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RANK r SOLUTIONS TO THE MATRIX EQUATION 
XAXT = C, A NONALTERNATE, C ALTERNATE, 

OVER GF(v). 

P H I L I P G. BUCKHIESTER 

1. Introduction. Let GF{q) denote a finite field of order q = py, p a prime. 
Let A and C be symmetric matrices of order n, rank m and order s, rank k, 
respectively, over GF(q). Carlitz [6] has determined the number N(A, C, n, s) 
of solutions X over GF(q), for p an odd prime, to the matrix equation 

(1.1) XAXT = C, 

where n = m. Furthermore, Hodges [9] has determined the number 
N(A, C, n, s, r) of s X n matrices X of rank r over GF(q), p an odd prime, 
which satisfy (1.1). Perkin [10] has enumerated the s X n matrices of given 
rank r over GF(q), q = 2V, such that XXT = 0. Finally, the author [3] has 
determined the number of solutions to (1.1) in case C = 0, where q = 2y. 

An n X n symmetric matrix over GF(2V) is said to be an alternate matrix 
if A has 0 diagonal. Otherwise, A is said to be nonalternate. The author [4; 5] 
has determined the number N(A, C, n, s, r) of s X n matrices X of rank r 
over GF(q), q = 2y, which satisfy (1.1), in case A is an alternate matrix over 
GF(q) and in case both A and C are symmetric, nonalternate matrices over 
GF{q). 

The purpose of this paper is to determine the number N(A, C, n, s, r), in 
case A is a symmetric, nonalternate matrix over GF(2V) and C is an alternate 
matrix over GF(2V). In determining this number, Albert's canonical forms for 
symmetric matrices over fields of characteristic two are used [1]. These forms 
and other necessary preliminaries appear in Section 2. In Section 3, the 
number N(A, C, n, s) is found, in case both A and C are nonsingular. Finally, 
in Section 4, the number N(A, C, n, s, r), 0 ^ r ^ min (s, n), is determined. 

The difference equations obtained in Section 4 were solved by using methods 
due to Carlitz [7]. 

Throughout the remainder of this paper, GF(q) will denote a finite field of 
order q = 2V and Vn will denote an w-dimensional vector space over GF(q). 
Further, for any matrix M over GF(q)f 3% Sf[M] will denote the row space 
of M. 

For matrices Xx, X2, . . . , Xk, where Xt is nii X n, col [X\, X2, . . . , Xk] 
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will denote the (mi + m2 + . . . + mk) X n matrix 

X1 

X2 

Xk 

2. Notation and preliminaries. Let / b e a symmetric bilinear form de­
fined on Vn X Vn. For any subspace E of Vn, define 

£* = {x e Vn\f(x, y) = 0 for all y in £ } . 

Clearly, E* is a subspace of Vn. If Fw* = {0}, then / is said to be nondegenerate. 
A vector x in Fw such that / (x , x) = 0 is said to be an isotropic vector. If every 
x in Vn is isotropic, t hen / is said to be an alternating bilinear form. Otherwise, 
/ is called nonalternating. 

The following theorem, which appears in [8], will be needed in Sections 3 
and 4. 

THEOREM 2.1. If E is a subspace of Vn, then dim E* = n — dim E + dim 
(En vn*). 

From this theorem, it follows that if/ is nondegenerate, then dim E + dim 
£* = n, for any subspace E of Vn. 

Let Ik denote the k X k identity matrix over GF(q). Albert [1] has proved 
the following theorems concerning symmetric matrices over GF(q). 

THEOREM 2.2. Let C be an s X 5 alternate matrix over GF(q). If C is nonsingu-
lar, then there is a nonsingular matrix P such that 

PCPT = 0 (s = 2 7 ) . 

If C has rank k < s, then there is a nonsingular matrix Q such that 

QCQT = 
0 Iy 0 

Iy 0 0 
0 0 0 

(k = 2T) . 

THEOREM 2.3. Let A be an n X n symmetric, nonalternate matrix over GF(q). 
If A is nonsingular, then there is a nonsingular matrix P such that PAPT = In. 
If A has rank k < n, then there is a nonsingular matrix Q such that 

QA(? [h OH 
|_o oj-

The following lemma, which appears in [4], will be needed in Sections 3 and 4. 
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LEMMA 2.1. Let A and C be symmetric matrices of orders n and s, respectively, 
over GF(q). If there exist nonsingular matrices P and Q such that PAPT — B 
andQCQT = D,thenN(A, C,n,s) = N(B,D,n, s). Furthermore, N(A, C,n, s,r) 
= N(B, D, n, s, r), 0 ^ r ^ min (s, n). 

