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RANK » SOLUTIONS TO THE MATRIX EQUATION
XAX" = C, 4 NONALTERNATE, C ALTERNATE,
OVER GF(27).

PHILIP G. BUCKHIESTER

1. Introduction. Let GF(g) denote a finite field of order ¢ = $?, p a prime.
Let A and C be symmetric matrices of order #, rank m and order s, rank k&,
respectively, over GF(g). Carlitz [6] has determined the number N (4, C, #, s)
of solutions X over GF(q), for  an odd prime, to the matrix equation

(1.1) XAXT = C,

where #n = m. Furthermore, Hodges [9] has determined the number
N4, C, n, s, r) of s X n matrices X of rank » over GF(g), p an odd prime,
which satisfy (1.1). Perkin [10] has enumerated the s X » matrices of given
rank 7 over GF(q), ¢ = 2Y, such that XX7 = 0. Finally, the author [3] has
determined the number of solutions to (1.1) in case C = 0, where ¢ = 27,

An n X n symmetric matrix over GF(2¥) is said to be an alternate matrix
if 4 has 0 diagonal. Otherwise, 4 is said to be nonalternate. The author [4; 5]
has determined the number N(4, C, n, s, r) of s X » matrices X of rank »
over GF(q), ¢ = 2¥ which satisfy (1.1), in case 4 is an alternate matrix over
GF(q) and in case both 4 and C are symmetric, nonalternate matrices over
GF(g)-

The purpose of this paper is to determine the number N(4, C, n, s, r), in
case A is a symmetric, nonalternate matrix over GF(2Y) and C is an alternate
matrix over GF(2Y). In determining this number, Albert’s canonical forms for
symmetric matrices over fields of characteristic two are used [1]. These forms
and other necessary preliminaries appear in Section 2. In Section 3, the
number N (4, C, n, s) is found, in case both 4 and C are nonsingular. Finally,
in Section 4, the number N(4, C, n, s, r), 0 < < min (s, n), is determined.

The difference equations obtained in Section 4 were solved by using methods
due to Carlitz [7].

Throughout the remainder of this paper, GF(g) will denote a finite field of
order ¢ = 2¥ and V, will denote an n-dimensional vector space over GF(q).
Further, for any matrix M over GF(q), Z .%[M] will denote the row space
of M.

For matrices X;, X, ..., Xi, where X;is m; X n, col [X;, X, ..., X;]
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will denote the (m; + m, + ... + m;) X #n matrix
1
X
L)

2. Notation and preliminaries. Let f be a symmetric bilinear form de-
fined on V, X V,. For any subspace E of V,, define

E* = {x e V,|f(x,vy) = Oforall yin E}.

Clearly, E* is a subspace of V,. If I,* = {0}, then f is said to be nondegenerate.
A vector x in V, such that f(x, x) = 0 is said to be an isotropic vector. If every
x in V, is isotropic, then f is said to be an alternating bilinear form. Otherwise,
f is called nonalternating.

The following theorem, which appears in [8], will be needed in Sections 3
and 4.

TrEOREM 2.1. If E is a subspace of V,, then dim E*¥ = n — dim E 4 dim
(ENV,*).

From this theorem, it follows that if f is nondegenerate, then dim E + dim
E* = 5, for any subspace E of V,.

Let I, denote the k X k identity matrix over GF(q). Albert [1] has proved
the following theorems concerning symmetric matrices over GF(g).

THEOREM 2.2. Let C be an s X s alternate matrix over GF(q). If C is nonsingu-
lar, then there is a nonsingular matrix P such that
0 I
T = y = 2v).
PCP |: I, 0 ], (s v)

If C has rank k < s, then there is a nonsingular matrix Q such that

0 I, 0
QCQT =11, 0 Of (k=2y).
0 0 0

THEOREM 2.3. Let A be an n X n symmetric, nonalternate matrix over GF(q).
If A is nonsingular, then there is a nonsingular matrix P such that PAPT = I,.
If A has rank k < n, then there is a nonsingular matrix Q such that

(L 0
T _ k

The following lemma, which appears in [4], will be needed in Sections 3 and 4.
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LeMMA 2.1. Let A and C be symmetric matrices of orders n and s, respectively,
over GF(q). If there exist nonsingular matrices P and Q such that PAPT = B
and QCQT = D,then N(A,C,n,s) = N(B, D, n,s). Furthermore, N(4, C,n,s,r)
= N(B,D,nsr),0=<r =< min (s, n).

n
k

HEE M M H - =S R

where (¢); = (¢ — 1) ... (¢’ — 1), j> 0. Brawley and Carlitz [2] have proved
the following lemma.

