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ON DEGENERATE SUMS OF
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Abstract

It is well known that the central limit theorem holds for partial sums of a stationary
sequence (Xi) of m-dependent random variables with finite variance; however, the limit
may be degenerate with variance 0 even if var(Xi) =P O. We show that this happens only
in the case when Xi -lEXi = Yi - Yi-l for an (m - I)-dependent stationary sequence
(Yi) with finite variance (a result implicit in earlier results), and give a version for block
factors. This yields a simple criterion that is a sufficient condition for the limit not to be
degenerate. Two applications to subtree counts in random trees are given.
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1. Introduction and results

Consider a strictly stationary sequence (Xk)~oo of m-dependent random variables for some
m 2: 1, and suppose that the variables have finite variance, i.e. lEXi < 00. (Recall that
m-dependence means that (Xk)k<O is independent of (Xk)k>m+l.)

Let Sn := L:7=1 Xi. A simple standard calculation using stationarity and m-dependence
yields, for n 2: m,

n

var(Sn) = L cov(X;, Xj)
;,j=l

m

= n var(Xo) + 2 L(n - k) cov(Xo, Xk)
k=l

where

In particular,

m

= na2 - 2 Lkcov(Xo, Xk),
k=l

a 2 := var(Xo) + 2t cov(Xo, Xk) = cov(Xo, t Xk)'
k=l k=-m

(1)

(2)

var(Sn) = na2 + 0(1). (3)

It is obvious from (3) that a 2 ~ O. Ifwe have the strict inequality a 2 > 0, then var(Sn) grows
linearly; moreover, the classic central limit theorem for m-dependent variables by Hoeffding
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On degenerate sums ofm-dependent variables 1147

and Robbins (1948) and Diananda (1995) (see also Bradley (2007a, Theorem 10.8» shows that

Sn - lESn Sn - nlEXo D 2
v'n = v'n ~ N(O, a ), (4)

where ,~, denotes convergence in distribution. In the exceptional case 0'2 = 0, however,
var(Sn) is bounded; more precisely, (1) shows that var(Sn) is constant for all n 2: m. In this
case, (4) still holds, with the limit 0, but is a triviality. (See Corollary 1 below for the limit
of Sn without normalization in this case.)

The purpose of this paper is to study this exceptional case further, and show that it really is
exceptional and only occurs in very special cases.

A well-known trivial example with 0'2 = 0 is obtained by taking an independent and
identically distributed (i.i.d.) sequence (Yk)~oo (with lEY'; < 00) and defining Xk := Yk- Yk-I;
see, for example, Ibragimov and Linnik (1971, Section 18.1). This sequence is obviously
I-dependent and Sn = Yn - Yo with var(Sn) = 2 var(Yo), n :::: 1, so var(Sn) is constant and
0'2 = O. (This can also be seen from (2), using var(Xo) = 2 var(Yo) and cov(Xo, XI) =
- var(Yo)·)

In fact, the following theorem (which is implicit in Bradley (2007a, Theorem 8.6) but
deserves to be made more explicit) shows that this trivial example is the only example when
m = 1 (apart from adding a constant), and that a similar result holds for m > 1.

Theorem 1. Let (Xk)~oo be a strictly stationary sequence ofm-dependent variables withfinite
variance and let 0'2 := limn~oon- l var(Sn), which is also given by (2). If0'2 = 0, then there
existsa strictly stationary sequence (Yk)~oo of(m -I)-dependent variables withfinite variance,
and a constant JL, such that

Xk = Yk - Yk-l + JL almost surely (a.s.) (5)

The random variables Yk are a.s. unique up to an additive constant.
Conversely, for any such sequence (Yk)~oo and any JL, (5) yields a strictly stationary

m-dependent sequence (Xk)~oo with 0'2 = O.

Taking expectations in (5) yields JL = lEXk.

Remark 1. Theorem 1 holds also for weakly stationary sequences (Xk)~oo' with (Yk)~oo

weakly stationary. (Recall that 'weakly stationary' just means that the means and covariances
are translation invariant.)

The existence of a (weakly) stationary sequence (Yk)~oo such that (5) holds was shown
by Leonov (1961) under much weaker conditions than m-dependence: (Xk)~oo (weakly)
stationary, cov(Xo, Xn ) -+ 0 as n -+ 00, and lim infn~oo var(Sn) < 00. See also Robinson
(1960), Ibragimov and Linnik (1971, Theorem 18.2.2), and Bradley (2007a, Theorem 8.6). The
(m - I)-dependence of (Yk)~oo when (Xk)~oo is m-dependent follows from Bradley (2007a,
Theorem 8.6(B)(e», but does not seem to have been stated explicitly earlier.