For integers n and k, let denote the g-binomial coefficient defined by 

M = o, k > 4û- n 
UJ 

fe)n 0 < k < n, 
(<l)k(q)n-Jc ' 

where (q)j = (q — 1) . . . (qJ — l),j > 0. Brawley and Carlitz [2] have proved 
the following lemma. 

LEMMA 2.2. Let X be an s X t matrix of rank r over GF(q). The number of 
s X m matrices [X, Y] of rank r + y over GF(q) is given by 

L{s,t,m,r,r + y) = m — t 

L 7 J 

r(m— t—7) 
I l (2s qr+t). 

L e t / be the bilinear form defined on Vn X Vn by/(£, rj) = ^T, for all £, y in 
Vn. It is immediate t h a t / is a nondegenerate, nonalternating bilinear form. 
Let W denote the set of all isotropic vectors in Vn. Then W is a subspace of 
Vn and, further, x = (xi, . . , xn) is in W if and only if 

n I n \ 2 

f(pC,x) = XXT = 22 xi = ( S X*) = 0. 

Thus, ^consis ts of all vectors x such that Y7i=ixi = 0- Consequently, W is an 
(n — 1)-dimensional subspace of Vn. Let u denote the vector (1, 1, . . . , 1) in 
Vn. Perkins [10] has proved the following theorem. 

THEOREM 2.4. Let X be an s X n matrix over GF(q). Then (<% y[X])* C W 
if and only if u is in & Jf[X], 

Let M(In, 0, n, s, s) denote the number oî s X n matrices X of rank s over 
GF(q) such that XXT = 0 and u is not in 0? S^[X]. In determining the number 
N(In, 0, n, s, s), Perkins [10] has determined M(In, 0, n, s, s). 

THEOREM 2.5. The number of s X n matrices X of rank s over GF(q) such that 
XXT = 0 and such that u is not in 3% S^[X] is given by 

M(In, 0, n, s, s) = 
( i l GT'-S*-1), in odd) 
/ *=i 

f I I (#W_Î ~~ 2*)> in even) 

3. Determination of N(A, C, n, s), A and C nonsingular. Let A be an 
n X n symmetric, nonalternate matrix of full rank over GF(q) and let C be an 
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s X s alternate matrix of full rank over GF(q). By Theorems 2.2 and 2.3, there 
exist nonsingular matrices P and Q such that PAPT = In and QCQT = Fy, 
s = 2y, where Fy denotes the 27 X 2y matrix 

il s-] 
over GF(q). By Lemma 2.1, iV(-4, C, w, 5) = N(In, Fy, n, 2y), the number of 
27 X w matrices X such thatXXT = Fy. Thus, it suffices to find N(In, Fy,n,2y). 
Let / be the nonalternate, nondegenerate bilinear form on Vn X Vn defined 
by/(£, v) = ^nVT = &T> f° r each £, rj in Fw. Let IF be the (n — 1)-dimensional 
subspace of Vn consisting of all isotropic vectors in Vn. Let Z = col [X, Y] be 
an 5 X n matrix over GF(q) such that ZZT = Fy, s = 27, where each of X 
and Y is 7 X n. Then, rank Z = 2y and, therefore, rank X = 7. Furthermore 

X XX r X F T 0 J7"] 
(3.1) [X r F T ] = = 

_F_ _YXT 
F F r _ _Iy 0 J 

Let X = = l>i, • . , x̂  ,]T and F = [yi, • • •, * ] s \ From (3.1 
/ (* , , x,-) = f(yit jj) = 0 and f(xit yj) = ôtj1 for i, j = 1, 2, . . . , 7. Thus 
£% y[X] Cl W. If n is odd, then/(w, w) = ww^ = 1. Then u is not in W and, 
therefore, not in S% y\X\ If w is even, then/(w, u) = 0, and u is an isotropic 
vector. However, u is not in 8% y\X\ as the following theorem shows. 

THEOREM 3.1. Suppose Z = col [X, F] is a 2y X n matrix over GF(q) such 
that ZZT = Fy, where each of X and Y is y X n. Then u = (1, 1, . . . , 1) is not 
in 01 y[X]. 

Proof. The proof of the theorem is given above in case n is odd. Suppose n 
is even and u is in 8% y\X\ Since rank X = 7, u may be represented uniquely 
as a linear combination of precisely k rows of X, for some k, 1 ^ k ^ 7, say 
w = XiXi! + . . . + \kxik, \j 9e 0, for each j = 1, 2, . . . , &. Let 

o V^lj • • • > %ii—li % ii+1 • • • 1 Xy ) . 

