures are known as SRB measures. Given a

(uniformly, non-uniformly, or partially) hyperbolic function f : M → M on a Riemannian
manifold M , an f -invariant Borel probability measure μ on M is called an SRB measure
if f admits positive Lyapunov exponents μ-almost everywhere, and if the conditional
measures of μ on the unstable submanifolds are absolutely continuous with respect to
the Riemannian leaf volume.

Additionally, we say that g has exponential decay of correlations with respect to a
measure μ ∈ M(g, M) and a class of functions H on M if there exists κ ∈ (0, 1) such
that for any h1, h2 ∈ H,∣∣∣∣ ∫

h1(g
n(x))h2(x) dμ(x)−

∫
h1(x) dμ(x)

∫
h2(x) dμ(x)

∣∣∣∣ ≤ Cκn

for some C = C(h1, h2) > 0. Furthermore, g is said to satisfy the central limit theorem for
a class H of functions if for any h ∈ H that is not a coboundary (namely, h �= h′ ◦ g − h′
for any h′ ∈ H), there exists σ > 0 such that

lim
n→∞ μ

{
1√
n

n−1∑
i=0

(
h(gi(x))−

∫
h dμ

)
< t

}
= 1

σ
√

2π

∫ t

−∞
e−τ 2/2σ 2

dτ .
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The family of potential functions we consider are the geometric t-potentials defined by
ϕt (x) = −t log |Dgx |Eu(x)|. Although the unstable distribution Eu does not continuously
extend to the singularities, the differentialDgx0 is the identity at each singularity x0, so ϕt
continuously extends to the singularities; in particular, ϕt (x0) = 0 for each singularity x0.
So the geometric t-potential is well defined in this setting.

Our result shows there is a t0 < 0 for which every t ∈ (t0, 1) admits a unique
equilibrium state μϕt =: μt for the potential ϕt : M → R. When t = 0, ϕ0 ≡ 0, so the
equilibrium measure μ0 satisfies Pg(0) = hμ0(g), and so μ0 is the unique measure of
maximal entropy for g.

We now state our main result.

THEOREM 4.1. Consider a pseudo-Anosov diffeomorphism g : M → M on a compact
Riemannian manifold M . The following statements hold.
(1) Given any t0 < 0, we may take r0 > 0 in the construction of g so that for any t ∈

(t0, 1), there is a unique equilibrium measure μt associated to ϕt . This equilibrium
measure has exponential decay of correlations and satisfies the central limit theorem
with respect to a class of functions containing all Hölder continuous functions on M ,
and is Bernoulli. Additionally, the pressure function t �→ Pg(ϕt ) is real analytic in
the open interval (t0, 1).

(2) For t = 1, there are two classes of equilibrium measures associated to ϕ1: convex
combinations of Dirac measures concentrated at the singularities, and a unique
invariant SRB measure μ.

(3) For t > 1, the equilibrium measures associated to ϕt are precisely the convex
combinations of Dirac measures concentrated at the singularities.

Remark 4.2. Uniqueness of the measure μt for t ∈ (t0, 1) implies that this measure is
ergodic, but in fact Theorem 4.1 gives us that this measure is Bernoulli.

Remark 4.3. Taking t = 0, this theorem shows that the dynamical system (M , g) admits
a unique measure of maximal entropy that is Bernoulli, has exponential decay of
correlations, and satisfies the central limit theorem.

Remark 4.4. Although we know t �→ Pg(ϕt ) is real analytic in (t0, 1), we do not know
about the behavior of Pg(ϕt ) for t ≤ t0. In particular, it is not known whether (M , g, ϕt )
admits a phase transition at t = t0.†

5. Dynamics near singularities
In this section, we discuss the dynamical properties of pseudo-Anosov diffeomorphisms,
considering both their global behavior and their behavior near singularities. The ther-
modynamic constructions we will develop in §§6 and 7 require bounds on how quickly
nearby orbits diverge from each other. For this reason, the estimates and inequalities

† For the Katok map, it is shown in [21] that for sufficiently small values of the parameters α > 0 and r > 0,
the Katok map has a unique equilibrium measure μt corresponding to the geometric potential ϕt for all values of
t < 1.
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collected in this section will become important tools to examine how nearby orbits behave
in neighborhoods of the singularities.

Several of the technical calculations made here are similar to the calculations performed
for the Katok map in [13]. However, they are carried out here for the reader’s convenience,
as well as the fact that the slowdown function in the Katok map uses different constants
depending on the radius of the slowed-down neighborhood (by contrast, our slowdown
function depends not on the radius of the slowdown, but on the number of prongs of the
singularity).

Our first two technical estimates concern how long an orbit remains in a neighborhood
of a singularity. Recall our definitions r̃j = (2/p)rp/2j for j = 0, 1. In particular, r̃0 and r̃1
depend on p, and thus depend on k for k = 1, . . . , m.

LEMMA 5.1. There exists a Tp > 0, depending on p, λ, r0, and r1, so that for any solution
s(t) of (3.1) with s(0) ∈ Dr̃0 ,

max{t > 0 : s(t) ∈ Dr̃0 \Dr̃1} < Tp.

Proof. The value s1s2 is invariant under the flow. If s1s2 ≥ 1
2 r̃

2
1 , then when s1 = s2, the

minimum value of s2
1 + s2

2 is at least r̃2
1 , and the trajectory never entersDr̃1 . If s1s2 < 1

2 r̃
2
1 ,

the trajectory either will enter Dr̃1 or has already entered Dr̃1 and is on its way out of Dr̃0 .
Case 1: s1s2 ≥ 1

2 r̃
2
1 . Since r̃2

0 ≥ s2
1 + s2

2 ≥ s2
2 , we have 1

4 r̃
4
1 ≤ s2

1s
2
2 ≤ s2

1 r̃
2
0 , so s2

1 ≥
r̃4

1/4̃r
2
0 . So, since 
p is an increasing function,

d

dt
(s2

1) = 2s2
1
p(s

2
1 + s2

2) log λ ≥ r̃4
1

2̃r2
0

p(̃r

2
1 ) log λ.

It follows that the time T it takes for s2
1 to reach r̃2

0 from s2
1(0) ≥ r̃4

1/4̃r
2
0 satisfies

T ≤ r̃2
0 − (̃r4

1/4̃r
2
0 )

(̃r4
1/2̃r

2
0 )
p(̃r

2
1 ) log λ

= 4r2p
0 − r

2p
1

2r3p−2
1 log λ

.

Case 2: s1s2 < 1
2 r̃

2
1 . Assume that s1 < s2, ensuring that the trajectory will enterDr̃1 . If we

can prove there is a uniform time bound T before which this happens, then by symmetry
of the vector field, the same T is an upper bound for the time it takes this trajectory to exit
Dr̃0 when s1 > s2.

We will in fact establish a bound on how long it takes s2
2 to decrease from s2

2(0) to
1
2 r̃

2
1 when s1 < s2. For then, because s1s2 < 1

2 r̃
2
1 , by the time s2

2 = 1
2 r̃

2
1 , the trajectory will

already have entered Dr̃1 . So, s2
2 ≥ 1

2 r̃
2
1 , and since in this case s2

1 + s2
2 ≥ 1

2 r̃
2
1 , we have

d

dt
(s2

2) = −2s2
2
p(s

2
1 + s2

2) log λ ≤ −r̃2
1
p

(
1
2
r̃2

1

)
log λ.

It follows that the time T it takes for s2
2 to reach 1

2 r̃
2
1 from s2

2(0) ≤ r̃2
0 satisfies

T ≤ r̃2
0 − (1/2)̃r2

1

r̃2
1
p((1/2)̃r

2
1 ) log λ

= 2(p−2)/2 2rp0 − r
p

1

2r2p−2
1 log λ

.
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LEMMA 5.2. There exists a T ∈ Z, depending on r0 and λ, so that for any x ∈ Ũ0 :=⋃m
k=1 φ

−1
k (Dr̃0) ⊂ M , we have

max
{
N > 0 : gn(x) ∈

m⋃
k=1

φ−1
k (Dr̃0 \Dr̃1) for all n = 0, . . . N

}
≤ T .

Proof. This follows from Lemma 5.1 after taking T = max{Tp(k) : k = 1, . . . , m}.
Next, we will establish bounds on how quickly nearby points will diverge while

remaining near the singularities. The main lemma that demonstrates this bound is
Lemma 5.5.

LEMMA 5.3. For i, j = 1, 2, define the functions dij : Dr̃1 → R by

dij (s1, s2) = ∂2

∂si∂sj
(s2
p(s

2
1 + s2

2)).

Then

max
i,j=1,2

|dij (s1, s2)| ≤ 6p − 12
p

(
p

2

)(2p−4)/p

(s2
1 + s2

2)
(p−4)/2p.

Proof. Recall that for u ≤ r̃2
1 , we have 
p(u) = (p/2)(2p−4)/pu(p−2)/p. So,

∂

∂s1
(s2
p(s

2
1 + s2

2)) = 2p − 4
p

(
p

2

)(2p−4)/p

s1s2(s
2
1 + s2

2)
−2/p,

∂

∂s2
(s2
p(s

2
1 + s2

2)) = 2p − 4
p

(
p

2

)(2p−4)/p

s2
2(s

2
1 + s2

2)
−2/p

+
(
p

2

)(2p−4)/p

(s2
1 + s2

2)
(p−2)/p.

Note |s1|2 ≤
√
s2

1 + s2
2 , and since p ≥ 3,

−2 ≤ − 4s2
1

p(s2
1 + s2

2)
≤ 0.

Therefore, for all (s1, s2) ∈ Dr̃1 ,

|d11(s1, s2)| = 2p − 4
p

(
p

2

)(2p−4)/p∣∣∣∣ ∂∂s1 s1s2(s2
1 + s2

2)
−2/p

∣∣∣∣
= 2p − 4

p

(
p

2

)(2p−4)/p∣∣∣∣s2(s2
1 + s2

2)
−2/p − 4

p
s2

1s2(s
2
1 + s2

2)
−(p+2)/p

∣∣∣∣
= 2p − 4

p

(
p

2

)(2p−4)/p

|s2|(s2
1 + s2

2)
−2/p

∣∣∣∣1 − 4s2
1

p(s2
1 + s2

2)

∣∣∣∣
≤ 2p − 4

p

(
p

2

)(2p−4)/p

(s2
1 + s2

2)
(p−4)/2p.
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A similar argument applies for d12 = d21 and for d22, though in d22 we use the estimate
−2 ≤ 4s2

1/3p(s
2
1 + s2

2) instead:

|d12(s1, s2)| = 2p − 4
p

(
p

2

)(2p−4)/p

|s1|(s2
1 + s2

2)
−2/p

∣∣∣∣1 − 4s2
2

p(s2
1 + s2

2)

∣∣∣∣
≤ 2p − 4

p

(
p

2

)(2p−4)/p

(s2
1 + s2

2)
(p−4)/2p,

|d22(s1, s2)| = 6p − 12
p

(
p

2

)(2p−4)/p

|s2|(s2
1 + s2

2)
−2/p

∣∣∣∣1 − 4s2
2

3p(s2
1 + s2

2)

∣∣∣∣
≤ 6p − 12

p

(
p

2

)(2p−4)/p

(s2
1 + s2

2)
(p−4)/2p.