For completeness, we give a direct proof of Theorem 1 in Section 2. (The same proof applies
to the weakly stationary version, see Remark 1.)

Remark 2. More generally, a theorem by Schmidt (1977, Lemma 11.7), in the version given
by Bradley (2007b, Theorem 19.9), implies that even without the assumption of finite variance,
if (Xk)~oo is a strictly stationary and m-dependent sequence such that the family of partial
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sums Sn are tight, then the conclusion (5) (with JL = 0) holds for some strictly stationary
(m - I)-dependent sequence (Yk)~oo'

Note that (5) implies that

Sn - lESn = Sn - nJL = Yn - Yo a.s., (6)

where Yn ~ Yo and Yn and Yo are independent when n ::: m. We denote equality in distribution
by '~'. An immediate consequence of Theorem I is that in the exceptional case 0'2 = 0, the
centered partial sums Sn - lESn converge in distribution without normalization. Of course, the
limit is in general not normal, so there is no central limit theorem in this case. (For example,
X n may be integer-valued, and then so is Sn.) We state this in detail; see Section 2 for proofs
of this and other results.

Corollary 1. Let (Xk)~oo be a strictly stationary sequence of m-dependent variables with
finite variance, and let 0'2 be given by (2). If0'2 = 0 then Sn - lESn has the same distribution
for all n ::: m; more precisely, if Yk is as in (5) and Yo is an independent copy of Yo, then
Sn - IESn ~ Yo - Yo'

Hence, assuming that var(Xo) > 0, (Sn - IESn)/ var(Sn) 1/2 converges in distribution as
n ~ 00 also in the 0'2 = 0 case, but then the limit is normal only if each Yk is normal.

Remark 3. If 0'2 = 0 and m = 1, then (5) holds with independent Yk. Hence, by a theorem by
Cramer, see, for example, Feller (1971, Theorem XV.8.1), each Yk is normal if and only if Xk
is normal (and then {Xk, Yk: k E Z} are jointly normal). For m > 1 this does not hold. For
example, if Uk "'-J U(O, 1) and;k "'-J N(O, 1), k E Z, all independent, then Yk := sign(Uk ­
Uk+I) I~k I is a sequence of l-dependent normal variables that are not jointly normal, and the
2-dependent random variables Xk := Yk - Yk-l are not normal although by (6), Sn "'-J N (0, 2) is
for n ::: 2. (A simple calculation yields IEXf = 2+4/31l' and IExt = 12+32j31l' ~ 3(lEXf)2.)

Stationary m-dependent sequences usually appear as block factors. We say that (Xk) is an
i-block factor if there is an i.i.d. sequence (;k)~oo and a (measurable) function f: ]Rl ~ IR
such that Xk = f(;k, ... ,;k+l-l). Note that every such sequence (Xk) is strictly stationary
and (l - I)-dependent. (However, there are m-dependent sequences that are not block factors;
see Aaronson et ala (1989) and Burton et ala (1993).)

For block factors, Theorem 1 takes the following form.

Theorem 2. Let Xk = f(;k, ... , ;k+l-l) be an t-block factor for some e ::: I, where (;k)~oo

is an i.i.d. sequence. Suppose that Xk hasfinite variance and let 0'2 := limn~oon- l var(Sn). If
0'2 = 0, then there exists afunction g: IRl - 1 ~ IR and a constant JL such that the (i- I)-block
factor Yk := g(~k+l, ... ,~k+l-l) has finite variance and

Xk = Yk - Yk-l + JL a.s.

The function g is a.s. unique up to an additive constant.

The converse is obvious in this theorem too.

Corollary 2. Let Xk = f (;k, ... , ~k+l-l) be an i-block factor with finite variance, where
(~k)~oo is an i.i.d. sequence. If 0'2 = 0, then there exists a function g: jRl-I ~ lRsuch that,
for every n ::: 1,

(7)
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Remark 4. The contrapositive form of Corollary 2 yields a simple criterion. If we can find, for
some n ~ l, a set of values of ~1, ••• , ~l-l and ~n+l, .•. , ~n+l-l of positive probability such
that Sn is not an a.s. constant function of u. ... .e; then (7) cannot hold and, thus, (52 > O.