For integers n and k&, let |: :‘ denote the g-binomial coefficient defined by

LEmMMA 2.2. Let X be an s X t matrix of rank r over GF(q). The number of
s X m matrices [ X, Y] of rank r + v over GF(q) is given by

m—t = ;
Listymrr ) =| 7 "I @ — ¢
— i=0

Let f be the bilinear form defined on V,, X V, by f(§, 1) = &7, for all £, 4 in
V.. It is immediate that f is a nondegenerate, nonalternating bilinear form.
Let W denote the set of all isotropic vectors in V,. Then W is a subspace of

V, and, further, x = (x1, .. ,x,) isin W if and only if
n n 2
f(x, x) = xxT = Z xi2 = ( Z xi) = 0.
i=1 i=1

Thus, W consists of all vectors x such that > i_;x; = 0. Consequently, W is an
(n — 1)-dimensional subspace of V,. Let u denote the vector (1, 1,...,1) in
V.. Perkins [10] has proved the following theorem.

THEOREM 2.4. Let X be an s X n matrix over GF(q). Then (X L[X]))* C W
if and only if u is in X FL[X].

Let M(I,, 0, n, s, s) denote the number of s X # matrices X of rank s over
GF(q) such that XX” = 0 and « is not in Z ¥’[X]. In determining the number
N(I,, 0, n, s, s), Perkins [10] has determined M (1,, 0, , s, s).

THEOREM 2.5. The number of s X n matrices X of rank s over GF(q) such that
XXT = 0and such that u is not in R [ X] is given by

(1T @ = o™, o)

=
S

M(I,,0,n,s,5) =
l I[1 @' —4¢) @meven)
i=1

3. Determination of N(4, C, n, s), 4 and C nonsingular. Let 4 be an
n X n symmetric, nonalternate matrix of full rank over GF(¢) and let C be an
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s X s alternate matrix of full rank over GF(¢). By Theorems 2.2 and 2.3, there
exist nonsingular matrices P and Q such that PAPT = [, and QCQ? = F,,
s = 2v, where F, denotes the 2y X 2y matrix

7 o)

I, 0

over GF(q). By Lemma 2.1, N(4, C, n, s) = N(I,, F,, n, 2v), the number of
2y X mmatrices X such that XX7* = F,. Thus, it suffices to find N (1,, F,,n,2v).
Let f be the nonalternate, nondegenerate bilinear form on V, X V, defined
by f(¢, 1) = £L,mT = &7, for each ¢, nin V,. Let W be the (n — 1)-dimensional
subspace of V, consisting of all isotropic vectors in V,. Let Z = col [X, V] be

an s X n matrix over GF(q) such that ZZ" = F,, s = 2v, where each of X
and Yisy X n. Then, rank Z = 2v and, therefore, rank X = . Furthermore

X XXT XV7 0 I
(3.1) [(X7Y7] = - .
v YX7 vy’ I, 0

Let X =[xy, ..., %)% and ¥V = [y1, ..., 3]% From (3.1), it follows that
fles %) =fs ;) =0 and f(xy, ;) = b4y, for 4, j =1, 2, ..., v. Thus
R SL[X] S W. If nis odd, then f(u, u) = uu” = 1. Then u is not in W and,
therefore, not in # ¥[X]. If n is even, then f(u, u) = 0, and u is an isotropic
vector. However, u is not in # .¥’[X], as the following theorem shows.

THEOREM 3.1. Suppose Z = col [X, Y] is a 2y X n matrix over GF(q) such
that ZZ* = F,, where each of X and YV isy X n. Then u = (1,1,...,1) is not
n X L[X].