Let s(t) = (s1(t), s2(t)) be a solution to (3.1), and assume s(t) is defined in the unique
interval [0, T ] for which G−1

p (s(0)), Gp(s(T )) �∈ Dr̃1 and s(t) ∈ Dr̃1 for 0 ≤ t ≤ T . In
particular, this means s(0), s(T ) ∈ ∂Dr̃1 . (Recall that Gp is the time-1 map of the vector
field (3.1).) Further denote T1 = T/2, so that if s1(t) > 0 and s2(t) > 0 for t ∈ [0, T ], we
have s1(t) ≤ s2(t) for t ∈ [0, T1] and s1(t) ≥ s1(t) for t ∈ [T1, T ].

LEMMA 5.4. Given a solution s(t) to (3.1), and T and T1 defined above, we have the
following inequalities:
(a) |s1(t)| ≤ |s1(b)|(1 + C0s1(b)

(2p−4)/p(b − t))−p/(2p−4), 0 ≤ t ≤ b ≤ T ;
(b) |s2(t)| ≤ |s2(a)|(1 + C0s2(a)

(2p−4)/p(t − a))−p/(2p−4), 0 ≤ a ≤ t ≤ T ;
(c) |s2(t)| ≥ |s2(a)|(1 + 2(p−2)/pC0s2(a)

(2p−4)/p(t − a))−p/(2p−4), 0 ≤ a ≤ t ≤ T1;
(d) |s1(t)| ≥ |s1(b)|(1 + 2(p−2)/pC0s1(b)

(2p−4)/p(b − t))−p/(2p−4), T1 ≤ t ≤ b ≤ T .
Here C0 = (2p − 4)/p(p/2)(2p−4)/p log λ.

Proof. By symmetry, we may assume s1(t) > 0 and s2(t) > 0 for t ∈ [0, T ]. Then, using
the facts that s2

1 + s2
2 ≥ s2

i for i = 1, 2, and that 
p(u) = (p/2)(2p−4)/pu(p−2)/p for 0 ≤
u ≤ r̃2

1 , (3.1) implies

d

dt
s1(t) ≥

(
p

2

)(2p−4)/p

s1(t)
(3p−4)/p log λ,

d

dt
s2(t) ≤ −

(
p

2

)(2p−4)/p

s2(t)
(3p−4)/p log λ.

In particular, this gives us

s1(t)
−(3p−4)/p d

dt
s1(t) ≥

(
p

2

)(2p−4)/p

log λ,

s2(t)
−(3p−4)/p d

dt
s2(t) ≤ −

(
p

2

)(2p−4)/p

log λ.

Integrating these expressions between a and b, where 0 ≤ a ≤ b ≤ T , we get:

s2(b)
−(2p−4)/p − s2(a)

−(2p−4)/p ≥ C0(b − a),

s1(b)
−(2p−4)/p − s1(a)

−(2p−4)/p ≤ −C0(b − a),
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where C0 = (2p − 4)/p(p/2)(2p−4)/p log λ. From assuming that si(t) > 0, i = 1, 2, we
get inequalities (a) and (b).

Using the fact that s1(t) ≤ s2(t) for 0 ≤ t ≤ T1 = 1
2T and s1(t) ≥ s2(t) for T1 ≤ t ≤ T ,

we get

s1(t)
2 + s2(t)

2 ≤ 2s2(t)2, 0 ≤ t ≤ T1,

s1(t)
2 + s2(t)

2 ≤ 2s1(t)2, T1 ≤ t ≤ T .

Once again, applying (3.1) yields

d

dt
s1(t) ≤ 2(p−2)/p

(
p

2

)(2p−4)/p

s1(t)
(3p−4)/p log λ, T1 ≤ t ≤ T ,

d

dt
s2(t) ≥ −2(p−2)/p

(
p

2

)(2p−4)/p

s2(t)
(3p−4)/p log λ, 0 ≤ T1 ≤ T .

Using the same integration strategy from a to b as before gives us

s1(b)
−(2p−4)/p − s1(t)

−(2p−4)/p ≥ −2(p−2)/pC0(b − t), T1 ≤ t ≤ b ≤ T ,

s2(t)
−(2p−4)/p − s2(a)

−(2p−4)/p ≤ 2(p−2)/pC0(t − a), 0 ≤ a ≤ t ≤ T1.

This gives us inequalities (c) and (d).

Now suppose s̃(t) = (̃s1(t), s̃2(t)) is another solution of (3.1) defined for t ∈ [0, T ]. We
will need an upper and lower bound for �s(t) := s̃(t)− s(t). Let �sj (t) = s̃j (t)− sj (t),
j = 1, 2.

LEMMA 5.5. Suppose s1(t) �= 0 �= s2(t) for t ∈ [0, T ] and that�s2(t) > 0 for t ∈ [0, T ].
Suppose further that 0 < α < 1 satisfies:
(1) |�s1(t)| ≤ α�s2(t) for t ∈ [0, T ];
(2) |�s2(0)/s2(0)| ≤ (1 − α)/72.
Then,

�s2(t) ≤ �s2(0)
s2(0)

s2(t)(1 + 2(p−2)/pC0s2(0)(2p−4)/pt)−β , 0 ≤ t ≤ T1,

�s2(t) ≤ �s2(T1)

s1(T1)
s1(t)

(
1 + 2(p−2)/pC0s1(b)

(2p−4)/p(b − t)

1 + 2(p−2)/pC0s1(b)(2p−4)/p(b − T1)

)β
, T1 ≤ t ≤ b ≤ T ,

where β = 2−(3p−2)/p(1 − α), and C0 is the constant from Lemma 5.4. Furthermore, for
0 ≤ a ≤ T1 ≤ b ≤ T ,

‖�s(b)‖ ≤
√

1 + α2 s1(b)

s2(a)
‖�s(a)‖. (5.1)

Proof. Assume sj (t) > 0 for j = 1, 2; the other cases follow by symmetry. Further denote
u = s2

1 + s2
2 and ũ = s̃2

1 + s̃2
2 . Applying equation (3.1) to the second Lagrange remainder
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of the function (s1, s2) �→ s2
p(s
2
1 + s2

2) centered at the point (s1, s2), we get

d

dt
�s2 = − log λ(̃s2
p(̃u)− s2
p(u))

= − log λ
(
∂

∂s1
(s2
p(u))�s1 + ∂

∂s2
(s2
p(u))�s2

+ 1
2

∑
j ,k=1,2

djk(ξ1, ξ2)�sj�sk

)

= − log λ
(

2s1s2
̇p(u)�s1 + (
p(u)+ 2s2
2
̇p(u))�s2

+ 1
2

∑
j ,k=1,2

djk(ξ1, ξ2)�sj�sk

)
,

where the djk are as in Lemma (5.3) and ξ = (ξ1, ξ2) ∈ Dr̃1 is such that ξj lies between sj
and s̃j for j = 1, 2.It follows that

d

dt

(
�s2

s2

)
= 1
s2

d

dt
�s2 − 1

s2
2
ṡ2�s2

= − log λ
(

2s1
̇p(u)�s1 + 1
s2

p(u)�s2 + 2s2
̇p(u)�s2

)
− log λ

2

∑
j ,k=1,2

djk(ξ1, ξ2)
�sj�sk

s2
+ log λ

1
s2

p(u)�s2

= − (2p − 4) log λ
p

(
p

2

)(2p−4)/p

u−2/p(s1�s1 + s2�s2)

− log λ
2

∑
j ,k=1,2

djk(ξ1, ξ2)
�sj�sk

s2
.

Suppose 0 ≤ t ≤ T1, so that 0 < s1(t) ≤ s2(t). Since |�s1(t)| ≤ α�s2(t) by assumption,
we get

s1�s1 + s2�s2 ≥ (−s1α + s2)�s2 ≥ (1 − α)s2�s2.

Lemma 5.3 implies

∑
j ,k

djk(ξ1, ξ2)�sj�sk ≥ −24p − 48
p

(
p

2

)(2p−4)/p

(ξ2
1 + ξ2

2 )
(p−4)/2p(�s2)

2. (5.2)

It follows from the above two inequalities that

d

dt

(
�s2

s2

)
≤ −(1 − α)

(2p − 4) log λ
p

(
p

2

)(2p−4)/p

(s2
1 + s2

2)
−2/ps2�s2

+ (12p − 24) log λ
p

(
p

2

)(2p−4)/p

(ξ2
1 + ξ2

2 )
(p−4)/2p (�s2)

2

s2
.
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Since s1(t) ≤ s2(t) for 0 ≤ t ≤ T1, we have s2
2 ≤ s2

1 + s2
2 ≤ 2s2

2 . Therefore,

d

dt

(
�s2

s2

)
≤ −(1 − α)

(2p − 4) log λ
p

(
p

2

)(2p−4)/p

(s2
1 + s2

2)
(p−2)/p s2

2

s2
1 + s2

2

�s2

s2

+ (12p − 24) log λ
p

(
p

2

)(2p−4)/p

s
(2p−4)/p
2

(
ξ2

1 + ξ2
2

s2
2

)(p−4)/2p(
�s2

s2

)2

≤ −(1 − α)
(p − 2) log λ

p

(
ps2

2

)(2p−4)/p
�s2

s2

+ (12p − 24) log λ
p

(
ps2

2

)(2p−4)/p(ξ2
1 + ξ2

2

s2
2

)(p−4)/2p(
�s2

s2

)2

.

Denoting κ = κ(t) = (�s2/s2)(t), we summarize:

dκ

dt
≤ −(1 − α)

(p − 2) log λ
p

(
ps2

2

)(2p−4)/p

κ

+ (12p − 24) log λ
p

(
ps2

2

)(2p−4)/p(ξ2
1 + ξ2

2

s2
2

)(p−4)/2p

κ2

= − (p − 2) log λ
p

(
ps2

2

)(2p−4)/p

κ

(
1 − α − 12

(
ξ2

1 + ξ2
2

s2
2

)(p−4)/2p

κ

)
. (5.3)

Note that 0 < s2 ≤ ξ2 ≤ s̃2 = s2 +�s2, and ξ1 ≤ s1 + |�s1| ≤ s2 + α�s2. Therefore,

1 ≤ ξ2
2

s2
2

≤ ξ2
1 + ξ2

2

s2
2

≤ (s2 + α�s2)
2 + (s2 +�s2)

2

s2
2

= (1 + ακ)2 + (1 + κ)2 < 2(1 + κ)2. (5.4)

It follows that (
ξ2

1 + ξ2
2

s2
2

)(p−4)/2p

≤
{

1 if p = 3, 4,

(2(1 + κ)2)(p−4)/2p if p ≥ 5.

Using assumption (2), we observe that

1 − α − 12
(
ξ2

1 + ξ2
2

s2
2

)(p−4)/2p

κ(0) ≥ 1 − α

2
.

Equation (5.3) now implies

dκ

dt

∣∣∣∣
t=0

≤ − (1 − α)(p − 2) log λ
2p

(
ps2(0)

2

)(2p−4)/p

κ(0) < 0.