Corollary 2 and its reformulation in Remark 4 are useful in applications, to show that the
asymptotic variance 0'2 > o. We give two such applications in Section 3, taken from Holmgren
and Janson (2015) and Janson (2014); these applications were the motivation for this study.

Remark 5. The central limit theorem for m-dependent variables has been generalized to much
more general mixing sequences under various conditions, see, for example, Ibragimov and
Linnik (1971) and Bradley (2007a). For example, if (Xk)~oo is strictly stationary with finite
variances and p-mixing, then either

(i) var(Sn) = nh(n) for some slowly varying function hen), or

(ii) var(Sn) is bounded, and converges to some finite limit.

Moreover, in Remark 5(i), a central limit theorem holds under further conditions; see Ibragimov
(1975) and Bradley (2007a, Theorems 11.2 and 11.4) (but not in general, Bradley (1980),
Bradley (2007c, Chapter 34)).

In Remark 5(ii), there is, by the result by Leonov (1961) mentioned above, a representation as
in (5); however, we do not know any useful consequences similar to Corollary 2 and Remark 4 in
this generality and we leave it as an open problem to find generalizations of the results above that
can be used to show (52 > O. A typical example of Remark 5(ii) is Xk = ~k - L:~1 2- j ~k+ j

with (~k)~oo i.i.d. N(O, 1), where we have the representation (5) with Yk = - L:~o 2- j ~k+l+i-

2. Proofs

ProofofTheorem 1. As stated in the introduction, Theorem 1 follows from Bradley (2007a,
Theorem 8.6), but we also give a direct proof for completeness. (The proof is similar, but
simpler in this special case.)

It is obvious that if (Yk)~oo is strictly stationary and (m - I)-dependent, then (Xk)~oo

defined by (5) is strictly stationary and m-dependent. Furthermore, (5) implies (6) and, thus,
var(Sn) = var(Yn ) + var(Yo) = 2 var(Yo) when n ~ m; hence, 0'2 = 0 by (3).

To prove the converse we may assume that lEXk = O. Define Sk,n := L:?=k Xi for -00 <
k ~ n < 00. The assumption that (52 = 0 implies, by (3) and stationarity, that lESi,n =
var(Sk,n) is bounded. (In fact, by (1) it is constant for all (k, n) with n - k ~ m - 1.)

We claim first that for every k, the sequence Sk,n converges weakly in L2 as n ---+ 00, and
there exists a random variable Zk E L 2 such that

(8)

where ,~, denotes weak convergence. In fact, since the sequence (Sk,n)n~k is bounded in
L2 and the unit ball of L2 is weakly compact, it suffices to show that lE(WSk,n) converges as
n ---+ 00 for every fixed W E L 2; moreover, it suffices to verify this for a dense set of W. We
consider two special cases:

(i) if lE(WXj) = 0 for all j, then E(W Sk,n) = 0 for all n, and the convergence is trivial;

(ii) if W = Xj for some j, then IE(WSk,n) is constant for all n ~ max(j + m, k), by
m-dependence, and again the convergence is trivial.
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Hence, lE(W Sk,n) converges also when W is a linear combination of variables of the type (i) or
(ii). But the set of such linear combinations is dense in L2, which proves (8).

Similarly (or by reflecting the indices and replacing Xk by X-k), for every k E IE there exists
a random variable Yk E L 2 such that

w
S-n,k ~ Yk as n ---+ 00. (9)

Since S-n,k - S-n,k-l = Xk for -n < k, it follows that Yk - Yk-l = Xk, so (5) holds (with
J.1 = lE(Xo) = 0). Furthermore, (Yk)~oo is stationary by (9) and the stationarity of (Xk)~oo' It
remains to show that (Yk)~oo is (m - I)-dependent.

We note first that for any k, as n ---+ 00, by (9) and (8),

w
S-n,k + Sk+l,n ~ Yk + Zk+l. (10)

On the other hand, S-n,k + Sk+l,n = S-n,n (when n > Ikl) and, thus, for every j E IE and
every n > maxtje], m + Ijl), using m-dependence and (2),

lE(Xj (S-n,k + Sk+l,n)) = lE(Xj S-n,n)

= cov(Xi- S-n,n)
n

= L cov(Xj, Xi)
i=-n

j+m

= L cov(Xj, Xi)
i=j-m

=0. (11)

Combining (10) and (11), we see that lE(Xj (Yk + Zk+ 1)) = 0 for every j. Summing over j, we
find that lE(Sl,n(Yk + Zk+l)) = 0 for all f and n, and, thus, by (10) again, lE(Yk + Zk+l)2 = o.
Hence, Yk + Zk+l = 0 a.s., i.e.