Proof. The proof of the theorem is given above in case # is odd. Suppose #

is even and u is in # ¥[X]. Since rank X = v, u may be represented uniquely
as a linear combination of precisely k& rows of X, for some k£, 1 < k < v, say

u=Nxyg + ...+ Mxu, \; Z0,foreachj =1,2,..., k. Let

S = (X1y e ooy Xii1y Xigg1 o o o 5 Xy )
Since f(xilr yn) = lrf(xjr yil) = Oy fOl‘j = 7’.17 and f(y]'a yn) = Oy fOI’j = 1,
2,...,7, it follows that y, must bein W N (S* — (Z L [X])*) = (W N S*)

— (% L[X])*. Since u isin # [ X], Theorem 2.4 implies that (# ¥[X])* C
W. Since S C # .Y1X], (A F[X])* C S*. Thus (Z L[X])* C W N S*. By
Theorem 2.1, dim (% ¥[X])* = n — v. Further, since

k
u = Z:l Aixy, N; #= 0,foreachy = 1,2,.. .9,
=

u is not in S. By Theorem 2.4, S* is not a subspace of W. Therefore, dim

(W + S*) = n. Furthermore, by Theorem 2.1, dim S* =z — dim S =

n — (y — 1). Hence,

dim (WN S*) = dim W + dim §* — dim (W + S*) =
m—1)+[n—(y—1D]—n=n—y=dim (ZL[X])*
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Thus, WN S* = (# ¥[X])* and, therefore, there exists no y;, in (IW M S*) —
(Z L [X])*. It follows that u is not in # [ X].

By (3.1) and Theorem 3.1, if Z = col [X, V] is such that ZZ” = F,, then
the v X » matrix X of rank v is such that XX7 = 0 and such that « is not
in Z ¥[X]. The number of such matrices X is the number M (I,, 0, #, v, v),
as given in Theorem 2.5. Given a v X # matrix X of rank v over GF(g) such
that XX7 = 0 and « is not in # ¥[X], we seek the number of ¥ X % matrices
Y over GF(q) such that XY7 = [, and YY? = 0. In the argument given
below it is shown that this number depends only on vy and #. Consequently,
if we denote this number by K (v, n), it follows that

(3.2) N(I,, Fy,n,2y) = K(y,n)M(I,,0,n,v,7v).

Thus, it suffices to determine the number K(y, #). Consider any 2y X n
matrix Z = col [X, Y] such that ZZ7 = F,. By (38.1), #Z .¥[Z] € W. Hence,
as before, if # is odd « is not in W and, therefore, not in # .¥[Z]. The following
theorem shows that this is also the case if # is even.

TaeoreM 3.2. If Z is a 2y X n matrix over GF(q) such that ZZT = F,, where
each of X and Visy X n,thenu = (1,1,...,1) is not in # L[ Z].

Proof. The proof of the theorem is given above in case % is odd. Suppose n
is even and let Z = col [ X, Y], where each of X and YV is ¥ X #. By Theorem
3.1, u is not in X ¥[X]. Suppose u is in #.¥ col [X, v;]. Since u is not in
RS X],yrisin #Y col [X,u]. Ifv= (vy,...,u,) is any isotropic vector
in V,, then

n n 2

0=f(v,0) =w" = Z; v, = ( > vi) ,

i= i=1
which implies f(u, v) = uv? = X 1w, = 0. Thus, if v is an isotropic vector in
V., then u is in (v)*. It follows that #.% col [X, u] C (x;)*. Thus ¥, is in
(x1)* and f(x1, y1) = 0. Since f(x1, y1) = 1, it follows that « is not in #.¥
col [X, v,]. Suppose « is not in Z ¥ col [X, y1, ..., ¥:], wherel £ k < y and
wisin #.F col [ X, y1,...,Yes1]. Then y,,;isin

X |
Y1
gy . c <xk+1>*v

Vi

an impossibility since f(xz41, ¥x+1) = 1. Hence, « is not in
%‘yCOI [Xv Viy - - 1yk+1]

and the proof is complete.
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We proceed to determine the number K (v, ). Let X = [x1,...,x,]" bea
v X n matrix of rank v over GF(g) such that XX7 = 0 and « is not in #.%
[X]. In order to choose a v X n matrix ¥ = [y1,..., 3,7 such that X Y7 = [,
and YY7 = 0, y; must be chosen from