So κ(t) satisfies

0 < κ(t) <
1 − α

72
(5.5)
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for 0 ≤ t < δ for a small number δ > 0. The same arguments as before now imply

dκ

dt
≤ − (1 − α)(p − 2) log λ

2p

(
ps2(t)

2

)(2p−4)/p

κ(t) < 0 (5.6)

for 0 ≤ t < δ. Since κ and s2 are continuous and positive on [0, T1], the estimates (5.5)
and (5.6) apply for 0 ≤ t ≤ T1. Applying Grönwall’s inequality to (5.6) gives us, for 0 ≤
t ≤ T1,

κ(t) ≤ κ(0) exp
(

− (1 − α)(p − 2) log λ
2p

(
p

2

)(2p−4)/p ∫ t

0
s2(τ )

(2p−4)/p dτ

)
. (5.7)

Applying the third inequality in Lemma 5.4 to this integral gives us∫ t

0
s2(τ )

(2p−4)/p dτ ≥
∫ t

0
s2(0)(2p−4)/p(1 + 2(p−2)/pC0s2(0)(2p−4)/pτ )−1 dτ

= 1
2(p−2)/pC0

log(1 + 2(p−2)/pC0s2(0)(2p−4)/pt).

Recalling that C0 = (2p − 4)/p(p/2)(2p−4)/p log λ, (5.7) now becomes

κ(t) ≤ κ(0) exp
(

− (1 − α)

2(3p−2)/p log(1 + 2(p−2)/pC0s2(0)(2p−4)/pt)

)
= κ(0)(1 + 2(p−2)/pC0s2(0)(2p−4)/pt)−β , (5.8)

giving us the first inequality of the lemma.
To prove the second inequality, arguing as before for T1 ≤ t ≤ T , we get

d

dt
�s2 = − log λ

(
∂

∂s1
(s2
p(u))�s1 + ∂

∂s2
(s2
p(u))�s2

+ 1
2

∑
j ,k=1,2

djk(ξ1, ξ2)�sj�sk

)
for ξ = (ξ1, ξ2) satisfying min{sj , s̃j } ≤ ξj ≤ max{sj , s̃j }. Thus, using assumption (1) and
positivity of si , 
̇p, and �s2,

d

dt

(
�s2

s1

)
= 1
s1

d

dt
�s2 − 1

s2
1
ṡ1�s2

= − log λ
(

2s1s2
̇p(u)
�s1

s1
+ (2s2

2
̇p(u)+
p(u))
�s2

s1

)
− 1

2
log λ

∑
j ,k=1,2

djk(ξ1, ξ2)
�sj�sk

s1
− log λ
p(u)

�s2

s1

≤ −2 log λ(
p(u)− αs1s2
̇p(u)+ s2
2
̇p(u))

�s2

s1

− 1
2

log
∑
j ,k

dj ,k(ξ1, ξ2)
�sj�sk

s1

≤ −2 log λ(
p(u)− αs1s2
̇p(u))
�s2

s1
− log λ

2

∑
j ,k

dj ,k(ξ1, ξ2)
�sj�sk

s1
.
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Observe that


p


̇p
− αs1s2 = p

p − 2
(s2

1 + s2
2)− αs1s2 ≥

(
p

p − 2
− α

2

)
(s2

1 + s2
2)

≥ p(2 − α)

2(p − 2)
(s2

1 + s2
2).

It follows, in particular, that


p(u)− αs1s2
̇p(u) ≥
(
p

2

)(2p−4)/p 2 − α

2
(s2

1 + s2
2)
(p−2)/p.

Furthermore, applying the inequality in (5.2), we get

d

dt

(
�s2

s1

)
≤ − log λ

(
p

2

)(2p−4)/p

(2 − α)s
(2p−4)/p
1

�s2

s1

+ log λ
(
p

2

)(2p−4)/p

s
(2p−4)/p
1

12(p − 2)
p

(
ξ2

1 + ξ2
2

s2
1

)(p−4)/2p(
�s2

s1

)2

.

In particular, if we denote χ(t) = (�s2/s1)(t), we find that

dχ

dt
≤ − log λ

(
p

2

)(2p−4)/p

s
(2p−4)/p
1 χ

(
2 − α − 12(p − 2)

p

(
ξ2

1 + ξ2
2

s2
1

)(p−4)/2p

χ

)
.

(5.9)
Recall that min{sj , s̃j } ≤ ξj ≤ max{sj , s̃j }, and that �sj = s̃j − sj for j = 1, 2. There-
fore,

sj − |�sj | ≤ ξj ≤ sj + |�sj |.
In particular, since |�s1| ≤ α�s2 by assumption (1), we get

ξ2
1 + ξ2

2 ≥ ξ2
1 ≥ (s1 − |�s1|)2 ≥ (s1 − α�s2)

2 = s2
1

(
1 − α�s2

s1

)2

≥ s2
1(1 − χ)2.

Furthermore, since s2(t) ≤ s1(t) whenever T1 ≤ t ≤ T , we get

ξ2
1 + ξ2

2

s2
1

≤
(

1 + |�s1|
s1

)2

+
(
s2

s1
+ �s2

s1

)2

≤ (1 + αχ)2 + (1 + χ)2 < 2(1 + χ)2.

It follows that(
ξ2

1 + ξ2
2

s2
1

)(p−4)/2p

≤
{
(1 − χ)(p−4)/p, p = 3, 4,

2(p−4)/2p(1 + χ)(p−4)/p, p ≥ 5.

Since s1(T1) = s2(T1), by the first estimate in this lemma and assumption (2), we find that

0 ≤ χ(T1) = �s2(T1)

s1(T1)
= �s2(T1)

s2(T1)
≤ �s2(0)

s2(0)
≤ 1 − α

72
.

Again, applying assumption (2) gives us

2 − α − 12(p − 2)
p

(
ξ2

1 + ξ2
2

s2
1

)(p−4)/2p

χ(T1) ≥ 1 − α

2
.
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So (5.9) now becomes

dχ

dt

∣∣∣∣
t=T1

< − (1 − α) log λ
2

(
p

2

)(2p−4)/p

s1(T1)
(2p−4)/pχ(T1) < 0. (5.10)

Repeating the argument for the first estimate in this lemma, we find that the inequalities
in (5.10) hold for all t ∈ [T1, T ]. For T1 ≤ t ≤ b ≤ T , by Grönwall’s inequality and
inequality (d) in Lemma 5.4, we get

χ(t) ≤ χ(T1) exp
(

− (1 − α) log λ
2

(
p

2

)(2p−4)/p ∫ t

T1

s1(τ )
(2p−4)/p dτ

)
≤ χ(T1) exp

(
− (1 − α) log λ

2

(
p

2

)(2p−4)/p

s1(b)
(2p−4)/p

×
∫ t

T1

(1 + 2(p−2)/pC0s1(T1)
(2p−4)/ps1(T1)

(2p−4)/p(b − τ))−1 dτ

)
= χ(T1) exp

(
p(1 − α)

2(3p−2)/p(p − 2)
log

(
1 + 2(p−2)/pC0s1(T1)

(2p−4)/p(b − t)

1 + 2(p−2)/pC0s1(T1)(2p−4)/p(b − T1)

))
= χ(T1)

(
1 + 2(p−2)/pC0s1(T1)

(2p−4)/p(b − t)

1 + 2(p−2)/pC0s1(T1)(2p−4)/p(b − T1)

)βp/(p−2)

.

The second estimate now follows.
To prove the final inequality, (5.6) and (5.10) show that κ(a) ≥ κ(T1) and χ(T1) ≥ χ(b)

for 0 ≤ a ≤ T1 ≤ b ≤ T . More explicitly,

�s2(T1)

s2(T1)
≤ �s2(a)

s2(a)
and

�s2(b)

s1(b)
≤ �s2(T1)

s2(T1)
.

Recalling that s2(T1) = s1(T1), combining the above inequalities gives us

�s2(b) ≤ s1(b)�s2(T1)

s2(T1)
≤ s1(b)�s2(a)

s2(a)
.

By the assumption that |�s1| ≤ α�s2, we get

�s2 ≤ ‖�s‖ ≤
√

1 + α2�s2,

and combining this inequality with the preceding one gives us the final inequality in the
statement of the lemma.

Our final estimate concerns the size of the angles between tangent vectors in the unstable
cones near the singularities. This will be used in examining the distance between the
unstable subspaces of nearby points in neighborhoods of the singularities.

Recall that the neighborhood Ũ1 of S is given by Ũ1 = ⋃m
k=1 φ

−1
k (Dr̃1). For x ∈ Ũ1,

define

γ (x) = max
v,w∈K+(x)
‖v‖=‖w‖=1

{ � (Dgxv, Dgxw)
� (v, w)

}
(5.11)

and denote γj (x) = γ (gj (x)) for j ≥ 0.
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LEMMA 5.6. For every x ∈ Ũ1 with gj (x) in the same component of Ũ1 for j = 0, . . . , k,
we have

k−1∏
j=0

γj (x) ≤ (1 + C0s2(0)(2p−4)/pk)−p/(p−2),

where C0 is the constant from Lemma 5.4.

Proof. Denote z = �kj (φk(x)) = (s1(0), s2(0)), so that

(�kj ◦ φk)(gj (x)) = (s1(j), s2(j)).

Consider a tangent vector v = (ζ1, ζ2) in C along a trajectory of the vector field (3.1).
Reparametrizing η = ζ2/ζ1 with respect to s1 instead of t along this curve, equation (3.3)
implies

dη

ds1
= dη

dt

(
ds1

dt

)−1

= −2
(
(1 + η2)s2


̇p(u)


p(u)
+

(
1
s1

̇p(u)+ s2

1 + s2
2

s1


̇p(u)


p(u)

)
η

)
.

For i = 1, 2, let ηi(s1) = ηi(s1, s1(j), η0
i ) be a solution to this differential equation with

initial condition ηi(s1(j)) = η0
i . Then

d

dt
(η1 − η2) = −2

1
s1

(
1 + 
̇p(u)


p(u)
(s2

1 + s2
2 + s1s2(η1 + η2))

)
(η1 − η2).

If (ξ1, ξ2) = D(�kj ◦ φk)−1
z (ζ1, ζ2) ∈ K+(x), then |ηi | < α < 1 for i = 1, 2 (see Lemma

3.4), so η1 + η2 > −2. Positivity of 
p and 
̇p now yields

d

dt
(η1 − η2) ≤ −2

1
s1

(
1 + 
̇p(u)


p(u)
(s1 − s2)

2
)
(η1 − η2),

and so by Grönwall’s inequality,

|η1(s1(j + 1))− η2(s1(j + 1))|

≤ |η0
1 − η0

2| exp
(

− 2
∫ s1(j+1)

s1(j)

1
s1

(
1 + 
̇p(u)


p(u)
(s1 − s2)

2
)
ds1

)
≤ |η0

1 − η0
2| exp

(
− 2

∫ s1(j+1)

s1(j)

ds1

s1

)
= |η0

1 − η0
2|

(
s1(j)

s1(j + 1)

)2

= |η0
1 − η0

2|
(
s2(j + 1)
s2(j)

)2

,

where the final equality follows from the fact that the trajectories lie on hyperbolas, and
so the product s1s2 is constant. Observe that if v = (v1, v2) and w = (w1, w2) are two
vectors with ηv = v2/v1 and ηw = w2/w1, then

� (v, w) = |arctan ηv − arctan ηw|,
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and so by concavity of η �→ arctan η and conformality of the coordinate map �kj ◦ φk ,

γj (x) ≤ max
η1,η2

{ |η1(s1(j + 1), s1(j), η0
1)− η2(s1(j + 1), s1(j), η0

2)|
|η0

1 − η0
2|

}
≤

(
s2(j + 1)
s2(j)

)2

.

