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THE MULTIPLICATIVE GROUPS OF QUASIFIELDS 

MICHAEL J. KALLAHER 

1. Introduction Let (Q, 4-, • ) be a finite quasifield of dimension d over 
its kernel K = GF(q), where q = pk with p a prime and k ^ 1. (See 
p. 18-22 and p. 74 of [7] or Section 5 of [9] for the definition of quasifield.) 
For the remainder of this article we will follow standard conventions and 
omit, whenever possible, the binary operations 4- and • in discussing 
a quasifield. For example, the notation Q will be used in place of the 
triple (<2, + , • ) and Q* will be used to represent the multiplicative loop 

(Q - {0}, • )• 
Let m be a non-zero element of the quasifield Q\ the right multiplicative 

mapping pm:Q —> Q is defined by 

(1) xpm = xm, x G Q. 

This mapping is an element of the group of all mappings on Q with 
composition as the binary operation. The multiplicative group of Q is the 
subgroup Wl(Q) generated by the mappings pm, where m e Q*. That is, 

(2) 2tt(g) s (Pm\m e g*>. 

The purpose of this article is to investigate the possibilities for Q given 
that Wl(Q) satisfies certain properties. Apparently, this problem has not 
been considered before. Albert in his work on semifields used the 
mappings pw, but he did not investigate the relationship between Q and 
Wl(Q). (See [1] and others to which he refers in the footnotes.) From one 
viewpoint this neglect is justified. As we shall see, distinct non-isomorphic 
quasifields of the same order can have the same multiplicative group. On 
the other hand, we shall show that the multiplicative group Wl(Q) does 
influence the nature of Q. 

In Section 2 some basic known facts about the groups $Jl(Q) are given, 
and some examples are considered. In Section 3 one of the principal 
results of this article is proven; namely, it is shown that the group Wl(Q) is 
solvable if and only if the quasifield is a generalized André system or one 
of twelve exceptions. This result has its origins in [8]. Using this result, in 
Section 4 there is presented a generalization of Rao's characterization of 
generalized André systems. 

The reader is assumed to be familiar with the basic results on quasifields 
and translation planes, as given in either of the monograms [3], [7], or [9]. 
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Is is also assumed that the reader knows the basic facts concerning 
permutation groups as given in [11], for example. 

2. Basic facts. In this section some simple facts about the groups Wl(Q) 
are derived and some examples are given. Most of the facts are 
well-known; see, for example, 5.1.2 in [3]. 

LEMMA 2.1. Let Q be a quasifield of finite dimension d over its kernel 
K = GF(q), where q = p withp a prime and k ^ 1. The group W(Q) is a 
transitive group of linear transformations on Q as a vector space over K. 

Proof. Let x, y, m ^ Q and let k e K. Then 

(x 4- y)m = xm + ym 

or 

(* + y)Pm = xf>m + w * ; 
also 

(kx)m = k(xm) 

or 

(kx)pm = k(xpm). 

Hence, Wl(Q) is a group of linear transformations on Q. It is also 
transitive since, given JC, z G Q* = Q — {0} there exists m e Q* with 
xm = z, or xpm = z. 

LEMMA 2.2. Under the hypothesis of Lemma 2.1 the following statements 
hold'. 

(i) For every m G Q* = Q — {0} with m ¥* 1 £/ie ng/if multiplication pm 

is fixed-point-free on Q*. 

(ii) If m G e*'**"lftj I 10*1. 
Proof Under multiplication the set Q* forms a loop. Hence, for JC G Q* 

the equation xpm = x, or xm = JC • 1, holds if and only if m = 1. This gives 
statement (i). Statement (ii) follows from statement (i). 

The next two lemmas describe some conditions on (Q) which force the 
quasifield g to be a nearfield or a semifield. 

LEMMA 2.3. Let Q be a quasifield of dimension d over its kernel 
K = GF(q), where q = p with p a prime and k = 1. The following 
statements are equivalent: 

(i) The quasifield Q is a nearfield; that is, the multiplication in Q is 
associative. 

(ii) (Q) = {pjm G Q*}. 
(iii) The group (Q) has size q — 1. 
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Proof. The multiplication in Q is associative if and only if for all 
x, m, n e Q 

(xm)n — x(mn); 

that is, if and only if for all m, n e Q* 

Pnwn Pmn' 

The lemma easily follows. 