X2
wNniZ2] - *— (2 X])*

Xy,

X2

wNZZ| - | |*]|- @& XD
Xy,

Let T=WNH#SL col[xs,...,%])* and let S=TN (X ZL[X])* =
W N (X F[X])*. Then y; must be chosen in 7" — .S. Since % is not in # .¥[X],
Theorem 2.4 implies that neither (# ¥[X])* nor (Z .% col [xs, ..., x,])* is
a subspace of . Applying Theorem 2.1, we obtain dim S = dim W + dim
ZLXD*—dim W+ RLXD*)=nw—-1)+n—v]—n=n—x
—landdim7T = —1)+[n— (y —1)] — n =n — v. Thus,dim 7°/S =
1. Define the mapping f from T/S into GF(q) by f(z + .S) = f(z, 1) for each
coset z + .S in 7T'/S. Let 2, be such that 7/S = (zo + S). Then zpisin I — S
and, therefore, f(zo + S) = f(z, %1) # 0. It follows that f is a one-to-one
mapping from 7°/S onto GF(g). Hence, there exists precisely one coset z; + .S
in T/S such that f(z: +S) = 1. For any v in S, f(v, x;) = 0 and, thus,
flz1 + v, x1) = f(z1, 1) + f(, x1) = f(z +S) = 1. Since y; must be such
that f(x1, y1) = 1, the number of choices for ¥, is equal to |z; + S| = [S| =

¢"~1. Suppose yi, ..., ¥x, & < v, have been chosen such that the following
properties hold:

(i) ¥1, . . ., yx are independent vectors in 1,

(i)uisnotin T = (X1, « o vy Xyy Y1y « » o5 Vi)

(1) f(x4 ;) = 645and f(yy, y;) = O,fore = 1,2,...,yvandj,l =1,2,...,
k.
Then ¥,41 must be chosen from W M (§* — (I3* U T3)) = (WN §5*) —
(T*\J T,), where S; = (X1, . =+, Xy g2y, + « « 5 Xyy V1, - - -, Vi ). However,

= (WNTX)U WNSFENT,).

If z is in S;* M T, then

Y k
2 = Zl a,—xi—l— Zl biyi-
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However, 0 = f(z, y;) = a;and 0 = f(z, x;) = b;, forj =1,2, ..., k. Thus
2 = D i p41@; Since x;isin SF N T forz =k + 1, ..., v, it follows that
SH*EN Ty = {(Xer1, -+ %y). Hence, WNSF*FN Ty = (xpp1, -y %y) &

W N T*and, therefore, (IWNS*) — (I U T,) = (WNS*) — (WNT*).
Since % is not in 7 and, therefore, not in .S;, it follows from Theorems 2.4 and
2.1 that

dm (WNSH =n—-1)4+n—(—14+k)]—n=n—v—=Fk
and

dm (WNT*)=mn—-1)4+n— (+k)]—n=n—v—Fk—1.

Let J = WNSX* and M = WN T,* Then dim J/M = 1. As before, the
mapping f from J/M into GF(q) defined by f(z + M) = f(3, xx+1) is a one-to-
mapping onto GF(q). Since y;,1 must be such that f(xy41, ¥i+1) = 1, it follows
that the number of choices for y,41 is equal to | M| = ¢"—*~1. Asin the proof of
Theorem 3.2, it can be shown that for any such y;;1, # is not an element of

Tis1 = (X1, ..., Xy, Y1, - - -, Yer1)- Thus, the inductive argument is complete
and it follows that

y
(3.3) K(y,n) = I:Il g

Together, (3.2) and (3.3) yield the number N (7, F,, n,2y) = N(4, C, n, 2v).