It follows that
k−1∏
j=0

γj (x) ≤
(
s2(k)

s2(0)

)2

.

The desired result now follows from inequality (b) in Lemma 5.4, since by hypothesis
gj (x) is in the same component of Ũ1, hence Gjp(z) ∈ Dr̃1 for 0 ≤ j ≤ k.

6. Thermodynamics of Young diffeomorphisms
Given a C1+α diffeomorphism f on a compact Riemannian manifold M , we call an
embedded C1 disc γ ⊂ M an unstable disc (respectively, stable disc) if for all x, y ∈
γ , we have d(f−n(x), f−n(y)) → 0 (respectively, d(f n(x), f n(y)) → 0) as n → +∞.
A collection of embedded C1 discs � = {γi}i∈I is a continuous family of unstable
discs if there is a Borel subset Ks ⊂ M and a homeomorphism � : Ks ×Du → ⋃

i γi ,
where Du ⊂ R

d is the closed unit disc for some d < dim M , satisfying the following
assertions.
• The assignment x �→ �|{x}×Du is a continuous map from Ks to the space of C1

embeddings Du ↪→ M , and this assignment can be extended to the closure Ks .
• For every x ∈ Ks , γ = �({x} ×Du) is an unstable disc in �.
Thus the index set I may be taken to be Ks × {0} ⊂ Ks ×Du. We define continuous
families of stable discs analogously.

A subset � ⊂ M has hyperbolic product structure if there is a continuous family
�u = {γ ui }i∈I of unstable discs and a continuous family �s = {γ sj }j∈J of stable discs
such that:
• dim γ ui + dim γ sj = dim M for all i, j ;
• the unstable discs are transversal to the stable discs, with an angle uniformly bounded

away from 0;
• each unstable disc intersects each stable disc in exactly one point;
• � = (

⋃
i γ

u
i ) ∩ (⋃j γ

s
j ).

A subset �0 ⊂ � with hyperbolic product structure is an s-subset if the continuous
family of unstable discs defining�0 is the same as the continuous family of unstable discs
for �, and the continuous family of stable discs defining �0 is a subfamily �s0 of the
continuous family of stable discs defining �0. In other words, if �0 ⊂ � has hyperbolic
product structure generated by the families of stable and unstable discs given by �s0 and
�u0 , then �0 is an s-subset if �s0 ⊆ �s and �u0 = �u. A u-subset is defined analogously.

Definition 6.1. A C1+α diffeomorphism f : M → M , with M a compact Riemannian
manifold, is a Young’s diffeomorphism if the following conditions are satisfied.
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(Y1) There exists � ⊂ M (called the base) with hyperbolic product structure, a count-
able collection of continuous subfamilies �si ⊂ �s of stable discs, and positive
integers τi , i ∈ N, such that the s-subsets

�si :=
⋃
γ∈�si

(γ ∩�) ⊂ �

are pairwise disjoint and satisfy:
(a) (invariance) for x ∈ �si ,

f τi (γ s(x)) ⊂ γ s(f τi (x)) and f τi (γ u(x)) ⊃ γ u(f τi (x)),

where γ u,s(x) denotes the (un)stable disc containing x; and
(b) (Markov property) �ui := f τi (�si ) is a u-subset of � such that for x ∈ �si ,

f−τi (γ s(f τi (x)) ∩�ui ) = γ s(x) ∩� and

f τi (γ u(x) ∩�si ) = γ u(f τi (x)) ∩�.

(Y2) For γ u ∈ �u, we have

μγu(γ
u ∩�) > 0 and μγu(cl((� \ ⋃

i �
s
i ) ∩ γ u)) = 0,

where μγu is the induced Riemannian leaf volume on γ u and cl(A) denotes the
closure of A in M for A ⊆ M .

(Y3) There is a ∈ (0, 1) so that for any i ∈ N, we have:
(a) for x ∈ �si and y ∈ γ s(x),

d(F (x), F(y)) ≤ ad(x, y);

(b) for x ∈ �si and y ∈ γ u(x) ∩�si ,
d(x, y) ≤ ad(F (x), F(y)),

where F :
⋃
i �

s
i → � is the induced map defined by

F |�si := f τi |�si .
(Y4) Denote J uF (x) = det |DF |Eu(x)|. There exist c > 0 and κ ∈ (0, 1) such that:

(a) for all n ≥ 0, x ∈ F−n(
⋃
i �

s
i ) and y ∈ γ s(x), we have∣∣∣∣ log
J uF (Fn(x))

J uF (Fn(y))

∣∣∣∣ ≤ cκn;

(b) for any i0, . . . , in ∈ N with Fk(x), Fk(y) ∈ �sik for 0 ≤ k ≤ n and y ∈
γ u(x), we have ∣∣∣∣ log

J uF (Fn−k(x))
J uF (Fn−k(y))

∣∣∣∣ ≤ cκk .

(Y5) There is some γ u ∈ �u such that
∞∑
i=1

τiμγ u(�
s
i ) < ∞.
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We say that the tower satisfies the arithmetic condition if the greatest common divisor
of the integers {τi} is 1.

We use the following result to discuss thermodynamics of Young’s diffeomorphisms,
which was originally presented as Proposition 4.1 and Remark 4 in [13].

PROPOSITION 6.2. Let f : M → M be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M satisfying conditions (Y1)–(Y5), and assume τ is the first return
time to the base of the tower. Then the following assertions hold.
(1) There exists an equilibrium measure μ1 for the potential ϕ1, which is the unique SRB

measure.
(2) Assume that for some constants C > 0 and 0 < h < hμ1(f ), with hμ1(f ) the metric

entropy, we have

Sn := #{�si : τi = n} ≤ Cehn

Define

log λ1 = sup
i≥1

sup
x∈�si

1
τi

log |J uF (x)| ≤ max
x∈M log |J uf (x)| (6.1)

and

t0 = h− hμ1(f )

log λ1 − hμ1(f )
. (6.2)

Then, for every t ∈ (t0, 1), there exists a measure μt ∈ M(f , Y ), where Y =
{f k(x) : x ∈ ⋃

�si , 0 ≤ k ≤ τ(x)− 1}, which is a unique equilibrium measure for
the potential ϕt .

(3) Assume that the tower satisfies the arithmetic condition, and that there is K > 0 such
that for every i ≥ 0, every x, y ∈ �si , and any j ∈ {0, . . . , τi},

d(f j (x), f j (y)) ≤ K max{d(x, y), d(F (x), F(y))}. (6.3)

Then, for every t0 < t < 1, the measure μt has exponential decay of correlations and
satisfies the central limit theorem with respect to a class of functions which contains
all Hölder continuous functions on M .

7. Young towers over pseudo-Anosov diffeomorphisms
Our argument that smooth pseudo-Anosov diffeomorphisms are Young diffeomorphisms
requires the construction of a hyperbolic tower on pseudo-Anosov homeomorphisms first.
We begin this section by constructing this hyperbolic tower, taking an element of the
Markov partition of the pseudo-Anosov homeomorphism as the base of the tower.

We assume that our pseudo-Anosov homeomorphism f admits only one singularity;
the analysis follows similarly with more singularities, but the notation becomes unwieldy
due to the different numbers of prongs at each singularity. Therefore we state without proof
that the arguments of this section imply that pseudo-Anosov diffeomorphisms admitting
multiple singularities are also Young diffeomorphisms. An example of a pseudo-Anosov
homeomorphism of the genus-2 torus admitting only one singularity may be found in [11].

By Proposition 2.9, a pseudo-Anosov surface homeomorphism f : M → M admits a
Markov partition of arbitrarily small diameter. Let P̃ be such a Markov partition, and let
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P̃ ∈ P̃ be an element of the Markov partition contained in a chart U1 not intersecting
with the chart U0 of the singularity x0. For x ∈ P̃ , let γ̃ s(x) and γ̃ u(x) respectively be
the connected component of the intersection of the stable and unstable leaves with P̃
containing x.

Let τ̃ (x) be the first return time of x to IntP̃ for x ∈ P̃ . For x with τ̃ (x) < ∞, define

�̃s(x) =
⋃

y∈Ũu(x)\Ãu(x)
γ̃ s(y),

where Ũu(x) ⊆ γ̃ u(x) is an interval containing x, open in the induced topology of γ̃ (x),
and Ãu(x) ⊂ Ũu(x) is the set of points that either lie on the boundary of the Markov
partition, or never return to P̃ . One can show that the leaf volume of Ãu(x) is 0, so that
for each y ∈ �̃s(x), the leaf volume of γ̃ (y) ∩ �̃s(x) is positive. We further choose our
interval Uu(x) so that:
• for y ∈ �̃s(x), we have τ̃ (y) = τ̃ (x); and
• for y ∈ P̃ with τ̃ (x) = τ̃ (y), we have y ∈ �̃(z) for some z ∈ P̃ .
One can show that the image under f̃ τ̃ (x) of �̃s(x) is a u-subset containing f̃ τ̃ (x)(x), and
that, for x, y ∈ P̃ with finite return time, �̃s(x) and �̃s(y) are either disjoint or coinciding.
As discussed in [13], this gives us a countable collection of disjoint sets �̃si and numbers τ̃i
for which the pseudo-Anosov homeomorphism f : M → M is a Young map, with s-sets
�̃si , inducing times τ̃i , and tower base

�̃ :=
∞⋃
i=1

cl(�̃si ).

In the following theorem, conditions (Y1′)–(Y5′) are virtually identical to conditions
(Y1)–(Y5) in Definition 6.1. They are reprinted in the following theorem because
pseudo-Anosov homeomorphisms are not true diffeomorphisms, and thus by definition
cannot satisfy conditions (Y1)–(Y5). However, analogous conditions may be established
for pseudo-Anosov homeomorphisms, and these conditions will be used to show that
globally smooth realizations of pseudo-Anosov diffeomorphisms (which are true diffeo-
morphisms) are Young diffeomorphisms.

THEOREM 7.1. The set �̃ defined above for the pseudo-Anosov homeomorphism f : M →
M satisfies the following conditions.
(Y1′) �̃ has hyperbolic product structure, and the sets {�̃si }i∈N are pairwise disjoint

s-subsets and satisfy:
(a) (invariance) for x ∈ �̃si ,

f τi (γ s(x)) ⊂ γ s(f τi (x)) and f τi (γ u(x)) ⊃ γ u(f τi (x)),

where γ u,s(x) denotes the (un)stable disc containing x; and
(b) (Markov property) �̃ui := f τi (�si ) is a u-subset of �̃ such that for x ∈ �̃si ,

f−τi (γ s(f τi (x)) ∩ �̃ui ) = γ s(x) ∩ �̃ and

f τi (γ u(x) ∩ �̃si ) = γ u(f τi (x)) ∩ �̃.
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(Y2′) For γ u ∈ �u, we have

νs(γ u ∩ �̃) > 0 and νs(cl((�̃ \ ⋃
i �̃

s
i ) ∩ γ u)) = 0,

where νs is the transversal invariant measure with respect to the stable foliation
Fs for f .