LEMMA 2.4. Let Q be a quasifield of dimension d over its kernel 
K = GF(q) where q = p with p a prime and k = 1. The quasifield Q is a 
semifield if and only if for all m, n Œ Q*, 

Pm + fti = Pm + n-

Proof. This lemma follows easily from the definitions. 

Lemmas 2.3 and 2.4 are originally due to Bruck and Bose [2, Section 
ni. 

We close this section with a few examples. The Hall quasifields are 
defined as follows. Let K = GF{q) with q = p =2 and/7 a prime, and let 
f(x) = x — rx — s be an irreducible polynomial over K. If H is the set of 
ordered pairs (a, b) with a, b e K, a multiplication • is defined by 

( h\ ( rf\ = ( ^ ' *^) if c = 0 
^ , D) - (c, a) _ \(bc _ ad + ra^ M _ ac~xf(d) ) if c ^ 0. 

Addition in / / is the usual coordinate addition. This gives a quasifield 
H(q) of order q2 and kernel K = { (0, J ) | J e AT}. Different polynomials 
may give rise to nonisomorphic Hall quasifields. Using the standard basis, 
the right multiplicative mappings have the matrix representation 

if c = 0 

* * " * ' - ' • - - r V ; - - . ) ] , t f # 0 . 

Consider first the case q = p = 3. There are two nonisomorphic 
Hall quasifields. One, H}(3), results by taking/ (x) = x2 + 1. This is 
the nearfield of order 9, and the multiplicative group ffll(Hx(3) ) is the 
quaternion group of order 8. The second, H2(3), results by taking 
f(x) = x + x + 2. For this quasifield the product of the right 
multiplicative mappings p ^ ^ and p(1 0) is the 3-element 

[ill 
in GL(2, 3). It follows that Wl(H2(q) ) = GL(2, 3). If q > 3 then the 
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results of the next section show that Wl(H(q) ) = GL(2, q). If q = 2 then 
H(2) = GF(4) and 2R(#(2)) = GF(4)*. 

Another example is the class of Walker quasifields. Let K = GF(q) with 
q = p = — 1 (mod 6), and p a prime. On W, the set of ordered pairs of 
elements in K, a new multiplication • is defined by 

1 

3 
(a, b) • (r, d) = \a{d - c2) + be, ~^ac3 + bd\ 

(The element 1/3 exists in K since q = — 1 (mod 6).) As with the Hall 
quasifields, addition in W is the usual coordinate addition. This gives 
a quasifield W(q) of order q2 and kernel K. Using the standard basis, the 
right multiplicative mappings have the matrix representation 

2 1 3 
c — cr 3 

d 

The results of the next section show that Wl(W(q) ) = GL(2, q). Thus, the 
groups Wl(Q) will not in general distinguish between different types of 
quasifields. 

3. Quasifields Q with Wl(Q) solvable. This section considers quasifields 
Q whose multiplicative group Wl(Q) is solvable. As opposed to the general 
situation where Wl(Q) appears to have little influence on Q (see the 
previous section) solvability of Wl(Q) severely restricts the possible 
structures for Q. 

One class of quasifields with solvable multiplicative group is the class of 
generalized André systems, first defined by Foulser [4]. The description 
given here is due to Ostrom [10]. Consider the finite field GF(q ), where d 
is a positive integer and q = pk with p a prime and k ^ 1. Associate with 
each m e GF(qd) — {0} an automorphism a(m) of GF(qd) fixing GF(q) 
pointwise. Define on GF(q) a new multiplication o by 

Xom = xa(m)m. 

Then (GF(ad), 4-, o), where 4- is the usual field addition, is a quasifield 
called a generalized André system. Furthermore, for each m e GF(q ) — 
{0} the mapping 

pm:x —* x o m = xa^m 

is an element of TL(1, qd). Hence the multiplicative group is solvable. 
Note that every finite field is a generalized André system, as is every 
regular nearfield. (See [9; p. 41].) 

Other quasifields with solvable multiplicative groups include four 
irregular nearfields as well as the quasifields coordinatizing the planes of 
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type F * p. where p = 7 or 11, described in [9; Section 19]. The following 
theorem indicates that there are only a few others. (See the remark after 
the theorem.) 

