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THE CARDINALITY OF THE CENTER OF A Pl RING

CHARLESLANSKI

ABSTRACT. The main result shows that if Ris a semiprime ring satisfying a poly-
nomial identity, and if Z(R) isthe center of R, then card R < 2°#9Z(R) | Examples show
that this bound can be achieved, and that the inequality failsto hold for rings which are
not semiprime.

The purposeof thisnoteisto comparethe cardinality of aring satisfying apolynomial
identity (aPI ring) with the cardinality of its center. Before proceeding, werecall the def-
inition of a central identity, a notion crucial for us, and a basic result about polynomial
identities. Let C be a commutative ring with 1, F{X} = C{x, ..., xn} the free algebra
over Cin noncommutingindeterminates{x; }, and set G = {f(xl, ..., %n) € F{X} | some
coefficient of f isaunitin C}. If Risanalgebraover C, thenf (xy, ..., X,) € Gisapolyno-
mial identity (Pl) for Rif foral r; € R, f(ry,...,rn) = 0. Thestandard identity of degree
Nis Si(Xe, - -+, %) = Zo(—=1) %) - - - X(n) Where o ranges over the symmetric group
on n letters. The Amitsur-L evitzki theoremis an important result about S, and showsthat
M(C) satisfies S, exactly for n > 2k [5; Lemma2, p. 18 and Theorem, p. 21]. Call f € G
acentral identity for Rif f(rq,...,rn) € Z(R), the center of R, for al ri € R, but f is not
apolynomial identity. One can obtain atrivial example of acentral identity by adding a
polynomial identity to afixed element from Z(R). A result with major consequencesfor
the theory of PI rings wasthe proof of the existence of nonconstant central identities for
matrix rings M (F) by E. Formanek [1]. One among the many important applications of
thiswork wasaresult of L. Rowen [6] showing that any nonzeroideal in asemiprime PI
ring must intersect the center of thering nontrivially. Thus, for asemiprime Pl ring, there
is an important and interesting relationship between the ring and its center. In particular,
the center cannot be too small. A natural and intriguing question which arises is how
small the center can be relative to the size of the ring? When R is a prime Pl ring with
center Z(R), then R and Z(R) have the same cardinality unless R is finite. This follows
from a theorem of E. Formanek [2; Theorem 1, p. 79], which uses Rowen'’s result and
shows that when R is a prime Pl ring, the Z(R) module R embedsin afree Z(R) module
of finite rank. Another approach is to observe that if Sis the central localization of R
at Z(R) — (0), then Sis afinite dimensional (simple) algebra over the quotient field of
Z(R) [5; Theorem 2, p. 57]. For future reference we record this observation as atheorem.
Denote the cardinality of Shy |S.
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THEOREM A. If Risa primePI ring then either Risfinite or |R| = |Z(R)|.

We shall need to refer to the theorem of L. Rowen [6; Theorem 2, p. 221] mentioned
above, so we state it for convenience.

THEOREM B. If RisasemiprimePlringand| # Oisanideal of RthenNZ(R) # 0.

We begin with some examples, the first of which is easy and showsthat when Ris not
semiprime, no particular relation exists between |R| and |Z(R)|, except for |Z(R)| < |R|.

ExamPLE 1. Let 1l < a < 8 be cardinal numbers with 3 infinite, F a field with

|F| < «, and X a set of commuting indeterminates over F with |X| = 3. ThenR =

(F) FLX]} C My(F[X]) satisfies the standard identity Sy, Z(R) = F - I, 50 [Z(R)| <
a<p=|R,.

If thering Rin Example 1 satisfies a central identity, then by linearization it satisfies
one which is additive in each variable. Substituting elementsfrom {Feys, F[X]e12, Fex}
into this central identity showsthat it must beaPl for R. Thus, R satisfiesno central iden-
tity. We present another lessobvious, but still easy examplewhich satisfiesanonconstant
central identity.

EXAMPLE 2. Againlet 2 < o < (3 be cardinal humbers with 3 infinite, F afield
withchar F # 2, |[F| < o, andV = {vi | i € W}, Y = {yi | i € W}, and {z} digjoint
sets of noncommuting indeterminates over F with |W| = 3. Let H betheideal of thefree
algebra F{V uYu {z}} generated by viy; — zand y;v; + z, for al i € W, and al other
products of two elements from V U Y U {z} except for {viy; andyiv; | i € W}. If Ris
the quotient F{V U Y U {z}} /H, then by identifying indeterminates with their images,
consider R = F+Fz+ Y Fv; + Y\ Fy;. Notethat, Fz+ >\ Fv; + "\ Fy; isanideal of R
whose cube is zero because al its products are zero except that viy; = zand yjv = —z,
forali € W.Now |R| = 3, Z(R) = F + Fzisfinite or |Z(R)] < « when « isinfinite,
uv—w € Z(R) for al u,v € R and viy; — yivi = 2z # 0. Therefore, R satisfies the
central identity [X1, X2] = X1Xo — XoXq, and the PI [[xl, Xa], xg]

In view of these examples and Theorem A, only semiprime Pl rings which are not
prime are left for consideration. Here the situation is not as clear asfor prime rings since
|Z(R)| < |R| can hold when Z(R) isinfinite, as our next example shows.