(Y3′) There is a ∈ (0, 1) so that for any i ∈ N, we have:
(a) for x ∈ �̃si and y ∈ γ s(x),

ds(F (x), F(y)) ≤ ads(x, y);

(b) for x ∈ �̃si and y ∈ γ u(x) ∩ �̃si ,
du(x, y) ≤ adu(F (x), F(y)),

where F :
⋃
i �̃

s
i → �̃ is the induced map defined by

F |�̃si := f τi |�̃si
and ds and du are the distances in the stable and unstable leaves of the foliations
Fs and Fu in P̃ , given respectively by νu and νs .

(Y4′) Denote J uF (x) = det |DF |Eu(x)|. There exist c > 0 and κ ∈ (0, 1) such that:
(a) for all n ≥ 0, x ∈ F−n(

⋃
i �̃

s
i ), and y ∈ γ s(x), we have∣∣∣∣ log
J uF (Fn(x))

J uF (Fn(y))

∣∣∣∣ ≤ cκn;

(b) for any i0, . . . , in ∈ N with Fk(x), Fk(y) ∈ �̃sik for 0 ≤ k ≤ n and y ∈
γ u(x), we have

∣∣∣∣ log
J uF (Fn−k(x))
J uF (Fn−k(y))

∣∣∣∣ ≤ cκk .

(Y5′) There is some γ u ∈ �̃u such that
∞∑
i=1

τiν
s(�̃si ∩ γ u) < ∞.

Proof. Properties (Y1′), (Y3′), and (Y4′) all follow from Proposition 2.7. Property (Y2′)
follows because x ∈ cl((� \ ⋃

i �
s
i ) ∩ γ u) implies that either x ∈ ∂P or τ(x) = ∞,

both of which happen on a set of Lebesgue measure 0 (and the smooth measure for
pseudo-Anosov homeomorphisms has density with respect to Lebesgue measure). And
since τ is a first return time, (Y5′) follows from Kac’s theorem.

The next lemma gives a bound on the number Sn of distinct s-subsets �̃si with a
given inducing time τ̃i = n. Since the pseudo-Anosov homeomorphism f is topologically
conjugate to the smooth realization g, this will eventually give us an analogous bound
on the number of distinct s-subsets for the base of the tower for g. (See condition (2) of
Proposition 6.2.)
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LEMMA 7.2. There exists h < htop(f ) such that Sn ≤ ehn, where Sn is the number of
s-sets �̃si with inducing time τ̃i = n.

Proof. The proof is analogous to [13, Lemma 6.1], since pseudo-Anosov homeomor-
phisms admit finite Markov partitions.

Let H : M → M be the conjugacy map so that g ◦H = H ◦ f , and let P = H(P̃),
P = H(P̃ ). Then P is a Markov partition for the pseudo-Anosov diffeomorphism (M , g),
and P is a partition element. By continuity of H , we may assume the elements of P have
arbitrarily small diameter. Furthermore, let � = H(�̃). Then � has direct hyperbolic
product structure with full length stable and unstable curves γ s(x) = H(γ̃ s(x)) and
γ u(x) = H(γ̃ u(x)). Then �si = H(�̃si ) are s-sets and �ui = H(�̃ui ) = gτi (�si ), where
τi = τ̃i for each i, and τ(x) = τi whenever x ∈ �si .

Recall that U0 = ⋃m
k=1 φ

−1
k (Dr0). If there is only one singularity, then U0 = φ−1

0 (Dr0).
GivenQ > 0, we can take r0 in the construction of g to be so small and refine the partition
P̃ so that the partition element P̃ (and hence P ) may be chosen so that

gn(x) �∈ U0 for any 0 ≤ n ≤ Q, (7.1)

and any x so that either x ∈ P , or x �∈ U0 while g−1(x) ∈ U0.
We now prove that the set � = H(�̃) constructed above is the base of a Young tower

on M for the diffeomorphism g. Properties (Y1), (Y2), and (Y5) are straightforward to
verify. Our strategy in proving these conditions, along with (Y3), is similar to that used
in [13], but we restate it here for the reader’s convenience. The main difference between
the argument used for these pseudo-Anosov diffeomorphisms and the Katok map comes
in proving (Y4), where we use a local trivialization of our surface M as opposed to the
universal cover of T2 by R

2.

THEOREM 7.3. The collection of s-subsets �si = H(�̃si ) satisfies conditions (Y1)–(Y5),
making the smooth pseudo-Anosov diffeomorphism g : M → M a Young diffeomorphism.

Proof. Condition (Y1) follows from the corresponding properties of the pseudo-Anosov
homeomorphism f since H is a topological conjugacy. The fact that μγu(γ u ∩�) > 0
follows from the corresponding property for the γ̃ u leaves. Suppose x ∈ cl((� \ ⋃

i �
s
i ) ∩

γ u). Then either x lies on the boundary of the Markov partition element P , or τ(x) = ∞,
and since both the Markov partition boundary and the set of x ∈ P with τ(x) = ∞ are
Lebesgue null, we get condition (Y2). Condition (Y5) follows from Kac’s formula, since
the inducing times are first return times to the base of the tower.

To prove condition (Y3), define the itinerary I(x) = {0 = n0 < n1 < · · · < n2L+1 =
τ(x)} ⊂ Z of a point x ∈ �, withL = L(x), so that gk(x) ∈ U0 if and only if n2j−1 ≤ k <

n2j for j ≥ 1. Assume � is small enough so that I(x) = I(y) whenever y ∈ γ (x) ⊂ �.
Let x ∈ �si , y ∈ γ s(x) ⊂ �si . Denote xn = gn(x) and yn = gn(y). Note that γ s(x) ⊂

Fs(x). By invariance of the stable and unstable measured foliations Fs and Fu, yn lies on
the stable curve Fs(xn) through xn for every n ≥ 1. For n2j ≤ n < n2j+1, TxnFs(xn) =
Esxn lies inside C−

x ; in fact one can show that Fs(xn) is an admissible manifold. Thus the
segment of Fs(xn) joining xn and yn expands uniformly under the homeomorphism f−1.
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Due to our choice of the number Q, there is a number β ∈ (0, 1) such that

d(xn2j+1 , yn2j+1) ≤ βn2j+1−n2j d(xn2j , yn2j ) ≤ βQd(xn2j , yn2j ). (7.2)

Now we consider n2j−1 ≤ n < n2j . Let [m1
j , m2

j ] ⊆ [n2j−1, n2j − 1] be the largest inter-

val (possibly empty) with xn in the closure of Ũ1 = φ−1
0 (Dr̃1(0)) for every n ∈ [m1

j , m2
j ].

By virtue of Lemma 5.2, there is a uniform T > 0 with m1
j − n2j−1 ≤ T and n2j −m2

j ≤
T . Thus there is a constant C > 0 so that

d(xm1
j
, ym1

j
) ≤ Cd(xn2j−1 , yn2j−1) and d(xn2j , yn2j ) ≤ Cd(xm2

j
, ym2

j
). (7.3)

Now, let s(t) and s̃(t) be solutions to equation (3.1) with s(0) = xm1
j

and s̃(0) = ym1
j
.

Assumption (1) of Lemma 5.5 is satisfied since yn lies in the stable cone of xn for every
n, and assumption (2) can be assured if our choice of r0 in the slowdown construction
of the pseudo-Anosov diffeomorphism is chosen to be sufficiently small. So by the final
inequality of this lemma, letting a = m1

j and b = m2
j , we get

‖�s(m2
j )‖ ≤

√
1 + α2

s1(m
2
j )

s2(m
1
j )

‖�s(m1
j )‖.

Let �kj s(t) = �−1
kj (̃s(t))−�−1

kj (s(t)). Because �kj is uniformly bounded above and
below, there is a constant K > 0 such that, for every t for which s̃(t) and s(t) are defined,

K−1‖�kj s(t)‖ ≤ ‖�s(t)‖ ≤ K‖�kj s(t)‖, (7.4)

and since the Riemannian metric in U0 is given in coordinates by dt21 + dt22 =
(�−1

kj )
∗(ds2

1 + ds2
2), we get ‖�kj s(n)‖ = d(xn, yn) for n ∈ [m1

j , m2
j ]. Therefore,

combining this observation with (7.4), (7.2), (7.3), and (5.1), we get

d(xn2j , yn2j ) ≤ CK2
√

1 + α2
s1(m

2
j )

s2(m
1
j )
d(xm1

j
, ym1

j
)

≤ C2K2
√

1 + α2
s1(m

2
j )

s2(m
1
j )
d(xn2j−1 , yn2j−1)

≤ C2K2βQ
√

1 + α2
s1(m

2
j )

s2(m
1
j )
d(xn2j−2 , yn2j−2).

Since s1(m2
j ) and s2(m1

j ) are each of order r0, their quotient is uniformly bounded, so
assuming Q is sufficiently large, there is a 0 < θ1 < 1 for which

d(xn2j , yn2j ) ≤ θ1d(xn2j−2 , yn2j−2) (7.5)

and a similar bound holds for odd indices of the itinerary. It follows that

d(gτ(x)(x), gτ(x)(y)) ≤ θL1 d(x, y),

where L is determined by the itinerary I(x). Condition (Y3)(a) follows, and (Y3)(b)
follows by the same argument applied to g−1.
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To prove condition (Y4), we prove condition (Y4)(a) and note that (Y4)(b) can be
proved similarly by considering g−1 instead of g. We use the following general statement,
originally presented as [13, Lemma 6.3].

LEMMA 7.4. Let {An}, {Bn}, 0 ≤ n ≤ N , be two collections of linear transformations of
R
d . Given a subspace E ⊂ R

d , let K = K(E, θ) denote the cone of angle θ around E.
Assume the subspace E is such that:
(a) An(K) ⊂ K for all n;
(b) there are γn > 0 such that for each n, and for any unit vectors v, w ∈ K ,

� (Anv, Anw) ≤ γn � (v, w);

(c) there are d > 0 and δn > 0 such that for each n ≥ 0, and every v ∈ K ,

‖Anv − Bnv‖ ≤ dδn‖Anv‖;

(d) there is c > 0 independent of n such that for every v ∈ K ,

‖Anv‖ ≥ c‖v‖.