Yk = -Zk+l a.s. (12)

For -00 ::; k ::; n ::; 00, let :Fk,n denote the a-field generated by {Xi }?=k' Write W E :Fk,n
if the random variable W is J7k,n-measurable. Then S-n,k E J7-n,k ~ J7-oo,k, and, thus, from
(9), we have

Yk E J7-oo,k.

Similarly, Zk E J7k,oo. By (12), this also yields

(13)

(14)

Since (Xk)~oo is m-dependent, the a-fields J7-oo,kand J7k+m+l,oo are independent. Hence,
from (13) and (14) it follows that {Yj: j ~ k} and {Yj: j ::: k+m} are independent for every k,
which is the desired (m - I)-dependence.

Finally, we consider the uniqueness of Yk. It is obvious that we may replace Yk by Yk + C
for any constant C. For the converse, we may assume that lEXk = 0 so J.1 = O. If (5) holds
then

Sk,n = Yn - Yk-l, (15)
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and it follows, by (3) applied to (Yn)~oo' that

(
1 k-i-n )

var ;; L Sk,} + Yk-l = O(n-1
) .

j=k+l

1151

(16)

Thus, Yk-l - JEYk-l is the limit in L 2 of the means -(I/n)L~~~+1 Sk,j and is thus a.s.
determined by (X j )~oo'

Remark 6. We use weak convergence in L 2 in (8) and (9), following Leonov (1961) who used
weak convergence of a subsequence in a much more general situation. (It is easy to modify the
proof by Leonov (1961) to show weak convergence of the full sequence under the conditions
there too. Above we have used a simpler version for the m-dependent case.) Strong (norm)
convergence does not hold: from (15), we have II Sk,n - Z; II = II Si.« + Yk-lll = II Yn II which is
constant and does not tend to 0 (except in the trivial case Yn = 0 when Xk = 0 a.s.). However,
assuming that JEXk = 0 and choosing Yk with JEYk = 0, (16) shows that the Cesaro means
Tk,n :== (n + 1)-1 L~~~ Sk,j converge to Zk == -Yk-l in L 2

, i.e. IITk,n - Zkll --+ 0 and,

similarly, (n + 1)-1 L~=k-n Sk,j--+Yk in L 2; see the proof of Bradley (2007a, Theorem 8.6).
(This can be used to give an alternative proof of Theorem 1, using strong Cesaro convergence
instead of weak convergence and completing the proof as above.) Furthermore, the strong law
of large numbers for stationary m-dependent sequences implies that Tk,n --+ Zk a.s., while from
(15), it follows that Sk,n does not converge a.s. (except when Z, == 0).

ProofofCorollary 1. By Theorem 1, (5) holds and, thus, (6) holds, which shows that Sn ­
JESn~ Yo - Y6 when n 2:: m. In particular, for n 2:: m, var(Sn) == 2 var(Yo) and, hence,
var(Sn) == 0 only if Yo is degenerate (a.s. constant), and then each Xk is degenerate. Finally,
by the theorem by Cramer mentioned in Remark 3, Yo - Y6 is normal if and only if Yo has a
normal distribution.

ProofofTheorem 2. Let Yk and Zk be as in the proofof Theorem 1. For -00 :::: k :::: n :::: 00,

let :Fk,n denote the a-field generated by {~i }?=k and all sets of probability O. (The latter
technicality is because Yk and Zk are defined only a.s.) Then Xk E :Fk,k+l-l so Sk,n E :Fk,n+l-l
and, thus, Yk E :F-oo,k+l-l and Zk E :Fk,oo. Since Yk == -Zk+l by (12); thus,

Yk E :F-oo,k+l-l n :Fk+l,oo == :Fk+l,k+l-l,

where the latter equality follows (e.g. by considering conditional expectations) because the
variables ~i are independent.

Hence, Yk = g(~k+l, ... , ~k+l-l) for some function g (independent of k because of
stationarity). The result now follows from Theorem 1.

ProofofCorollary 2. This is an immediate consequence of Theorem 2 and (6).