THEOREM 3.1. Let Q be a finite quasifield of dimension d over its kernel 
K = GF(q), where q = p with p a prime and k ^ 1. If the multiplicative 
group Wl(Q) is solvable, then one of the following statements holds: 

(i) The quasifield Q is a generalized André system. 
(ii) The quasifield Q is the nonassociative quasifield of order 9 and 

Wl(Q) = GL(2, 3). 
(iii) The quasifield Q is a solvable irregular near field N of order 

p2 = 52, 72, l l 2 , or 232. 
(iv) The quasifield Q coordinatizes the Luneburg translation plane F * /?, 

where p = 1 or 11. 
(v) One of the following holds: 

(a) The dimension d = 2 and q = 5, and the group Wl(Q) is one of two 
groups having order 48 and 96 respectively. 

(b) The dimension d = 2 and q = 7, and the group Wl(Q) = (9DÎ(iV7), 
2I2) of order 144. 

(c) The dimension d = 2 and q = 11, and the group Wl(Q) = (%R(Nn), 
Cy of order 240, where 

c=\9 l] 
LI 41' 

(d) The dimension d = 4 and q = 3, and Wl(Q) is one of three groups 
having order 160, 320, and 640 respectively. 

Proof By Lemma 2.1 the group Wl(Q) is a solvable transitive group of 
linear transformations on Q as a vector space of dimension d over K. Thus, 
Huppert's theorem on such groups can be applied. (See [6] or [11; p. 246].) 
Hence, either 3Jl(Q) ^ TL(1, pkd) or W(Q) is one of thirteen 
exceptions. 

First, if m(Q) ^ TL(1, pkd) then every mapping in Ti(Q) has the 
form 

x -> xpSa, 1 ^ s ^ kd, a e GF(qd)*. 

In particular, this must be the form of the right multiplicative mappings pm 

with m e Q*.lf follows that g is a generalized André system. Hence, in 
this case statement (i) holds. 

We turn now to the thirteen exceptions of Huppert's theorem. Two 
exceptions occur with d = 2 and q = p = 3. They are SL(2, 3) and 
GL(2, 3). The group SL(2, 3) cannot occur. The group SX(2, 3) has a 
normal Sylow 2-subgroup S. By statement (ii) of Lemma 2.2 each pm has 
order dividing \Q*\ = 8. It follows that 

(Pm\m e Ô*> = S * SL(2, 3). 
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The group GL(2, 3) does occur; it is $Jl(Q) for the nonassociative 
quasifield Q of order 9. (See Section 2.) 

Three exceptions occur when q = p = 5 and d = 2. The groups are: a 
group Gx = (A, B) of order 24, a group G2 = (A, B, 21) of order 48, and 
a group G3 = (A, B, C) of order 96. Here J is the 2 by 2 identity matrix 
and 

[ ? ; ] - " - [ i ^ - u 
(These are taken over GF(5).) The group G} is the multiplicative group 
of the irregular nearfield N5 of order 25. (See [6; p. 126-128] and 
[3; p. 230-231].) The group 

G2 = (Wl(N5l 21) 

is the multiplicative group of the quasifield Q2 of order 25 defined as 
follows. Let 1, t be a basis for Q2 over its kernel GF(5). Addition is 
as usual, and multiplication is given by 

(« St) 

l*y~xt ay 

4/38 _ 1 4- a8t 

,2 s 

-1 

if y ^ 0, 8 = 0 

if y = o, 8 * 0 

if y8 * 0. I (ay + 2/?Y 8) + («8 + 3/?y8z)/ 

Similarly, the group 

G3 = (m(N5\ C) 

is the multiplicative group of a quasifield Q3 of order 25. 
Two exceptions occur when q = p = 7 and d = 2. The groups are: a 

group G4 = (A, B) of order 48 and a group G5 = (A, B, 21) of order 144. 
Here 

A = [? a * - 1 ?]• 
The group G4 is the multiplicative group of the irregular nearfield N7 of 
order 49. (See [6; p. 126-128] and [3, p. 230-231].) The group G5 is the 
multiplicative group of the quasifield Q5 defined as follows. Let 1, t be a 
basis for Q5 over its kernel GFÇ1). Addition is as usual, and multiplication 
is given by the rule: 

(a + J8/)(Y + 8t) 

( ay + f$y~Xt 
1 + aSt 3)88" 

if Y ^ 0, S = 0 

if Y = 0, 8 * 0 

I (ay + j8[2«V + 68^] ) + (a8 + 5j8y3)/ if y8 ^ 0. 
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The quasifield Q5 coordinatizes the Limeburg translation plane F * 7. (See 
Theorem 19.10 in [9].) 