Then there is a C > 0, independent of the choice of linear transformations {An} and {Bn},
such that for every v, w ∈ K ,∣∣∣∣ log

‖∏N
n=0 Anv‖

‖∏N
n=0 Bnw‖

∣∣∣∣ ≤ C

(
d

N∑
n=0

δn + � (v, w)
N∑
n=0

n∏
k=0

γk

)
. (7.6)

Let x ∈ P with N := τ(x)− 1 < ∞, and let y ∈ γ s(x) ⊂ P . For each n ≥ 0, once
again let xn = gn(x) and yn = gn(y), and in each tangent space TxnM , let K+

n =
K+(xn) ⊂ TxnM denote the cone of angle arctan α around Eu(xn) described in Lemma
3.4. By this lemma, the sequence of cones {K+

n } is invariant under Dg. For each n,
denote Ãn = Dgxn : TxnM → Txn+1M and B̂n = Dgyn : TynM → Tyn+1M . Further, since
yn lies on the stable leaf of xn for all n, let Pn : TynM → TxnM denote parallel translation
along the segment of the stable leaf connecting yn to xn, and denote B̃n = Pn+1 ◦ B̂n ◦
P−1
n : TxnM → Txn+1M . Using the orthonormal coordinates (ξ1, ξ2) for TxnM defined

previously, so that ξ1 denotes the unstable direction and ξ2 denotes the stable direction
(see the discussion preceding Proposition 3.3), we may isometrically identify each tangent
space TxnM with R

2 with the Euclidean metric. Call this isometry �n : TxnM → R
2, and

denote An = �n+1 ◦ Ãn ◦�−1
n : R2 → R

2 and Bn = �n+1 ◦ B̃n ◦�−1
n : R2 → R

2. Also
let K = �n(K

+
n ) ⊂ R

2. Since �n is an isometry and K+
n is a cone of angle arctan α

for each n, K is independent of n and is thus well defined. Finally, define the numbers
d = d(x, y), as well as

γn = max
v,w∈K

‖v‖=‖w‖=1

{ � (Anv, Anw)
� (v, w)

}
and δn = 1

d
max

v∈K\{0}

{‖Anv − Bnv‖
‖Anv‖

}

for each n ≥ 0.
The final step in proving our pseudo-Anosov diffeomorphism g is a Young’s diffeo-

morphism relies on the following technical lemma. Its proof is somewhat similar to the
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proof of [13, Lemma 6.4], but requires some modifications related to the subtle differences
in the slowdown function used in the Katok map as opposed to our pseudo-Anosov
diffeomorphism g, as well as to the fact that the universal cover of a surface that is not
a torus is not R2.

LEMMA 7.5. The linear operators An and Bn, as well as the cone K , all satisfy the
conditions of Lemma 7.4 using γn, δn, d , and N = τ(x)− 1 defined above. Furthermore,
there are constants C̃ > 0 and 0 < θ2 < 1, independent of x ∈ P , such that

τ(x)−1∑
n=0

δn < C̃,
τ(x)−1∑
n=0

n∏
k=0

γk < C̃, and
τ(x)−1∏
n=0

γn < θ2.

Proof of Lemma 7.5. Condition (a) of Lemma 7.4 follows from the definition of An, the
invariance of the cone familyK+

n under Ãn, and the fact that�n : TxnM → R
2 is an isom-

etry for every n. Conditions (b) and (c) of Lemma 7.4 follow from the definitions of γn and
δn. Finally, condition (d) of Lemma 7.4 follows from the fact that g is a diffeomorphism and
�n is an isometry, so ‖An‖ = ‖�n+1 ◦Dgxn ◦�−1

n ‖ is uniformly bounded away from 0.
We begin by proving summability of δn. Assume diamP < ρ, where ρ is the

injectivity radius of M . Since yn ∈ γ s(xn) and d(xn, yn) < ρ, the tangent vector vn =
(expxn)|−1

B(ρ,n)(yn) lies in the stable cone K−
n ⊂ TxnM , where B(ρ, n) = {v ∈ TxnM :

‖v‖ < ρ}. By symmetry of the vector field (3.1), we only need to consider the behavior of
the trajectories {xn} and {yn} in the ‘upper subsector’ Ssj ∩ Suj , corresponding to the first
quadrant in coordinates given by �j ◦ φ0. (Here we denote by Ssj , Suj , and �j to be the
subsets and functions described earlier as Sskj , Sukj , and �kj , where we did not assume we
only had one singularity.) Further assume s̃2 := Im(�j (φ0(y))) > s2 := Im(�j (φ0(x))),
so that �s2 := s̃2 − s2 > 0. Otherwise, exchange the sequences {xn} and {yn}.

Recall the itinerary I(x) = {0 = n0 < n1 < · · · < n2L+1 = τ(x)} ⊂ Z of the point
x ∈ �, defined via xn ∈ U0 if and only if n2j−1 ≤ n < n2j . Consider n2j ≤ n < n2j+1,
so xn �∈ U0. In coordinates, g(s1, s2) = (λs1, λ−1s2), so An = Bn are constant matrices,
so δn = 0.

Suppose now that n2j+1 ≤ n < n2j+2. Denote by D(s1, s2) the coefficient matrix of
the variational equations of (3.1), given explicitly by

D(s1, s2) = log λ
[

p(u)+ 2s2

1
̇p(u) 2s1s2
̇p(u)
−2s1s2
̇p(u) −
p(u)− 2s2

2
̇p(u)

]
. (7.7)

Let s(t), s̃(t) : [n, n+ 1] → R
2 be solutions to (3.1) with initial condition s(n) = xn and

s̃(n) = yn, and let An(t) and Bn(t) be the 2 × 2 Jacobian matrices

An(t) = d(θt )((�kj ◦ φk)(xn)) and Bn(t) = d(θt )((�kj ◦ φk)(yn)),
where θt : R2 → R

2 is the time-t map of the flow of (3.1) on R
2, for n ≤ t ≤ n+ 1. Then

An(1) = An and Bn(1) = Bn from before, and An(t) and Bn(t) are the unique solutions
to the systems of differential equations

dAn(t)

dt
= D(s(n+ t))An(t) and

dBn(t)

dt
= D(̃s(n+ t))Bn(t)
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with initial conditions An(0) = Bn(0) = Id. It follows that An(t)− Bn(t) satisfies the
differential equation

dAn(t)

dt
− dBn(t)

dt
= (D(s(n+ t))−D(̃s(n+ t)))An(t)+D(̃s(n+ t))(An(t)− Bn(t)).

Using the integrating factor exp
∫ t

0 D(̃s(n+ τ)) dτ = Bn(t), this implies

An(t)− Bn(t) = Bn(t)

∫ t

0
Bn(t)

−1(D(s(n+ t))−D(̃s(n+ t)))An(t) dτ . (7.8)

Note that ‖D(s)−D(̃s)‖ ≤ ‖∂D(ξ)‖‖�s‖, where ∂D(s) denotes the total derivative
of the matrix D(s1, s2) and ξ = (ξ1, ξ2), with min{si , s̃i} ≤ ξi ≤ max{si , s̃i}. This, in
conjunction with (7.8) and Lemma 5.3, gives us

‖An − Bn‖ ≤ ‖Bn(1)‖ sup
0≤τ≤1

‖Bn(τ)−1‖‖An(τ)‖‖D(s(n+ τ))−D(̃s(n+ τ))‖

≤ ‖Bn(1)‖ sup
0≤τ≤1

‖Bn(τ)−1‖‖An(τ)‖‖∂D(ξ(n+ τ))‖‖�s(n+ τ)‖

≤ Cp sup
0≤τ≤1

(ξ2
1 + ξ2

2 )
(p−4)/2p(n+ τ)‖�s(n+ τ)‖, (7.9)

where Cp is a constant that depends on p, but not on n (as the matrices Bn(t) and An(t)
are uniformly bounded above and below in n and in t).

By condition (4) of Lemma 7.4 and the definition of δn,

δn ≤ 1
cd(x, y)

‖An − Bn‖ = 1
c

d(xn2j+1 , yn2j+1)

d(x, y)
‖An − Bn‖

d(xn2j+1 , yn2j+1)
.

We now claim that

Dj :=
n2j+2−1∑
n=n2j+1

‖An − Bn‖
d(xn2j+1 , yn2j+1)

≤ C, (7.10)

where C is a constant independent of j . If this is true, then because δn = 0 for
n2j ≤ n < n2j+1, by (7.5),

τ(x)−1∑
n=0

δn =
L∑
j=1

n2j+2−1∑
n=n2j+1

δn =
L∑
j=1

1
c

d(xn2j+1 , yn2j+1)

d(x, y)

n2j+2−1∑
n=n2j+1

‖An − Bn‖
d(xn2j+1 , yn2j+1)

= C

c

L∑
j=1

θ
j

1 ≤ C̃,

and because θ1 is independent of x, y ∈ P , and c and C are both of order supn‖An‖, C̃ is
also independent of our choice of x and y.

Recall that [m1
j , m2

j ] ⊆ [n2j + 1, n2j+2 − 1] is the largest (possibly empty) interval
of integers with xm ∈ Dr̃1 for each n ∈ [m1

j , m2
j ], and [m1

j , Tj ] is the largest time
interval for which s1(t) ≤ s2(t) for all m1

j ≤ t ≤ Tj . If [m1
j , m2

j ] is empty, then
s(t) ∈ (�kj ◦ φk)(Dr̃0 \Dr̃1) for all t ∈ [n2j+1, n2j+2 − 1]. In this instance, by Lemma
5.2, n2j+2 − n2j+1 ≤ T is uniformly bounded, and hence (7.10) is a sum of uniformly
boundedly many terms that are uniformly bounded, by (7.9).
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Now suppose [m1
j , m2

j ] is non-empty. The sum in (7.10) splits into four different sums:

Dj =
( m1

j−1∑
n=n2j+1

+
Tj−1∑
n=m1

j

+
m2
j∑

n=Tj
+

n2j+2−1∑
n=m2

j+1

) ‖An − Bn‖
d(xn2j+1 , yn2j+1)

. (7.11)

We show that each of these sums is itself uniformly bounded. This is true for the first and
fourth sum, because in these instances, s(t) is in the annular region (�kj ◦ φk)(Dr̃0 \Dr̃1),
and so the number of summands is uniformly bounded by Lemma 5.1.

To show this for the middle two sums, note that since s̃(t) ∈ R
2 is in the stable cone of

s(t) for all t in the domain, we have

|�s1| ≤ α�s2 ≤ �s2. (7.12)

First, suppose m1
j ≤ n ≤ Tj − 1, so that s1(t) ≤ s2(t). We would like to apply Lemma 5.5

in the interval [m1
j , n], so we require �s2(m1

j )/s2(m
1
j ) ≤ (1 − α)/72. This is attainable

by choosing r0 to be sufficiently small and Q in (7.1) to be sufficiently large. Applying
Lemma 5.5 for n ≤ Tj − 1, and 0 ≤ τ ≤ 1, we get

|�s(n+ τ)| ≤ 2�s2(n+ τ)

≤ 2
�s2(m

1
j )

s2(m
1
j )
s2(n+ τ)(1 + 2(p−2)/pC0s2(m

1
j )
(2p−4)/p(n+ τ −m1

j ))
−β

≤ 2
�s2(m

1
j )

s2(m
1
j )
s2(n+ τ)(1 + C0s2(m

1
j )
(2p−4)/p(n+ τ −m1

j ))
−β (7.13)

since β = 2−(3p−2)/p(1 − α) > 0. Recalling that ξ(t) = (ξ1(t), ξ2(t)) is such that
min{si , s̃i} ≤ ξi ≤ max{si , s̃i} for i = 1, 2, (5.4) gives us

s2
2(t) ≤ (ξ2

1 + ξ2
2 )(t) ≤ 2(1 + κ)2s2

2(t) ≤ Cs2
2(t)

as κ = (�s2/s2) ≤ (1 − α)/72. Estimates (7.9) and (7.13) give us

‖An − Bn‖

≤ C
‖�s(m1

j )‖
s2(m

1
j )

sup
0≤τ≤1

s2(n+ τ)(2p−4)/p(1 + C0s2(m
1
j )
(2p−4)/p(n+ τ −m1

j ))
−β ,

where we are using the fact that |�s2| ≤ ‖�s‖. Applying Lemma 5.4(b) on the interval
[m1

j , n+ 1] gives us

‖An − Bn‖

≤ C
‖�s(m1

j )‖
s2(m

1
j )

sup
0≤τ≤1

s2(m
1
j )
(2p−4)/p(1 + C0s2(m

1
j )
(2p−4)/p(n+ τ −m1

j ))
−1−β

= C‖�s(m1
j )‖s2(m1

j )
(p−4)/p(1 + C0s2(m

1
j )
(2p−4)/p(n−m1

j ))
−1−β .