THEOREM 3.3. Let A be an n X n symmetric, nonalternate matrix of full rank
over GF(q) and let C be an s X s alternate matrix of full rank over GF(q), s = 2.
Then the number of s X n matrices X over GF(q) such that XAX™ = Cis given by

Y
N, Cons) = T @MU, 0,m,v, ),
i=1
where M (1,, 0, n, v, v) s given in Theorem 2.5.
4. Determination of N(4, C, n, s, r). Let A be an n X n symmetric, non-
alternate matrix of full rank over GF(q). Let C be an s X s alternate matrix of

rank 2y =< s over GF(¢q). By Theorem 2.2, Theorem 2.3, and Lemma 2.1,
N, C,yn,s,r) = NI, Gy, n, 5, 7), 0 =7 = min (s, n), where G, denotes

the s X s matrix
0 I, 0
I, 0 0
0 0 O

over GF(q). Thus, it suffices to determine the number N(Z,, G,, n, s, r) of
s X n matrices M of rank r such that MM” = G,. Let M = col [X;, Z] be
any such matrix, where X;is 2y X nand Zis (s — 2v) X n. Then

1 X1X1T XlzT F—y 0
4.1) [X,7Z7] = = .
VA zZX,\" YA 0 o0
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Thus, the 2y X # matrix X; must be such that X, X7 = F,. The number of
such matrices X is the number N (Z,, F,, n, 2v), given in Theorem 3.3. Further,
since rank X; = 2y, rank M = 2y + 7 for some 7, 0 < 7 < min (s, n) — 2.
Given a 2y X # matrix X; such that X,X,T = F,, the number of s X
matrices M = col [X1, Z] of rank 2y + § such that MM”* = G, depends only
on v, #, s, and 8. Thus, if we denote this number by ®(2v, , s, §), it follows that

(4'2) N(In’ G’Y’ n7 S’ 27 + T) = N(IﬂY ]J’YY n’ 27) : (b(2’YY n’ S, T)'

Suppose # is odd and let X; = col [X, Y] be a 2y X # matrix over GF(q) such
that X X,” = F,, where each of X = [x1, ..., x,]7 and ¥V = [y, ..... , v T
is ¥y X n. Then, if f is the nonalternate, nondegenerate bilinear form defined by
f&n) = &7 for all £, nin V,,, we have f(xi,x,) = f(y49,) = 0and f(x;, y,) =
8 fori, 7 =1,2,...,~.Suppose M = col [X;, Z] is an s X n matrix of rank
2v + 7 over GF(q) such that MM* = G,. By (4.1), # .¥[M] C W. Since # is
odd, u is not an isotropic vector and, therefore, is not in % .¥’[M]. Further-
more, if Z = col [Z1, 2,_9y], Where Z1 = [21,...,21-97]Tis (s — 1 — 2y) X =,
then the (s — 1) X # matrix D = col [X1, Z;] hasrank 2y + r70r2y + 7 — 1

and is such that
0 I, 0
DDT=|:L, 0 0].
0 0 O

Since MM?T = G,, it is clear that z,_», must be in WM (# ¥ [D])*. If rank
D =2y + 7, then 2,4, is in WN (Z.L[D))*N\NR.L[D]. If v is in this
subspace, then

s—1—2y

¥ ¥
v = ; ax; + ; biyi+ 21 CiZi

for some ay, by, ¢;in GF(g). However, 0 = f(v, x;) = b;and 0 = f(v, y;) = a,,
forj =1,2,...,v. Hence,
s—1—2vy

9 = Z CiZi.
i=1

Clearly, Z ¥L[Z,] € WN (X L [D))* N\ R F[D]. Thus, in order that rank
D = 2y + 7, it is necessary and sufficient that z,_», be in % %[Z,]. Since
dim A% col [X,, Z,] = 2y + 7, it is clear that dim % ¥[Z,] = r. If
dim # F[Z,] > r, then for some 7,1 <4 <s — 1 — 2v, 3;is in
AL col [ X1,21,+,8i21] — (B1) - e vy Zom1 )
But z;isin (# % col [X4, 21, . . ., 2:-1])¥%, whose intersection with
ﬁy col [Xl, D1y e oo ,Zi—l] is <Zl, oo ,Zi_1>.