Two exceptions occur when q = p =\\ and d = 2. The groups are: a 
group G6 = (A, B, AI) of order 120 and a group G7 = (A, B, 47, C) of 
order 240. Here 

>• - [ ? ' f t * - [j ft ' - K ; ] • 
The group G6 is the multiplicative group of the irregular nearfield Nx x of 
order 121 with solvable multiplicative group. (There is a second irregular 
nearfield or order 121 whose multiplicative group is SL(2, 5). See 
[6; p. 126-128] and [3; p. 230-231].) The second group G7 is also the 
multiplicative group of a quasifield Q7 of order 121 which coordinatizes 
the Lûneburg translation plane F * 11. 

One exception occurs for q = 23 and d = 2. It is the group G8 = 
(A, B, 21), where 

' - i l Ï] »-
and it has order 528. This is the multiplicative group of the irregular 
nearfield N23 of order 529. (See [6; p. 126-128] and [3; p. 230-231].) 

Finally, three exceptions occur when p = 3 and kd = 4. These have 
orders 160, 320, and 640, respectively. 

Remark. Using an Apple 11+ microcomputer, the groups G2, G3, G5 

were investigated, and in each group a spread was found, from which the 
quasifields Q2, <23, Q5, Q1 were calculated. However there may be other 
spreads associated with these groups giving rise to distinct planes. Finally, 
it is not known whether or not the three exceptional groups in the case 
p = 3 and kd = 4 are multiplicative groups of quasifields of order 81. 

Theorem 3.1 shows that the generalized André systems (which include 
the finite fields and the regular nearfields), the irregular nearfields TV5, 7V7, 
Nu, and N23 and the quasifields coordinatizing the translation planes of 
type F * p do, modulo possibly one or two others, have a common 
characterization: solvable multiplicative group. 

We close this section with a corollary to Theorem 3.1 showing that the 
only finite semifields Q with Wl(Q) solvable are the Galois fields. 

COROLLARY 3.1.1. Let Q be a finite semifield of dimension d over its 
kernel K = GF(q), where q = p with p a prime and k = 1. If$Jl(Q) is 
solvable then Q is the Galois field GF(q ). 

Proof By Theorem 3.1 the semifield Q is either a generalized André 
system, or q = p and d = 2, or ad = 34. If the first possibility holds then 
Theorem 9.11 in [9; p. 45] says Q is a field. If d = 2 and q = p then Q is a 

1 17 
12 19 
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field by 5.3.10 of [3; p. 244]. For the case qd = 34, a computer search 
shows that none of the three groups given by Huppert [6] for this case can 
be the multiplicative group of a semifield. 

4. Rao's theorem. In the article [12] Rao gave necessary and suffi­
cient conditions for a quasifield g to be a generalized André system. The 
conditions involved the quasifield Q having an element a e Q belonging 
to both the middle and right nuclei of Q and having order u, a prime 
^-primitive divisor of q — 1. Here Q has dimension d over its kernel 
K = GF(q). (Rao [12] uses the left distributive law in his definition of 
quasifield, and not the right as we do.) Rao also assumes the group (a) is 
normal in Wl(Q), although he does not state it in these terms. 

The purpose of this section is to generalize Rao's result using the last 
two properties mentioned in the preceding paragraph. For the definition 
of ^-primitive divisor, see [9; p. 28], We note here that a prime ^-primitive 
divisor exists except in the two cases: (1) d = 2 and q + 1 = 2s with 
5 ^ 1 , and (2) d = 6 and q = 2. (See Theorem 6.2 in [9].) 

THEOREM 4.1. Let Q be a finite quasifield of dimension d over its kernel 
K = GF(q), where q = p withp a prime and k = 1. IfWl(Q) has a normal 
subgroup U of order u, where I = \ and u is a prime q-primitive divisor of 
q — 1, then Wl(Q) is solvable and Q is a generalized André system. 