We make three observations. First, recalling that n = m1
j is the first time that s(n) is

within r̃1 of the origin, we observe that s2(m1
j ) is bounded above and below by a constant
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multiple of r̃1, independent of x ∈ � or j = 1, . . . , L. Second, ‖�s(m1
j )‖ = d(xm1

j
, ym1

j
),

by definition of our Riemannian metric in U0. Third, since Lemma 5.1 impliesm1
j − n2j+1

is bounded by a value independent of x or j , the value d(xm1
j
, ym1

j
)/(d(x2j+1, y2j+1)) is

uniformly bounded independently of x, y ∈ � or j ≥ 1. These three observations imply

‖An − Bn‖
d(x2n+1, y2n+1)

≤ C(1 + C0s2(m
1
j )
(2p−4)/p(n−m1

j ))
−1−β .

Therefore,

Tj−1∑
n=m1

j

‖An − Bn‖
d(x2n+1, y2n+1)

≤
∞∑

n=m1
j

C(1 + C0s2(m
1
j )
(2p−4)/p(n−m1

j ))
−1−β ,

which is uniformly bounded in j . Therefore the second term in (7.11) is uniformly bounded
in j .

Finally, we turn our attention to the case where Tj ≤ n ≤ m2
j , where we have s1 ≥ s2.

By symmetry, we have that Tj ≥ (m2
j +m1

j − 2)/2. By (7.12) and the second inequality
in Lemma 5.5, we have

‖�s(n+ τ)‖ ≤ 2�s2(n+ τ)

≤ 2
�s2(Tj )

s1(Tj )
s1(n+ τ)

(1 + 2(p−2)/pC0s1(m
j

2)
(2p−4)/p(m2

j − n− τ)

1 + 2(p−2)/pC0s1(m
j

2)
(2p−4)/p(m2

j − Tj )

)β
.

Since min{si , s̃i} ≤ ξi ≤ max{si , s̃i} for i = 1, 2, we have si − |�si | ≤ ξi ≤ si + |�si |. In
particular,

ξ2
1 + ξ2

2 ≥ ξ2
1 ≥ (s1 − |�s1|)2 = s2

1

(
1 − |�s1|

s1

)2

≥ s2
1

(
1 − �s2

s1

)2

≥ C−1s2
1

and

ξ2
1 + ξ2

2 ≤ (s1 + |�s1|)2 + (s2 + |�s2|)2 ≤ 2(s1 +�s2)
2 = 2s1

(
1 + �s2

s1

)2

≤ Cs2
1 ,

which both follow because �s2/s1 is monotonically decreasing by (5.10). Together, these
two estimates imply

(ξ1(n+ τ)2 + ξ2(n+ τ)2)(p−4)/2p ≤ Cs1(n+ τ)(p−4)/p.

Applying (7.9) and inequality (a) in Lemma 5.4 to these inequalities gives us

‖An − Bn‖ ≤ C sup
0≤τ≤1

[s1(n+ τ)(p−4)/p‖�s(n+ τ)‖] ≤ 2C
�s2(Tj )

s1(Tj )

· sup
0≤τ≤1

[
s1(n+ τ)(2p−4)/p

(1 + 2(p−2)/pC0s1(m
2
j )
(2p−4)/p(m2

j − n− τ)

1 + 2(p−2)/pC0s1(m
2
j )
(2p−4)/p(m2

j − Tj )

)β]
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≤ 2C
�s2(Tj )

s1(Tj )
s1(m

2
j )
(2p−4)/p

· sup
0≤τ≤1

[
(1 + 2(p−2)/pC0s1(m

2
j )
(2p−4)/p(m2

j − n− τ))β−1

(1 + 2(p−2)/pC0s1(m
2
j )
(2p−4)/p(m2

j − Tj ))β

]
.

By (5.6), since s1(m2
j ) and s2(m1

j ) are uniformly bounded,

|�s2(Tj )|
s1(Tj )

s1(m
2
j )
(2p−4)/p = |�s2(Tj )|

s2(Tj )
s1(m

2
j )
(2p−4)/p

≤ |�s2(m1
j )|

s2(m
1
j )

s1(m
2
j )
(2p−4)/p ≤ C|�s2(m1

j )|.

Furthermore, since |�s2(m1
j )|/(d(xn2j+1 , yn2j+1)) is uniformly bounded, we finally obtain

‖An − Bn‖
d(xn2j+1 , yn2j+1)

≤ C
(1 + 2(p−2)/pC0s1(m

2
j )
(2p−4)/p(m2

j − n))β−1

(1 + 2(p−2)/pC0s1(m
2
j )
(2p−4)/p(m2

j − Tj ))β
.

Therefore,

m2
j∑

n=Tj

‖An − Bn‖
d(xn2j+1 , yn2j+1)

≤ C(1 + 2(p−2)/pC0s1(m
2
j )
(2p−4)/p(m2

j − Tj ))
−β

×
m2
j∑

n=Tj
(1 + 2(p−2)/pC0s1(m

2
j )
(2p−4)/p(m2

j − n))β−1

≤ C(1 + 2(p−2)/pC0s1(m
2
j )
(2p−4)/p(m2

j − Tj ))
−β

×
(

1 +
∫ m2

j−Tj

0
(1 + 2(p−2)/pC0s1(m

2
j )
(2p−4)/pτ )β−1 dτ

)
≤ C(1 + 2(p−2)/pC0s1(m

2
j )
(2p−4)/p(m2

j − Tj ))
−β

×
(

1 + (1 + 2(p−2)/pC0s1(m
2
j )
(2p−4)/p(m2

j − Tj )
(p−2)/p)β

2(p−2)/pC0s1(m
2
j )
(2p−4)/pβ

)
≤ C(1 + (2(p−2)/pr̃

(2p−4)/p
1 C0β)

−1),

where the second inequality follows from the fact that the integrand is a decreasing
function of τ , and the final inequality follows from the fact that r̃1 ≤ s1(m

2
j ) by definition

of m2
j . Therefore the third sum of (7.11) is uniformly bounded. This completes the proof

that δn is a summable sequence.
We now prove the estimates involving γk . For n ∈ [n2j , n2j+1 − 1], we have xn, yn �∈

U0, where Dgxn and Dgyn are constant hyperbolic linear transformations. For these values
for n, the maps contract angles uniformly, so there is a γ > 0 for which γn < γ < 1 for
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all n. For n ∈ [m1
j , m2

j ], we have xn ∈ U1, so applying Lemma 5.6,

m2
j−1∏

n=m1
j

γn ≤ (1 + C0s2(m
1
j )
(2p−4)/p(m2

j −m1
j ))

−p/(p−2)

≤ (1 + C(m2
j −m1

j ))
−p/(p−2),

since s2(m1
j ) is uniformly bounded. Because the interval of integers [m1

j , m2
j ] differs from

[n2j+1, n2j+2 − 1] by a finite set, and the cardinality of this finite set is uniformly bounded
in j by Lemma 5.1, there is a uniform constant C′ > 0 for which

n2j+2−1∏
j=n2j+1

γn ≤ C′(1 + C(m2
j −m1

j ))
−p/(p−2) ≤ C′.

In particular,

n2j+2−1∏
n=n2j

γn ≤ C′γ n2j+1−n2j < θ3, (7.14)

for some constant θ3 > 0. The third estimate of the lemma follows.
To prove the second and final estimates of the lemma, we observe that a similar estimate

to (7.14) may be made with the upper limit replaced with n2j+1 − 1. In particular, for
n2j+1 ≤ n ≤ n2j+2 − 1,

n∏
k=n2j+1

γj ≤ C′(1 + C(n− n2j+1))
−p/(p−2)

and

n2j+1−1∏
n=n2j

γn < θ ′
3

for some θ ′
3 > 0 that is uniformly bounded. Therefore,

τ(x)∑
n=0

n∏
k=0

γk =
L(x)∑
j=0

n2j+2−1∑
n=n2j

n∏
k=0

γk =
L(x)∑
j=0

( n2j−1∏
k=0

γk

n2j+2−1∑
n=n2j

n∏
k=n2j

γk

)

≤
L(x)∑
j=0

(
θ
j

3

( n2j+1−1∑
n=n2j

n∏
k=n2j

γk +
n2j+1−1∏
k=n2j

γk

n2j+2−1∑
n=n2j+1

n∏
k=n2j+1

γk

))

≤
L(x)∑
j=0

(
θ
j

3

( n2j+1−1∑
n=n2j

γ n−n2j + θ ′
3

n2j+2−1∑
n2j+1

(1 + C(n− n2j+1))
−p/(p−2)

))
.
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Because the two sums in the inner parentheses above are both uniformly bounded, there is
a C′ > 0 for which

τ(x)∑
n=0

n∏
k=0

γk ≤ C′′
L(x)∑
j=0

θ
j

3 ,

which gives us the second estimate in the lemma.

We continue with the proof of the theorem. Observe that(
�−1
τ(x) ◦

τ(x)−1∏
n=0

An ◦�0

)
(v) = D(gτ(x))xv for all v ∈ TxM ,

and

(P−1
τ(x) ◦�−1

τ(x) ◦
τ(x)−1∏
n=0

Bn ◦�0 ◦ P0)(v) = D(gτ(x))yv for all ∈ TyM .