ExampLE 3. Let 3 be an infinite cardinal, C a commutative semiprime ring with
IC| = 8,1 asetwith |I| = 8, andk > 1 aninteger. Set H = [T} Mx(C) = M(C)', the
complete direct product of 3 copies of M(C). Fix anonzero subring S C M(C) so that
SNZ(M(C)) = (0) and let R = {h:1 — M,(C) | h(i) € Sfor all but finitely many
i € I} with pointwise addition and multiplication; that is, R consists of all elementsin
T} Mk(C) having finitely many coordinates arbitrary in My(C) and all other coordinates
in S Toseethat Risasemiprimering let h € Rwith h(i) # 0and observethat (hRh)(i) =
h(i)My(C)h(i) # 0, since C a semiprime ring forces My (C) to be semiprime. Using SN
Z(Mk(C)) = (0), it iseasy to seethat Z(R) = @, C, and so |Z(R)| = . Finally, |R| <
IM((©)'| = 8% = 2%, andin fact |R| = 2%, because2’® < || < 3% = 27 and thereisan
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obviousinclusion of S into R = M(C)'. Note that although |Z(R)| = 3 and ideals of R
intersect Z(R), R has 27 different ideals defined by the subsets A of | as T(A) = {r € R|
r(i) = Oforall i € A}. For aspecificexampleonecouldlet C = F, afield, or C = Fy[X],
andlet S= Cey1, or S= Cej,. The same construction for C finiteand | countableyields
R uncountable with Z(R) countable.

Our first result for finite centersis presumably well known, but we could not locate it
specifically in the literature. Its proof is easy and it will be convenient to have the result,
SO we present it.

THEOREM 1. If Risasemiprime Pl ring with finite center, then Risfinite.

PrROOF. Since R is a semiprime ring, Z(R) is a finite commutative ring with no
nonzero nilpotent elements, so Z(R) is a direct sum of finite fields. Let Z(R) = Z =
Zeyd - ®Ze = Ze,wheree = 1, and {g } are minimal orthogonal idempotentsin Z
whosesumise. Therefore, R= Re® R(1 — €), whereR(1—¢€) = {r —re| r € R}, and
Z(R)NR(1—e) = 0.But R(1 — e) isanideal of Rand Z(R(1—€)) = Z(R)NR(1—e),
so by Theorem B, R(1 —€) = Oforcing e = 1g, andit followsthat R= Re; & - - - © Re.
Hence, Re isasemiprime Pl ring with Z(Re) = Ze, afinite field, so Theorem B forces
each Re; to be simple, and so finite by Theorem A, proving that Ris finite.

We cometo our main result, which showsthat Example 3illustrates the largest differ-
ence which can occur between |Z(R)| and |R|, for R a semiprime PI ring. We shall need
to know that thereis a central identity gn(xy, . . ., X) for the matrix ring M,(C) which has
no constant term and islinear in x; ([1] or [5: p. 45]). The construction of g, in [1] or [5]
showsthat for any commutative ring K, gy is not a Pl for M (K).

THEOREM 2. If Risasemiprime Pl ring and Z(R) isinfinite, then |R| < 214®),

PrROOF. Thereisanatural embedding of Rinto thedirect product of its primeimages,
each satisfying the same Pl as R, so awell known result of S. A. Amitsur [5; Lemma 2,
p. 55] forces Rto satisfy a standard identity S, for somen > 1. Let n beminimal so that
R satisfies S, If Rsatisfies S, = x3x2 — XoX1, then Ris commutative and R = Z(R), so
we may assumethat n > 1 and proceed by induction on n; that is, if Aisasemiprime Pl
ring satisfying Som for m < n, and if Z(A) isinfinite, then |A] < 2124,