Since/(x^, 3^) = 1, f(xj9 ytl) = 0, for j ^ ilf a n d / ( ^ 3^) = 0, for j = 1, 
2, . . . , 7 , it follows that ytl must be in IF H (5* - ( ^ ^ [ X ] ) * ) = (IF Pi 5*) 
- {0t y\X~\)*. Since u is in ^ ^ [ X ] , Theorem 2.4 implies that ( ^ ^ [ X ] ) * Ç 
IF. Since 5 ç ^ ^ [ X ] , ( ^ ^ [ X ] ) * C S*. Thus ( ^ ^ [ X ] ) * ç IF H 5*. By 
Theorem 2.1, dim (8? y[X])* = n — 7. Further, since 

# = ^ \jXij, Xj 5̂  0, for each j = 1, 2, . . . 7, 

u is not in 5. By Theorem 2.4, 5* is not a subspace of IF. Therefore, 
(IF + 5*) = n. Furthermore, by Theorem 2.1, dim 5* = n — dim 
n — (y — i)# Hence, 

dim (WnS*) = dim IF + dim 5* - dim (IF + S*) = 

(» - 1) + [n - (7 - 1)] - n = n - y = dim (& y[X])*. 

dim 
5 = 
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Thus , Wr\S* = {Stif\X\)* and, therefore, there exists no ytl in (W C\ S*) -
{St y[X})*. I t follows t h a t u is not in St if\X\ 

By (3.1) and Theorem 3.1, if Z = col [X, F] is such t h a t ZZT = F7J then 
the 7 X n matr ix X of rank y is such t h a t XXT = 0 and such t h a t u is not 
in St if\_X\ T h e number of such matrices X is the number M(In, 0, n, 7, y), 
as given in Theorem 2.5. Given a y X n matr ix X of r ank y over GF(q) such 
t ha t X X r = 0 and u is not in St if\X~\, we seek the number of y X n matrices 
F over GF(q) such tha t X F r = 7T and YYT = 0. In the a rgument given 
below it is shown tha t this number depends only on y and n. Consequently, 
if we denote this number by K(y, n), it follows t h a t 

(3.2) N(Im Fy, n, 2 7 ) = K(y, n)M(In, 0, », y, y). 

Thus , it suffices to determine the number K(y, n). Consider any 27 X n 
matr ix Z = col [X, F] such t h a t ZZT = Fy. By (3.1), St if\Z\ C W. Hence, 
as before, if n is odd w is not in W and, therefore, not in S% if\Z\. T h e following 
theorem shows t h a t this is also the case if n is even. 

T H E O R E M 3.2. / / Z is a 2y X n matrix over GF(q) such that ZZT = Fyj where 
each of X and Y is y X n, then u = (1, 1, . . . , 1) is not in M if\Z\ 

Proof. T h e proof of the theorem is given above in case n is odd. Suppose n 
is even and let Z = col [X, F ] , where each of X and F is 7 X n. By Theorem 
3.1, M is not in S%if\_X~\. Suppose u is in St if col [X, 3/J. Since u is no t in 
3%if\X\, 3>i is in St if col [X, u\. If v = (vi, . . . , vn) is any isotropic vector 
in Vn, then 

n I n \ 2 

0 =f(v,v) = vvT = X) fl<2 = ( X) vt) , 

which implies/(w, i>) = uvT = Y!X=ivi = 0- Thus , if v is an isotropic vector in 
Vn, then u is in (#)*. I t follows t h a t St if col [X, u] ÇI (xi)*. T h u s 3/1 is in 
(xi)* and f(xi, yi) = 0. S i n c e / ( x i , yi) = 1, it follows t h a t u is no t in St if 
col [X, 3>i]. Suppose u is not in St if col [X, 3/1, . . . , yk], where 1 ^ fe < 7 and 
w is in St if col [X, yx, . . . , 3^+1] • Then 3^ + 1 is in 

~x~ 
3>i 

"if Q <**+!>* 

an impossibility since/(x^+i, 3^+1) = 1. Hence, u is not in 

@ycol[X,yu...,yt+i] 

and the proof is complete. 

https://doi.org/10.4153/CJM-1974-008-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-008-2


RANK T SOLUTIONS 83 

We proceed to determine the number K(y, n). Let X = [xi, . . . , xy]
T be a 

7 X n matrix of rank y over GF(q) such that XXT = 0 and u is not in S% y 
[X]. In order to choose ay X n matrix Y = [yly 

and YYT = 0, y\ must be chosen from 
yy]

T such that XY1 

%2 

* - (^^ [X ] ) * 

= [wn\@y 

X2 

* | - (^^[X] ) * . 