Proof The group Tt(Q) is a subgroup of GL(d, q). Then U = GL(d, q). 
By Korollar 1 of [5] the normalizer of U in GL(d, q) is solvable. Hence 
Tl(Q) is solvable. Thus Theorem 3.1 can be applied. Case (ii) of Theorem 
3.1 does not apply since 32 — 1 has no 3-primitive divisors. In each of the 
cases (iii)-(vi) the only prime ^-primitive divisor is 3, and the groups in 
each case do not have a normal subgroup U of order 3 . In case (vii) the 
only prime ^-primitive divisor is 5, and the groups do not have a normal 
subgroup of order 5. Thus only case (i) of Theorem 3.1 holds, and the 
theorem follows. 

The situation in which q — 1 has no prime ^-primitive divisor will now 
be considered. The case in which q = 2 and d = 6 does not need to be 
considered since there is no generalized André system of dimension 6 over 
GF(2). (See [9; p. 48].) The second case in which q = p = 2l — 1 and 
d = 2 is handled by the following theorem. 

THEOREM 4.2. Let p be a prime of the form 2 — 1 and 1 = 2, and let Q be 
a finite quasifield of dimension 2 over its kernel K = GF(p). IfWl(Q) has a 
normal subgroup U of order 2, then Wl(Q) is solvable and Q is either 
a generalized André system, the quasifield in case (ii) of Theorem 3.1, or one 
of the quasifields in case (iv) of Theorem 3.1. If U is cyclic then Q is a 
generalized André system. 
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Proof. Without loss of generality, assume p > 3; for if p = 3 then either 
Q is a generalized André system or the quasifield in case (ii) of Theorem 
3.1. Then / ^ 5. Assume Wl(Q) is non-solvable. Consider the subgroup 

T = W(Q) n SL(2,p). 

Since Wl(Q)SL(2, p)/SL(2, p) is a subgroup of GL(2, p)/SL(2, p), the 
group Tis a non-solvable group and \Wl(Q)/T\ divides/? — 1. By Lemma 
2.1 the integer |9K(6) | is divisible by p2 — 1 and hence 2 / + 1 divides 
\Wl(Q) |. Thus, 2l divides \T\. Since / ^ 5, the integer 32 divides \T\. It 
follows that under the natural homomorphism the group T induces a 
subgroup T whose order is divisible by 16. By Theorem 14.1 in [9] it 
follows that 

f = PSL(2,p). 

Hence T = SL(2, p). 

But then U n SL(2, p) must be a normal subgroup of SL(2, p) having 
order at least 2 ~~ ^ 1 6 . This is a contradiction. Thus ^fl(Q) is solvable. 
Theorem 3.1 gives the first part of the theorem. 

If the group U is in addition cyclic then the only possibility is that Q is a 
generalized André system, since in the three other possibilities the group 
Wl(Q) does not have a normal cyclic subgroup of order 2l. 

Rao's theorem now follows immediately from the previous two 
theorems. 

THEOREM 4.3. (Rao) Let Q be a quasifield of dimension d over its kernel 
K = GF(q), where q = p with p a prime and k ^ 1. Assume d ¥= 6 if 
q = 2. If Q contains an element a ¥= 0 such that 

(i) for all x, y e Q, 

x • ay = xa • y 

x - y a = xy • a 

(ii) the element a has multiplicative order v where either v is a prime 
q-primitive divisor of q — 1 or v = 2 in the case d = 2 and q = p = 
2l - 1, . 

(iii) for each x e Q with x ¥= 0, 

xa = tfr(x)Jt, 

where t(x) is a positive integer depending on x, then Q is a generalized André 
system. 

Proof Consider the set 

U = {plJi = 0, l , . . . , v - l } . 
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It is easily seen that pl
a = fy, where b = a\ using (i). Thus U is a 

subgroup of 9K(g). For c e g* = g - {0}, 

PaPc = Pac ' 

also 

ca = at{c)c 

implies 

PcPa = fL(C)Pc> 

o r 

ft/*»,-' = ri(f). 
Hence, the group U is normal in $?(()). Theorem 4.1 and 4.2 then give the 
theorem. 

Remark. The converse of Theorem 4.3 is also true. See [12]. 
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