In particular, since both �n and Pn are linear isometries for all n ≥ 0, we have∥∥∥∥τ(x)−1∏
n=0

Anv

∥∥∥∥ = ‖D(gτ(x))xv‖ for all v ∈ TxM ,

and ∥∥∥∥τ(x)−1∏
n=0

Bnw

∥∥∥∥ = ‖D(gτ(x))yw‖ for all w ∈ TyM ,

where v = �0v ∈ R
2 and w = (�0 ◦ P0)w ∈ R

2. Additionally, for v ∈ TxnM and w ∈
TynM ,

� (Dgxnv, (Pn+1 ◦Dgyn)w) = � (Anv, Bnw),

where v = �nv and w = (�n ◦ Pn)w.
Now, suppose v ∈ K+(x) and w ∈ K+(y), and once again denote v = �0v and w =

(�0 ◦ P0)w. Since P0w ∈ K+(x), Lemmas 7.4 and 7.5 yield

|log ‖D(gτ(x))xv‖‖D(gτ(x))yw‖| =
∣∣∣∣log

‖∏τ(x)−1
n=0 Anv‖

‖∏τ(x)−1
n=0 Bnw‖

∣∣∣∣
≤ CC̃(d(x, y)+ � (v, P0w)), (7.15)

where we are using the fact that � (v, P0w) = � (v, w). Furthermore, for v ∈ TxM and
w ∈ TyM , the definition of γn and Lemma 7.5 give us

� (D(gτ(x))xv, (Pτ(x) ◦D(gτ(x))y)w)
� (v, P0w)

=
τ(x)−1∏
n=0

� (Dgxn(Dgnxv), (Pn+1 ◦Dgyn)(Dgnyw))
� (Dgnxv, Pn(Dgnnw))
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=
τ(x)−1∏
n=0

� (An(�n(Dgnxv)), Bn((�n ◦ Pn)(Dgnyw)))
� (�n(Dgnxv), (�n ◦ Pn)(Dgnyw))

≤
τ(x)−1∏
n=0

γn ≤ θ2. (7.15)

Denote Ĝ : � → � by Ĝ(x) = gτ(x)(x). If vn ∈ Eu(Ĝn(x)) and wn ∈ Eu(Ĝn(y)), then
there are v ∈ Eu(x) and w ∈ Eu(y) such that vn = DĜnxv and wn = DĜnyw. By (7.15),
(7.15), and condition (Y3),

∣∣∣∣ log
‖DĜĜn(x)vn‖
‖DĜĜn(y)wn‖

∣∣∣∣ ≤ CC̃(d((gτ(x))n(x), (gτ(x))n(y))

+ � (D(gτ(x))nxv, Pτ(x)D(gτ(x))nyw))

≤ CC̃(and(x, y)+ θn2
� (v, P0w)).

Since 0 < a, θ2 < 1, this proves (Y4)(a).

8. Proof of Theorem 4.1
We now drop our assumption that the pseudo-Anosov diffeomorphism g admits only
one singularity. By Proposition 6.2 and Theorem 7.3, since g : M → M is a Young
diffeomorphism, the geometric potential ϕ1(x) = − log |Dg|Eu(x)| admits an equilibrium
measure, which is the unique g-invariant SRB measure. This is the same measure as μ1

introduced in Proposition 3.2, as μ1 is absolutely continuous along the unstable foliations
and thus an SRB measure. (This justifies our use of the notation μ1 to describe this
measure).

By Proposition 3.1, the pseudo-Anosov homeomorphism f and the pseudo-Anosov dif-
feomorphism g possess the same topological and combinatorial data, including topological
entropy. Thus the number Sn of s-sets�si ⊂ � with inducing time τi = n for g is the same
for both f and g. Therefore by Lemma 7.2, there is an h < htop(g) = htop(f ) such that
Sn ≤ ehn.

Recall that ν is the measure on M given locally by the product of lengths of local
stable and unstable leaves described in Theorem 2.8, and μ1 is the measure given by
the Riemannian metric ζ described in Proposition 3.2. By Theorem 2.8, ν has a density
with respect to μ1, which vanishes at the singularities. By Proposition 10.13 and Lemma
10.22 of [6], hν(f ) = htop(f ) = log λ, so in fact h < hν(f ). Since ν = μ1 on M \ U0,
and μ1(U0) may be made arbitrarily small by shrinking r0 if necessary, the Pesin entropy
formula implies

hμ1(g) =
∫
M

log |Dg|Eu(x)| dμ1(x)

=
∫
M\U0

log λ dν +
∫
U0

log |Dg|Eu(x)| dμ1(x) < hν(f )+ ε, (8.1)
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where ε > 0 is as small as we need. From this we conclude that h < hμ1(g). Hence by
Proposition 6.2, there is a t0 < 0 for which, for all t ∈ (t0, 1), there is a measure μt on P
that is an equilibrium state for the geometric t-potential ϕt .

Since f is Bernoulli, every power of f is ergodic, so f satisfies the arithmetic condition.
Since f and g are topologically conjugate, this is also true for g.

We now prove (6.3). If x, y ∈ �si and y ∈ γ s(x), the distance d(f j (x)f j (y)) decreases
with j . On the other hand, if y ∈ γ u(x), then d(f j (x), f j (y)) increases with j , but
is bounded by diam P when j = τ(x). An application of the triangle inequality and
hyperbolic product structure of � now yields (6.3). It now follows that μt has exponential
decay of correlations and satisfies the central limit theorem, by Proposition 6.2. Since
(M , g, μt) has exponential decay of correlations, this dynamical system is mixing. By [17,
Theorem 2.3], (M , g, μt) is Bernoulli.

To show r0 may be chosen to accommodate any t0, we show that as r0 → 0, we may take
t0 → −∞. Fix ε > 0, and choose x ∈ �si . Recall that g = f outside of Ũ0; in particular,
the local stable and unstable leaves are unchanged outside of Ũ0. Assume x is a generic
point for the SRB measure μ1. Let Ũ2 = ⋃m

k=1 φ
−1
k (Dr̃1/4), and write τi as

τi =
s∑
j=1

nj ,

where the integers nj are chosen as follows:
• the integer n1 is the first time when gn1(x) ∈ Ũ0 \ Ũ2;
• the integer n2 is the first time after n1 when gn1+n2(x) ∈ Ũ2;
• the number n3 is the first time after n1 + n2 when gn1+n2+n3(x) ∈ Ũ0 \ Ũ2;
• the number n4 is the first time after n1 + n2 + n3 when gn1+n2+n3+n4(x) �∈ Ũ0;
and so on. It is possible that some nj may be equal to 0, but this does not change our
calculations. ObserveQ ≤ n1, whereQ is the number from (7.1). If r0 is sufficiently small,
Q is large enough to ensure that

log |J ugn1(x)| ≤ n1(log λ+ ε). (8.2)

By (7.7), for x ∈ Ũ0 \ Ũ2, we have log |J ug(x)| ≤ log N for some constantN independent
of r0 or of the number of prongs p. Therefore,

log |J ugn2(x)| ≤ n2 log N and log |J ugn4(x)| ≤ n4 log N . (8.3)

For x ∈ Ũ2, if x is in a neighborhood of a singularity with p prongs, 
p(u) =
(p/2)(2p−4)/pu(p−2)/p and 
̇p(u) = (p − 2)/p(p/2)(2p−4)/pu−2/p. By (7.7), for such
points x, log |J ug(x)| ≤ log λ. Therefore,

log |J ugn3(x)| ≤ n3 log λ. (8.4)

Similar estimates hold for the other nj . Observe that

log |J uĜ(x)| ≤
s∑
j=1

log |J ugn1+···+nj (gn1+···+nj−1(x))|. (8.5)
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Similarly to Lemma 5.2, the number of iterates the orbit of x spends in Û0 \ Û2 is bounded
above by a constant T ′

0 independent of both r0 and p. It follows from (8.2)–(8.5) and the
definition of λ1 in (6.1) that

log λ1 ≤ log λ+ ε + 2T ′
0 log N
Q

≤ log λ+ 2ε.

Meanwhile, (8.1) implies that for sufficiently small r0,∣∣∣∣∫
M

log |Dg|Eu(x)| dμ1(x)− log λ
∣∣∣∣ < ε, (8.6)

or equivalently,

log λ− ε ≤ hμ1(g) ≤ log λ+ ε.

Furthermore, one can show log λ1 ≥ hμ1(g) (see [13, Remark 3], which is a general
statement about Young diffeomorphisms). Therefore,

log λ− ε ≤ hμ1(g) ≤ log λ1 ≤ log λ+ 2ε.

It follows that the difference log λ1 − hμ1(g) can be made arbitrarily small if r0 is chosen
to be sufficiently small. By (6.2), this shows that t0 → −∞ as r0 → 0.

We now show how μt may be extended to a measure on M , as opposed to a measure
only on images of the base of the tower. Suppose we have another element P̃ of the
Markov partition satisfying (7.1). As above, there is a t̃0 = t0(P̃ ) < 0 for which. for every
t ∈ (̃t0, 1), there is a unique equilibrium state μ̃t for the geometric t-potential among all
measures μ for which μ(P̃ ) > 0, and μ̃t (U) > 0 for all open sets Ũ ⊂ P . Since g is
topologically conjugate to a Bernoulli shift, g is topologically transitive. Therefore for any
open sets Ũ ⊂ P̃ and U ⊂ P , there is an integer k ≥ 0 for which gk(Ũ) ∩ U �= ∅. By
invariance of μ̃t and μt under g, it follows that μt = μ̃t .

Consider now an element of the Markov partition that does not satisfy (7.1). If r0 is
sufficiently small, the union of all partition elements satisfying (7.1) form a closed set
Z ⊂ M , whose complement is a neighborhood of the singular set S with each component
containing a single singularity. If ω is a g-invariant probability measure that does not
give weight to partition elements in Z, then ω is a convex combination of the δ-measures
concentrated at the singularities. If P is our partition element in the proof of Theorem 7.3,
we observe ω(P ) = 0, so ω is clearly out of consideration as an equilibrium measure for
ϕt . So any equilibrium measure for (M , g)must charge partition elements in Z. Therefore,
set

t0 = max
P∈P, P∩Z �=∅

t0(P ).

Since t0 → −∞ as r0 → 0 and μt(P ) > 0 for t0 < t < 1, this t0 suffices for statement (1)
of Theorem 4.1.

To prove statement (2) of Theorem 4.1, suppose ω is an invariant ergodic Borel
probability measure. By the Margulis–Ruelle inequality,

hω(g) ≤
∫
M

log |Dg|Eu(x)| dω(x) = −
∫
M

ϕ1 dω.
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Hence hω(f )+ ∫
ϕ1 dω ≤ 0. If ω has only 0 as a non-negative Lyapunov exponent

almost everywhere, then log |Dg|Eu(x)| = 0 ω-almost everywhere. The only point at
which log |Dg|Eu(x)| = 0 is at the singularities of g, so ω is a convex combination of
the δ-measures at the singularities. In this instance, we have hω(g)+ ∫

ϕ1 dω = 0, so
P(ϕ1) = 0, and ω is an equilibrium state for ϕ1.

On the other hand, part (1) of Proposition 6.2 guarantees the existence of an SRB
measure μ1 for g. In particular, μ1 is a smooth measure, so by the Pesin entropy formula,
hμ(f )+ ∫

ϕ1 dμ = 0, so μ is also an equilibrium measure. Any other equilibrium
measure with positive Lyapunov exponents also satisfies the entropy formula. By [10],
such a measure is also an SRB measure, and by [16] this SRB measure is unique. This
proves statement (2).

Finally, to prove statement (3) of Theorem 4.1, fix t > 1, and letω be an ergodic measure
for g. Again, by the Margulis–Ruelle inequality,

hω(g) ≤ t

∫
log |Dg|Eu(x)| dω,

with equality if and only if
∫

log |Dg|Eu(x)| dω = 0. In particular, we have equality
if and only if ω has zero Lyapunov exponents ω-almost everywhere. As we saw, the
only measures satisfying this are convex combinations of δ-measures at singularities,
so hω(g)+ ∫

ϕt dω ≤ 0, with equality only for ω = ∑
λiδxi , with

∑
λi = 1. Hence

the only equilibrium states for ϕt with t > 1 are convex combinations of δ-measures at
singularities.
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