Let r = IF H ( ^ y col [x2, . . . , x7])* and let S = T Hi (3S y[X])* = 
WC\(@t y[X])*. Then yi must be chosen in T - S. Since u is not in & y[X], 
Theorem 2.4 implies that neither ( ^ ^ [ X ] ) * nor ( ^ 5^ col [x2, . . . , xy])* is 
a subspace of W. Applying Theorem 2.1, we obtain dim S = dim W + dim 
{0ty\X\T - dim (W + (&y[X])*) = {n - 1) + [n - y] - n = n - y 
— 1 and dim T — (n — 1) + [n — (y — 1)] — n = n — y. Thus, dim T/S = 
1. Define the mapping/ from T/S into GF(q) by f(z + S) = f(z, Xi) for each 
coset z + S in T/S. Let z0 be such that T/S = (z0 + 5 ) . Then z0 is in T — 5 
and, therefore, f(z0 + S) = f(zo, Xi) ^ 0. It follows that / is a one-to-one 
mapping from T/S onto GF(q). Hence, there exists precisely one coset Z\ + S 
in T/S such that f(z± + S) = 1. For any v in 5, /(z;, X\) = 0 and, thus, 
f(zi + *>, #i) = f(zi, %i) + /(*>> #i) = f(zi + 5) = 1. Since 3/1 must be such 
tha t / (# i , 3>i) = 1, the number of choices for y± is equal to |zi + S\ — \S\ = 
qn~y~1. Suppose 3/1, . . . , ykl k < 7, have been chosen such that the following 
properties hold: 

(i) ylf . . . , yk are independent vectors in Vn, 
(ii) u is not in Tk = (xi, . . . , x7, 3>i, . . . , yk), 

(\u) j{xuyj) = ôijcindfiy^yj) = 0, fori = 1, 2, . . . , 7 and / , / = 1,2, . . . , 
ife. 
Then ?*+! must be chosen from W C\ (Sk* - (Tk* W T,)) = ( W H Sk*) -
(Tk* U r*), where S* = <*i, . . . , xk, xk+2, . . . , xy, yu . . . , yk). However, 

(wnsk*) r\ (rk* u Tk) = (wnsk* r\ rk*) u (wn 5,* n rk) 
= (wr^Tk*)\j {wr\sk*r\Tk). 

If z is in 5A;* Pi Tk, then 

7 A; 
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However, 0 = f(z, yf) = aù and 0 = f(z, xf) = bjy for j = 1, 2, . . . , k. Thus 
z = Ylyi=k+iatxt* Since xt is in Sk* P\ I"* for i = k + 1, . . . , 7, it follows that 
5** H Tk = (ocit+i, . . . , x r ) . Hence, W H S** H T* = (x^+i, . . . , x7) ç 
W H r** and, therefore, (W C\ Sk*) - (Tk*UTk) = (WHSk*) ~ {WC\Tk*). 
Since u is not in Tk and, therefore, not in Sk, it follows from Theorems 2.4 and 
2.1 that 

dim (WniSk*) = (n - 1) + [n - (7 - 1 + k)] - n = n - 7 - k 

and 

dim (WC\ Tk*) = (n - 1) + [n - (7 + k)] - n = n - 7 - k - 1. 

Let J = WC\ Sk* and M = W C\ Tk*. Then dim J/M = 1. As before, the 
mapping/ from J/M into GF(q) defined by f(z + M) = f(z, xk+i) is a one-to-
mapping onto GF(q). Since yk+1 must be such that/(#*;+1, yk+i) = 1, it follows 
that the number of choices for yk+1 is equal to \M\ = gw-7-*-i. As in the proof of 
Theorem 3.2, it can be shown that for any such yk+i, u is not an element of 
Tk+i = (xi, . . . , xy, yi, . . . , yk+i). Thus, the inductive argument is complete 
and it follows that 

(3.3) K(y, n) = fl <r~\ 
1=1 

Together, (3.2) and (3.3) yield the number N(In, Fyy n, 27) = N(A, C, n, 2 7 ) . 

THEOREM 3.3. Let A be an n X n symmetric, nonalternate matrix of full rank 
over GF(q) and let C be an s X s alternate matrix of full rank over GF(q), s = 27. 
Then the number of s X n matrices X over GF(q) such that XAXT = C is given by 

N(A,C,n,s) = ft r 7 " W ( 4 0 ) W ,T ,7 ) , 

where M(In, 0, n, 7, 7) is given in Theorem 2.5. 