Thus dim &% .#[Z,] = = and the number of choices for z, s, is ¢". If rank
D = 2y 4+ 7 — 1, then 2,5, must be in WN (# ¥[D])* — # ¥[D]. Since
u is not in # ¥[D], it follows from Theorem 2.4 that (# %[D])* is not a
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subspace of . Hence,
dm (WN R D) =n—-1)+n—y+r—1)]—n=n—2y —r.
Furthermore, W N (# L [D))* \ X ¥ [D] = X S[Z,], which, by an argu-

ment similar to the one used above, can be shown to be of dimension 7 — 1.
Thus, the number of choices for 2z, s, is ¢"~?*=7 — ¢"~1. Hence, we obtain the
difference equation

4.3) ®2y,n,s,7) =q¢®Q2y,n,s —1,7) + (¢ 7 — ¢1)
X ®2v,n,s — 1,7 — 1), (nodd),

with initial condition ®(2vy, #n, s, 0) = 1, for s = 2y, and ®(2v, %, 2v, 7) = 0,
for 7 % 0. It is easily seen that the solution to the recurrence in (4.3) is given by

(4.4) S2v,m, s, 1) = [ 97_‘ H @7 = g%, (modd),

where l:s —1- 27] is the ¢-binomial coefthcient as defined in Section 2.

Suppose 7 is even and suppose X; = col [X, V] is a 2y X » matrix over
GF(q) such that X, X,7 = F,. Given the matrix X, let J,(2v, #, s, §) denote
the number of s X # matrices M = col [X, Z] of rank 2y + § over GF(q)
such that M M7 = G, and such that u is in # .¥[M], and let J.(2v, #, s, 6)
denote the number of s X n matrices M = col [X;, Z] of rank 2y + é over
GF(g) such that MM?* = G, and such that « is not in &% .¥[M]. The use of
this notation is justified below as we show that the numbers J, and J, depend
only on v, #n, s, and §. Furthermore,

4.5) ®Q2y,n,s,7) =12y, n,s, 1)+ J22v,n,s,7), (neven).

Let M = col [X1, Z] be an s X % matrix of rank 2y 4 7 over GF(g) such that
MM?* = G,. Since n is even, u is isotropic and, therefore, may or may not be
in #(M]. Let Z = col [Z1, 35-9y), where Z, = [z1,...,2,1-5,]" is
(s =1 — 2y) X n. Suppose u is not in #.F[M]. Then the (s — 1) X =
matrix D = col [X, Z,] has rank 2y + 7 or 2y + 7 — 1 and is such that « is
not in # .#[D]. In order to determine a difference equation in J»(2v, #, s, 7),
we seek expressions Q(2y, n, s, ) and R(2v, #n, s, 7) such that

4.6) J2(2v,m,s,7) = Q2y,n,5,7) )22y, n,5s — 1,7) + R2v,n,s, 1)
X Jo(y,n,s — 1,7 — 1), (n even).

If rank D = 2y + 7, then z,_3, must be in WM (#Z ¥[D)* \# ¥|D] =
R S[Z1], a subspace of dimension 7. Further, since « is not in # .%[D], any
Zg—oy in K L Z1] will be such that u is not in Z .S [M]. Hence, Q(2y, n, s, 7) =
¢". lfrank D = 2y + 7 — 1, then z,_», must be in WN (# ¥ [D])* — # ¥[D].
Since u is not in # %[D], u is not in # .¥[M] if and only if z,_, is not in
RS col [D, u] — X F|[D]. Hence, it is necessary and sufficient that z,_,, be

https://doi.org/10.4153/CJM-1974-008-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-008-2

RANK 7 SOLUTIONS 87
in T —NT), where T = (WN (XSL[D)*) —X.F[D] and S =
RS col [D,u] — X F[D]. Since u is not in % .¥[D],

dm (WN (RS DN)*)=mn—-1)+n— Cy+r—1)]—n=n—2y — 1.

Further, W N (Z L[D))* \ % ¥ [D] = X .F[Z;], a subspace of dimension
7 — 1. Thus, |T'| = ¢"~»—7 — ¢".. Next,

TNS=WNRLDN*NRS col [D,u]) — X L[D].
Suppose v is in WN (# L[D])* \ X .¥ col [D, u]. Then

s—1—2y

Y Y
v = Z a,-xi—l- Z bzyz_l_ Z Cizi+du7
i=1 i=1 i=1

for scalars a4, b;, ¢;, and d in GF(g). Since x; and y; are isotropic, for

=12, .7, flu,x;) =f(u,y;) =0,7=1,2,...,v.Thus,0 = f(v,x;) = b;
and 0 = f(v,y;) = a;, forj =1,2,..., v. Hence,
s—1—2y

v = Z c2; + du.
=1
Moreover, since # is even,
By ooy Zea o) SWN (R L IDN*N RS col D, u].