Sincenononzero z € Z(R) isnilpotent, by using Zorn's Lemmaone producesan idea
P, of Rmaximal with respect to sz{zi | i >1} =0, anditisstraightforward to seethat
P, isaprimeidea of R. It follows from the definition of P that Z(R) N (Nzw P2) = 0,
where Py = R. But (g Pz is an ideal in the semiprime ring R, s0 Z(Nzr P2) = 0[3;
Lemma1.1.5, p. 6], forcing (g, Pz = 0 by Theorem B, and R embeds naturally in the
direct product [Tz R/P,. Now each R/P; satisfies S, and some of these quotients do
not satisfy Syn—1y since R does not. Let gn(X, .. ., Xk) be acentral identity for M,(F), F
afield, where g, has integer coefficients, one of whichis 1, no constant term, is linear
in xg, and is not a Pl for any M(D) where D is a commutative ring ([1] or [5; p. 45]).
We argue that g, is acentral identity for R. A result of C. Procesi [5; Proposition, p. 43]
showsthat g, isapolynomial identity for M_1 (F), so for My(F) with k < n— 1, but not
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a Pl for M,(F) by choice of g,. If T isany prime ring satisfying a Pl p(xy, . .., X), then
W = TZ1, thelocalization of T at Z(T) — (0), also satisfies p(xy, . . ., %) andisasimple
algebra, finite dimensional over its center K [5; Theorem 2, p. 57]. Either W = M,(K) or
W®k L = M(L), for L an algebraic closure of K, and W ®k L also satisfiesp(xy, - . . , X«)
[5; Lemmal, p. 89], so 2t < degp by the Amitsur-Levitzki theorem. In our case, if R/ P,
satisfies Syn—1y then it embeds in some M1 (F) and g, is an identity for R/P,. If R/P;,
does not satisfy Syn—1) but g, isan identity for it, then we concludefirst that R/ P, does
not embed in any My(F) for k < n by the Amitsur-Levitzki theorem. Secondly, since
Sn and g, are identities for R/P,, as above, R/ P, embedsin My (F), which satisfies the
Pl g,, contradicting the choice of g,. Therefore, g, is a central identity or a Pl for each
R/P,, so acentral identity for R; it isnot a Pl for Rsinceit is not aPl for any quotient
R/P, which fails to satisfy Syn—1).

Choose z € Z(R) so that g, isnot aPl on R/P,. Writingr + P, = I € R/P,, the fact
that g, is a central identity for R/P, means that there are r; € R/P,, so that gn(ri) =
c € Z(R/P,) — (0). Forany y € Z(R/P;), yC = gn(Yri,...,Tk), Since g, islinear in its
first variable. But gn(yr1,...,) = gn(Yra, ..., rk) + Pz with gn(yrs,...,ry) € Z(R), so
CZ(R/P;) C Z(R) and since Z(R/P,) isadomain, |Z(R/P,)| < |Z(R)| results. Applying
Theorem A gives |R/P,| < |Z(R)]. If | = {z € Z(R) | g isnot aPl of R/P,}, J =
Z(R) — {1U{0}}, A=), Pz and B = P, then ANB C g Pz = 0, so Rembedsin
R/A@R/B. Now R/Aitself embedsinT], R/P,, and aswe havejust observed, forz € I,
IR/P,| < |Z(R)|. Therefore, [T R/P,| < |Z(R)|*®I = 21Z®l since Z(R) is infinite.
Hence |R/A| < 2I?®R and the proof is complete when A = 0.

Assuming that A # 0, it follows that A embedsin R/B since ANB = 0, and of course
R/BembedsinIl; R/P,. Foreachz € J, gnisaPl of R/P,, so by our observationsabove
and Procesi’s theorem, R/ P, satisfies Sy,—1) which meansthat IT; R/ P, and R/ B satisfy
Sn-1)- Since Aembedsin R/B, Ais asemiprime ring satisfying S;—1). By Theorem 1
andtheinduction assumption, either Aisfiniteor |A| < 2/?AI < 2Rl sinceZ(A) C Z(R)
[3; Lemma 1.15, p. 6]. Thus |R| = |R/A||A] < 2ZRI2ZRI = 21ZRI completing the
proof of the theorem.

We record a simple consequence of Theorem 2 for algebraic algebras.

THEOREM 3. Let Rbe a semiprimering and algebra over the integral domain C. If
Risintegral over C of bounded degree, then either Risfinite or |R| < 217,

Proor. If Risintegral over C of bounded degreen, then every r € R satisfies some
relation r™ +c,rp+- - - +¢r = 0. It iswell known and straightforward to show that this
relation implies that {[x,y],| 1 < i < n+ 1} is C-dependent for any x,y € R, so that
R satisfies the polynomial identity Sw1((X™1, 1, ..., [¥2, Y], [x, Y1) [4; p. 230]. Applying
Theorem 2 finishes the proof.

We note that Example 1 and Example 2 show that if Ris not semiprime, then Ralge-
braic of bounded degree over afield does not imply any particular relationship between
|Z(R)| and |R|. A similar example for semiprime rings is provided by Example 3 when
C = F, afield, and S = Fey,. Our last example shows that the assumption of bounded
degreein Theorem 3 is essential, even for prime or simple algebras.
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EXAMPLE 4. Let 1 < a < 3 be cardinal numbers with 3 infinite, F a field with
|F| < o, and Vg an F-vector spacewith dimgV = §. If {v; | i € I} isan F-basisof V,
for | awell ordered set with |I| = 3, then one can represent the elements of Homg(V, V)
as column (or row) finite 3 x 8 matrices, say M;(F) with matrix units {e; | i,j € I}.
Set Mg = {A € M;(F) | A hasonly finitely many nonzero entries}, or equivalently,
Mo = {T € Homg(V,V) | v; € kerT for al but finitely many j € I}. It is easy to see
that M is a simple algebraic F-algebra with [Mg| = 3, and that Z(Mg) = 0. By taking
R = Mg + F - |y, so adding scalar matrices to My, it follows that R is a prime algebraic
agebraover F, |R| = 3, and |Z(R)| = |F| < a.
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