4. Determination of N(A, C, n, s, r). Let A be sain X n symmetric, non-
alternate matrix of full rank over GF(q). Let C be an 5 X 5 alternate matrix of 
rank 2y ^ s over GF(q). By Theorem 2.2, Theorem 2.3, and Lemma 2.1, 
N(A, C, n, s, r) = N(In, Gyi n, s, r), 0 ^ r ^ min (s, n), where Gy denotes 
the s X s matrix 

"0 Iy 0" 
Iy 0 0 

_0 0 0_ 

over GF(q). Thus, it suffices to determine the number N(Inj GJ} n, s, r) of 
s X n matrices M of rank r such that MMT = Gy. Let M = col [Xu Z] be 
any such matrix, where X± is 27 X n and Z is (s — 27) X n. Then 

~x; 
(4.1) [X1

TZT] = 
ZXX

T ZZT 

~Fy 0" 

0 0 
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Thus , the 27 X n matrix Xi mus t be such tha t X1X177 = Fy. The number of 
such matrices Xi is the number N(In, Fy, n, 2y), given in Theorem 3.3. Fur ther , 
since rank X\ = 2y, r ank M = 2y + r for some r, 0 ^ r ^ min (5, ») — 2y. 
Given a 2 y X w matrix X i such tha t XiX\T = Fy, the number oi s X n 
matrices M = col [Xlt Z] of rank 27 + 8 such tha t MMT = Gy depends only 
on 7, n, s, and 5. Thus , if we denote this number by $ (27 , n, s, ô), it follows tha t 

(4.2) N(In, Gy, n, s, 2y + r) = N(In, Fy, n, 2 7 ) • * ( 2 7 , », 5, r ) . 

Suppose n is odd and let Xi = col [X, F] be a 27 X » matrix over GF(q) such 
t ha t XiXi 2 7 = .F7, where each of X = [xi, . . . , xy]

T and Y = [yu , yy]
T 

is 7 X ». Then , i f / i s the nonalternate, nondegenerate bilinear form defined by 
/ (£ , 17) = £7 r , for all £, 77 in Vn, we have f (x if *,) =f(yt,yj) = Oandf(xiyyj) = 
ô^-, for i, j = 1, 2, . . . , 7. Suppose AT = col [Xi, Z] is an 5 X n matrix of rank 
2y + T over GF(q) such tha t MMT = Gy. By (4.1), St y\M\ Ç IF. Since » is 
odd, u is not an isotropic vector and, therefore, is not in 3? y[M]. Fur ther­
more, if Z = col [Zi, zs-2y], where Zi = [zi, . . . , z5_i_27] : ris (s — 1 — 27) X », 
then the (5 — 1) X n matr ix D = col [Xu Z J has rank 27 + r or 27 + r — 1 
and is such t ha t 

DDT = 

Since MMT = Gy, it is clear t ha t zs_27 mus t be in W C\ (3t y[D])*. If r ank 
D = 2 7 + r, then Z,_ 2 T is in IF Pi ( ^ y[D])* Pi ^ ^ [ £ > ] . If v is in this 
subspace, then 

7 7 6—1—27 

» = 22 0<*« + X) biyt + X) £#*» 
i = l z = l i = l 

for some a f, bt, ct in GF(q). However, 0 = f(v, Xj) = bj and 0 = f(v, y3) = ajy 

for j = 1, 2, . . . , 7. Hence, 
5-1-27 

» = S £<*«• 

Clearly, 9t y\Z{\ Ç W P (3? y[D])* C\ 9t y\D\. Thus , in order t ha t rank 
D = 27 + r, it is necessary and sufficient t ha t zs-2y be in 3? y[Zi]. Since 
dim ^ y 7 col [Zi , Zi] = 2 7 + r, it is clear t ha t dim 3$ y[Zx] ^ r. If 
dim ^? y[Zi] > r, then for some i . l ^ i S s — 1— 2y, zt is in 

^ ^ COl [XX , Zi, . . . , 2*-i] - <2i, . . . , Z | _ i ) . 

B u t zz- is in (^? 5 ^ col [Xi, 21, . . . , z f_i])*, whose intersection with 

^ y col [Xi, zi, . . . , Zi_i] is (zi, . . . , z^_i). 

T h u s dim «^ «5^[ZJ = r and the number of choices for ZS_2 T is gT. If rank 
D = 2 7 + r - 1, then zs_27 mus t be in I F P ( ^ ^ [ Z > ] ) * - 3% y[D\. Since 
^ is not in 31 y [D], it follows from Theorem 2.4 t ha t (3t y[D])* is no t a 

0 77 0 1 
Iy 0 0 . 
0 0 OJ 
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subspace of W. Hence, 

dim (Wr\ (@y[D])*) = (n - 1) + [n - ( 2 7 + r - 1)] - n = n - 2 7 - r . 