3. Applications

We sketch two applications of the results above; more details and background are given in
Holmgren and Janson (2015) and Janson (2014). In both applications we consider a random
rooted tree Tn with n nodes (with different distributions in the two cases) and let, for a fixed
rooted tree T, nT (Tn) be the number of nodes v E Tn such that the fringe subtree consisting
of v and all its descendants is isomorphic to T. (We consider only trees T in the family 'I*
of trees that can appear as fringe subtrees in Tn for some n; otherwise, nr (Tn) is identically 0
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for all n.) In the cases studied here, these numbers are asymptotically normal for fixed T as
n ~ 00:

nT(Tn) - nJLT D

~ -+ {T, (17)

where ST ~ N (0, a'f) for some JLT > 0 and a'f :::: O. Moreover, this holds jointly for all T with
the limit variables ST jointly normal, with convergence of variances and covariances. We use
the results above to show that the limit distribution is not degenerate: a'f. > 0 for each T E 'I*
and, moreover, the covariance matrix of STI ' ... , STN is positive definite, for any finite number
of trees Ti , ... , TN E 'I*. Equivalently, if

N

F(Tn) = L ainr, (Tn)
i=l

for some distinct trees Tl, ... , TN E 'I* and real numbers aI, ... , aN, not all 0, then

N
. var F(Tn) (L )lim = var ajST· > O.

n~oo n ]
j=l

(18)

(19)

Example 1. (Binary search trees, Holmgren and Janson (2015).) A binary search tree is a
binary tree with a key stored at each node. It is constructed from a sequence of (distinct) keys
by putting the first key, say Xl, in the root and sending all subsequent keys less than Xl to the left
subtree and the keys greater than X 1 to the right subtree, constructing the subtrees recursively
in the same way.

We may assume that the keys are 1, ... , n; then, a binary search tree is a binary tree with the
nodes labelled 1, ... , n (where n is the size of the tree). Let Tn be a uniformly random binary
search tree with n nodes; this can be constructed by taking the keys 1, ... , n in (uniformly)
random order.

We use a modification of this construction by Devroye (1991), (2002). Let Ul, ... , Un be
i.i.d. random variables with U, ~ U (0, 1), order the indices 1, ... , n so that the variables U, are
in increasing order and construct the binary search tree Tn as above using this sequence. (Thus,
for example, the root is labelled by the index i such that U, is the smallest of U1, ... , Un.) It is
not difficult to see that then the fringe subtrees of Tn are the trees defined in the same way by
the subsequences Ui, ... , Uj (with 1 ::s i ::s j ::s n) such that U,-1 and Uj +1 both are smaller
than all of Ui, ... , U]; here, we define Uo = Un+l = O.

Hence, if T E 'I*, where now 'I* is the family of all binary trees, and T has IT I = k nodes,
then

n-k
nT(Tn) = L !T(Ui, ... , Ui+k+l)

i=O

(20)

for some indicator !T(Xl, ... , Xk+2) on [0, l]k+2 (depending only on the order relations be­
tween Xl, ... ,Xk+2). For convenience, we ignore the boundary terms in (20), which are
asymptotically negligible; we let (Ui)~oo be i.i.d. with U, ~ U(O, 1) and then

n-k-l
nT(Tn) = L !T(Ui, ... , Ui+k+l) + 0(1),

i=l

(21)
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where the sum is a sum of m-dependent variables of the type studied in this paper. Given a
function F as in (18), we let i := max j ITj I+ 2 and define

f(XI, ... , Xi) := LajfTj(XI, ... , XITjl+2).
j

Then (21) implies that

n-i

F(Tn) = L f(U;, ... , U;+i-I) + 0(1) = Sn-i + 0(1),
;=1

(22)

where S; = L?=I Xi with X; = f(U;, ... , U;+i-I) an i-block factor as in Theorem 2.
Hence, the central limit theorem for m-dependent variables (Hoeffding and Robbins (1948)
and Diananda (1955» yields asymptotic normality of F(Tn), i.e. (17) with joint convergence
for several T E '3:* and convergence of first and second moments; this is the method by Devroye
(1991). We can now also show that (19) holds.