Fur thermore , W C\ (01 Sf[D])* f*\ & y[D] = 9t Sf\Z& which, by an argu­
ment similar to the one used above, can be shown to be of dimension r — 1. 
Thus , the number of choices for ss_27 is qn~2y-T — qT~l. Hence, we obtain the 
difference equation 

(4.3) $ ( 2 7 , n, s, T) = g T $ ( 2 7 , n, s - 1, r) + (qn-^-* - q*-i) 

X $ ( 2 7 , n, s - 1, r - 1), (n o d d ) , 

with initial condition <E(27, n, s, 0) = 1, for s ^ 2 7 , and <£(27, w, 2 7 , r ) = 0, 
for r 7e 0. I t is easily seen t ha t the solution to the recurrence in (4.3) is given by 

where -*] 
[•-*]ff 
L r J j=o 

(4.4) $ ( 2 7 , n, s, r ) = ° - ' M I ( « r ^ - - g ') f („ odd ) , 

is the g-binomial coefficient as defined in Section 2. 

Suppose n is even and suppose Xi = col [X, Y] is a 2 7 X w matr ix over 
GF(q) such t h a t X i X i r = 7^. Given the matr ix Xly let J\(2y, w, 5, 5) denote 
the number of s X n matrices M = col [X1} Z] of rank 2 7 + 8 over GF(q) 
such t h a t AfAfr = Gy and such t h a t M is in <% <f\M\, and let J 2 ( 2 7 , n, s, 8) 
denote the number of s X n matrices M = col [Xly Z] of r ank 2 7 + 8 over 
GF(q) such t h a t MMT = Gy and such t h a t u is not in & Sf[M]. T h e use of 
this notat ion is justified below as we show t h a t the numbers J\ and J 2 depend 
only on 7 , n, s, and 8. Fur thermore , 

(4.5) 3>(27, n, s, r ) = J i ( 2 7 , n, s, r ) + J 2 ( 2 7 , w, 5, r ) , (n even) . 

Let i f = col [X1} Z] be an s X n matr ix of rank 2 7 + r over GF(q) such tha t 
MMT = Gy. Since n is even, w is isotropic and, therefore, m a y or may not be 
in S& y\_M\. Let Z = col [Zi, £s_27], where Zi = [21, . . . , zs-i-2y]

T is 
(s - 1 - 2 7 ) X w. Suppose w is not in <% y[M]. Then the (s - 1)IX n 
matr ix D = col [Xly Z{\ has rank 2 7 + r or 2 7 + T — 1 and is such tha t it is 
not in S% S^[D], In order to determine a difference equation in J 2 ( 2 7 , w, 5, r ) , 
wTe seek expressions Q(2y, n, s, r ) and R{2y, n, s, r ) such t h a t 

(4.6) J2(2y, n, s, r) = Q(2y, n, s, r)J2(2y, n, s - 1, r ) + R(2y, n, s, r) 

X JiQy, n, s — 1, r — 1), (w even) . 

If r ank £> = 2 7 + r, then SS_2T mus t be in W C\ (g$ 5f[D])* C\S% y[D] = 
S% Sf[Zi], a subspace of dimension r. Fur ther , since u is no t in 3& S^[D], any 
zs^2y in ^ y[Zi] will be such t h a t u is not in ^ y[M]. Hence, Ç ( 2 7 , w, 5, r ) = 
gT. I f rankjD = 2 7 + r - 1, t h e n s s _ 2 7 mus t be in WC\ (&2*[D])* - & y[D]. 
Since u is not in S% y\D\ u is no t in & Sf[M] if and only if zs-2y is no t in 
& 5^ col [Z>, u] — S% y\P\ Hence, it is necessary and sufficient t h a t z5_27 be 
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in T - (Sr\T), where T = {WC\ (01 S*"[D])*) - & y[D] and 5 = 
0? y col [D, u] - 0? y[D]. Since u is not in 0f y[D], 

dim (Wr\ (&y[D])*) = (» - 1) + [» - (2? + T - 1)] - » = n - 2? - T. 

Further, W C\ (0% <f [£>])* A ^ ^ [ 2 ? ] = ^ y [ Z J , a subspace of dimension 
r - 1. Thus, \T\ = qn-zy-r - q*-\ Next, 

Tns = (wn (j>y[z)])*n^>^coi[z),«]) -^?y[z>]. 

Suppose t» is in W C\ (0? y[D])* C\ 0f y co\ [D, u\. Then 

7 7 s-1—27 

i = l i=l f = l 

for scalars a*, £*, c*, and d in GF(q). Since x̂ - and 3^ are isotropic, for 
7 = 1,2, . . . ,y,f(u,xj) =f(u,yj) = 0 , j = 1, 2, . . . , 7. Thus, 0 = f(v,Xj) = bj 
and 0 = f(v, jj) = ay, for j = 1, 2, . . . , 7. Hence, 

s-1-27 

» = 22 c *̂ + ^w-
Moreover, since » is even, 

<*i,... tZs-x-^u) Qwr\ (&y[D])*r\s$yco\[D,u]. 
Since dim ^ «5^[ZJ = r — 1 and w is not in ^? J^[Zi], dim (si, . . . , 35_i_27, w ) 
= r and, therefore, |IF H ( ^ ^ [ D ] ) * H ^ ^ col [D, «]| = g'. Also, since 

^n(^y7[z>])*n^y?coi[^,^] = <zi,... fzs-i-.^9u)9wn(âsy[D])*n 
& y col [£>, u\C\S% y\P~\ = & y[Zi]. Consequently, \T C\ S\ = qT - qT~\ 
Since \T\ = g»-27-r _ qr-iy i t follows that R(2y, », s, r) = <f-*i-r - qrm The 
difference equation in (4.6) becomes 

(4.7) J 2 (2 7 , », 5, r) = <rJ2(27, », 5 - 1, r) + (<f~2^ - q*) 

X ^2(27, », 5 — 1, r — 1), (w even), 

with initial conditions / 2(27, », 5, 0) = 1, for s ^ 27, and / 2 (27, », s, r) = 0, 
for r ^ 0. It is easily seen that the solution to the recurrence in (4.7) is given by 

(4.8) U2y, », s, r) = Is ~ 2 T 1 I I ( < T 2 ^ - q'), (» even). 
L r J j=\ 

Next, suppose u is in 8% y\M\. We seek expressions^ (27, », 5, r) , C(27, », 5, r ) , 
E(2y, », 5, r ) , and F(27, », 5, r) such that 

(4.9) / i ( 2 7 , », 5, r) = 5 (27, », 5, r ) / i ( 2 7 , », 5 - 1, r) 

+ C(27, », 5, T ) J I ( 2 7 , », 5 - 1, r - 1) 

+ £ ( 2 7 , », 5, r ) / 2 (2 7 , », 5 — 1, r) 

+ F(27> », s, r ) / 2 (2 7 , », 5 - 1, r - 1). 
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Suppose D has rank 2 7 + r and u is in St y\U\. Then , s5_27 mus t be 
in W H (St Sf[D])* H St y[D] = St yiZd, a subspace of dimension r . Thus , 
B(2y, », s, r ) = qT. Suppose D has r ank 2 7 + r — 1 and u is in St y\_D], 
Then , ss_27 mus t be in W H ( ^ ^ [ Z > ] ) * - St y\B\ Since » is in S y[D], 
(&y[D])* ç IF and, thus , T^ H ( ^ ^ [ £ > ] ) * - St y\U\ = (08 y[D])* -
Sty\Z^\. I t follows t h a t C ( 2 7 , », 5, r ) = g ^ 2 ? - ^ 1 - ^ - i . if D has rank 
2 7 + r and u is not in St y\_I)\, then for any ss_27 in St y\U\, u is not in 
St y\_M\ Therefore, E (2y , », 5, r ) = 0. Finally, suppose rank£> = 2 7 + r - 1 
and » is not in St y\_M\ Then , zs_27 must be in 

(w r\ (St y\D\f r\sty zo\ \p, «]) - st y\p\ = 
(zl9...,zs-1-^9u) - sty\_z,\ 

Hence, F(2y, », s, r ) = qT — qT~l. T h e difference equat ion in (4.9) becomes 

(4.10) 7 i ( 2 7 , », 5, r ) = gVi (2 7 > n, s - 1, r ) 

+ ( g w - 2 ^ + ! - q*-i) J,(2y, », s - 1, r - 1) 

+ feT — 5T - 1)^2(27, », 5 — 1, r — 1), (» even) , 

with initial condition J \ (2y , », 5, 0) = 0, for all 5, and J\(2y, », 2y, r ) = 0, 
for all r . This initial condition follows immediately from Theorem 3.2 and from 
the definition of Ji(2y, », s, <5). From (4.5), (4.7), and (4.10), a difference 
equation in $ ( 2 7 , », 5, r ) is obtained, namely, 

(4.11) 3>(27, », s, T) = ^ $ ( 2 7 , ». ^ - 1. *") 

- qn-*y-T(q - l)J2(2y, », 5 - 1, r - 1), (» even) , 

with initial condition 3>(27, n, s,0) = 1, for 5 ^ 2 7 , and <£(27, », 2 7 , r ) = 0, 
for r ^ 0 , where J 2 ( 2 7 , », 5 — 1, r — 1) is given in (4.8). I t is easily seen t ha t 
the solution to the recurrence in (4.11) is given by 

(4.12) * (2 T , » ,S ,T ) = | / -
r

2 7 J 

X i(q - 1) ff (<T2 7~' - S*) + I l (ln-ïy-i - g')}, (n even) . 