We may suppose that aI, ... , aN all are nonzero, and that TI, ... , TN are ordered with
ITIl ~ IT21 ~ , so no Tj is a proper subtree of TI. Let n > 3i, and consider the event that
UI < U2 < < Un; this generates a tree Tn = T' that is a path to the right from the root.
By permuting Ui, ... , Ui+k, where k = ITII, leaving all other U, unchanged, we may instead
generate a tree T" that is a path to the right of length n - k, with a copy of TI attached to the ith
vertex. Then nr. (T") = nr, (T') + 1, but nr, (T") = nr, (T') for 2 ~ j ~ N, since except for
the new copy of TI in T", the subtrees that appear or disappear when we change T' to T" are
either too small or too large to be a T]. Hence, by (18), F(T') 1= F(T"), and this holds also
if we ignore the boundary trees and consider Sn as in (22), and it follows by Corollary 2, see
Remark 4, that (19) holds. (The proof just given was our first proof that a 2 > 0 in this case.
The proof given in Holmgren and Janson (2015) is actually slightly different and does not use
the results in this paper; it uses instead a shortcut based on a special symmetry property.)

Example 2. (Conditioned Galton-Watson trees, Janson (2014).) A Galton-Watson tree 7 is
the tree version of a Galton-Watson process. It is defined by a nonnegative integer-valued
random variable ~ which describes the number of children of each node. We assume that
IE~ = 1 (a critical Galton-Watson process) and IE~2 < 00. The conditioned Galton-Watson
tree Tn is the random tree 7 conditioned to have exactly n nodes. It is well known that several
standard types of random trees can be defined in this way, with suitable ~; see, for example,
Janson (2012). For simplicity, we assume that JP>(~ = k) > 0 for every k ::: 0, and let '3:* be the
family of all ordered rooted trees. (The general case is studied in Janson (2014) with a minor
variation of the argument below. The result is the same as long as ~ attains at least two positive
integers with positive probability, except that '3:* only consists of trees, where all outdegrees
may be attained by ~, but in the case when ~ E {O, r} for some integer r, we have to exclude
the T = • case, the tree of size 1, because n.(Tn) is deterministic.)

Let ~l, ~2, ••• be an i.i.d. sequence of copies of ~, and let Z; := L?=l ~i. The degree
sequence of the nodes in Tn, taken in depth-first order, is (~I, ... , ~n) conditioned on this being
the degree sequence of a tree; up to a cyclic shift this is the same as conditioning on Zn = n - 1
and it follows that

nr('J;,),g, (tfr(~i' ... ,~i+k-lmodn) I z; =n -1)
1=1
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for a suitable indicator function !T: Nk -+ {O, I}, where k = ITI. Given F as in (18), we
let l := maxj ITjl and !(XI, ... , Xl) := Lj aj!Tj(XI, ... , XITjl); then, again ignoring some
boundary terms,

(

n - l I
F(7,,) g, ?= f(~i, ... , ~i+l-d z, = n - 1) + 0(1) = (Sn I z; = n - 1) + 0(1).

1=1
In this case, we thus have a conditioned version of the sum Sn, and asymptotic normality follows
by a method by Le Cam (1958) and Holst (1981); see also Janson (2014). The proof in Janson
(2014) shows that the asymptotic variance a 2 is given by

2 . 1a = hm - var(Sn - aZn),
n~oo n

where the constant a is chosen such that cov(Sn - aZn, Zn)/n -+ O. Let s, := Sn - aZn.

Then s, - ESn = L7=1 Xi, where

Xi := !(~i, ... , ~i+l-l) - a~i + fJ, (23)

with fJ chosen such that EXi = O. If 0'2 = 0, we may apply Corollary 2 to (Xi) and (Sn).

Take first ~i = j for all i ::::; n + i-I, for some j > O. Then (~i, ... , ~i+k-l) is never the
degree sequence of a tree, so !T(~i, ... , ~i+ITI-I) = 0 and !(~i, ... , ~i+l-l) = 0; hence, (23)
reduces to Xi = -aj + fJ, and (7) yields n( -aj + fJ) = O. Hence, -aj + fJ = 0 for every
j > 0 and, thus, a = fJ = O. Consequently, (23) simplifies to Xi := !(~i, ... , ~i+l-l).

We may again assume that ITIl ~ IT21 ~ ... ~ ITN I and al 1= O. Let n > 21 and assume
that (~l+l, ... , ~l+ITII) equals the degree sequence of TI, while all other ~i = 2, say, for
i ~ n + l - 1. The only substrings of ~l, ••• , ~n+l-l that are degree sequences of trees are
(~l+l, ... , ~l+ITll) and some of its substrings, corresponding to TI and its subtrees. It follows
that s, - ESn = at 1= 0, which contradicts (7). This contradiction proves 0'2 > 0, i.e. (19).
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