Combining (4.2), (4.4), and (4.12), we obtain the number N(In,Gy, », s, 2 7 + r ) . 

T H E O R E M 4.1 . Let A be an » X » symmetric, nonalternate matrix of full rank 
over GF(q), and let C be an s X s alternate matrix of rank 2 7 over GF(q). The 
number of s X » matrices X of rank 2 7 + r oyer GF(q) such that XAXT = C 
wiVC4, C, », s, 2 7 + r ) = TV(7n, F7 , », 2 7 ) $ ( 2 7 , », 5, T), where N(In, F71 », 2 7 ) 
zs gwe» i» Theorem 3.3 a»d $ ( 2 7 , », 5, r ) is g w » i» (4.4) in case n is odd, and 
in (4.12) in case n is even. 

Suppose A is an » X » symmetr ic , nonal ternate mat r ix of r ank p over 
GF(q) and C is an 5 X s a l ternate matr ix of rank 2 7 over GF(q). By Theorem 
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2.2, Theorem 2.3, and Lemma 2.1, N(A, C, n, 5, r) = N(RP, Gy, n, s, r), 
0 ^ r ^ min (s, n), where Rp is the n X n matrix 

[o'o] 
over GF(q). If X = [XiX2] is any s X n matrix of rank r over GF(q) such that 
XRPXT = Gy, where Xxis s X p and X2is s X (n — p), then 

(4.13) [X •*" [o' S] 
X 7 

^ L l ^ L l G-y 

Further, rank X = r implies rank X± ^ r — (n — p). For any r, 
max (r — n + p — 2y, 0) ^ r ^ min [min (s, p) — 27, r — 27], the number 
N(IP, Gy, p, s, 2y + T) of s X p matrices Xi of rank 27 + r over GF(q) such 
that XiX!T = G7 is given in Theorem 4.1. Consider any such matrix Xi. By 
(4.13), any s X in — p) matrix X2 such that X = [XiX2] has rank r yields 
XRPXT = G7. The number of suchmatricesX2isthenumberL(5,p,»,27 + r,r), 
given in Lemma 2.2. Thus, we have determined the number N(A, C, n, s, r) = 
N(RP, Gy, n, s, r), in case rank A = p ^ n. 

THEOREM 4.2. Suppose A is ann X n symmetric, nonalternate matrix of rank p 
over GF(q) and C is an s X s alternate matrix of rank 2y over GF(q). The number 
of s X n matrices X of rank r, 2y ^ r ^ min (s, n), over GF(q) such that 
XAXT = C is given by 

d(s,p,y,r) 

N(A, C, n, s,r) = X) ^ (^P> Gy, p, s, 2y + T) • L(s, p, n, 2y + r, r), 
T=h(r,n,p,y) 

where N(IP, Gyy p, s, 2y + r) is given in Theorem 4.1, L(s, p, n, 2y + r, r) is 
given in Lemma 2.2, where h(r, n, p, 7) = max (r — n + p — 27, 0), and 
where d(s, p, 7, r) = min [min (s, p) — 27, r — 2y\. 

REFERENCES 

1. A. A. Albert, Symmetric and alternate matrices in an arbitrary field. I, Trans. Amer. Math. 
Soc. 43 (1938), 386-436. 

2. J. Brawley and L. Carlitz, Enumeration of matrices with prescribed row and column sums, 
Linear Algebra and Appl. (to appear). 

3. P. Buckhiester, Gauss sums and the number of solutions to the matrix equation XAXT = 0 
over GF&y), Acta Arith. 23 (1973), 271-278. 

4. Rank r solutions to the matrix equation XAXT — C, A alternate, over GF(2y), Trans. 
Amer. Math. Soc. (to appear). 

5. — Rank r solutions to the matrix equation XAXT = C, A and C nonalternate, over 
GF{2y), Math. Nachr. (to appear). 

6. L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), 
123-137. 

7. The number of solutions of certain matric equations over a finite field, Math. Nachr. 
(to appear). 

https://doi.org/10.4153/CJM-1974-008-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-008-2


90 PHILIP G. BUCKHIESTER 

8. Dai Zong-duo (Tai Tsung-Tuo), On transitivity of subspaces in orthogonal geometry over 
fields of characteristic 2, Chinese Math. Acta. 16 (1966), 569-584. 

9. J. H. Hodges, A symmetric matrix equation over a finite field, Math. Nachr. 30 (1965), 
221-228. 

10. J. C. Perkins, Rank r solutions to the matrix equation XXT = 0 over afield of characteristic 
two, Math. Nachr. 48 (1971), 69-76. 

Clemson University, 
Clemson, South Carolina 

https://doi.org/10.4153/CJM-1974-008-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-008-2