Since dim #Z .Y [Z:] = 7 — land wisnotin X . [Z],dim (21, ..., 25 1 9y, 1)
= 7 and, therefore, |W N (# ¥ [D))* N\ #.¥ col [D, u]| = g. Also, since
WN (R LIDN* N\ R F col[Dyu] =21, ..., 501-0,u), WN (X L [D])*N
RS col (D, ul N R F[D] =X SL[Z:]. Consequently, |T N S| = ¢g= — g™
Since |T'| = ¢~ — ¢!, it follows that R(2y, n, s, 7) = ¢"2—7 — ¢g7. The
difference equation in (4.6) becomes
@7 J.@2v,n,s,7) =qJ22y,n,s — 1,7) + (¢ — q7)

X Jo(2v,m,s — 1,7 — 1), (neven),
with initial conditions J»(2y, #n, s, 0) = 1, for s = 2y, and J.(2v, n, s, 7) = 0,
for r # 0. Itis easily seen that the solution to the recurrence in (4.7) is given by

4.8) J2(2y,m,s,7) = l:s —7_27] fll @7 —¢%), (neven).
Next,supposeuisin #Z .¥’[ M]. We seek expressions B (2v, n,s,7), C(2y,n,s,7),
E(2v, n,s, 1), and F(2v, n, s, ) such that
4.9) J1@v,n,s,7) = B2y, n,s,7)J12v,n,5s — 1,7)
+ C2v,n,s,7) 12y, n,s — 1,7 — 1)
+ E@2y,n,s,7)J:(2y,n,s — 1, 7)
+ FQ2v,n,s,7)J2(2y,n,s — 1,7 — 1).
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Suppose D has rank 2y + r and u is in # .%[D]. Then, z,_», must be
in WN (X F[D))*N\NA L D] = A S[Z,],asubspace of dimension 7. Thus,
B(2v, n, s, 7) = ¢". Suppose D has rank 2y + 7 — 1 and « is in Z .%|D].
Then, 2z,_sy must be in W N (% L[D)* — X ¥[D]. Since u is in Z .¥[D],
(2 L[D])* € W and, thus, W N\ (# ¥ [D))* — #.F[D] = (#.L[D)* —
R F[Z]. It follows that C(2y, n, s, 7) = ¢~ — ¢~ If D has rank
2y + 7 and u is not in &# ¥[D], then for any z,_s, in X .¥[D], u is not in
R L[ M]. Therefore, E(2v, n, s, 7) = 0. Finally, suppose rank D = 2y + 7 — 1
and u is not in # [ M]. Then, z,_», must be in

WN(RLDN*NRAY col [D,u]) — XL[D] =
<Zly L) 28—1—271 u> - %yl_zl]‘
Hence, F(2v, n, s, ) = ¢" — ¢"~% The difference equation in (4.9) becomes
(4.10) J1(2vy,mn,s,7) = q¢J12y,n,s — 1, 7)
+ (¢ — g ) T 2y, m,s — 1,7 — 1)
+ (gT - QT_I)J2(27y n,Ss — 1’ T — 1)! (’ﬂ even),
with initial condition J;(2vy, n, s, 0) = 0, for all s, and J,(2v, n, 2y, 7) = 0,
for all 7. This initial condition follows immediately from Theorem 3.2 and from
the definition of J,(2v, n, s, 6). From (4.5), (4.7), and (4.10), a difference
equation in ®(2v, #, s, 7) is obtained, namely,
(4.11) @Q2v,n,s5,7) = ¢P2v,n,5s — 1,7)
+ (@ — ) @2y, my s — 1,7 — 1)
— ¢ (g — 1)J2(2y,n,s — 1,7 — 1), (n even),
with initial condition ®(2vy, n, s, 0) = 1, for s = 2v, and ®(2y, n, 2v, 7) = 0,

for v # 0, where Jo(2v, n, s — 1,7 — 1) is given in (4.8). It is easily seen that
the solution to the recurrence in (4.11) is given by

(4.12) @2y, 7,5, 7) = [S - 27]

T

—1 T
X {(QT - 1) 1;11 @ =gH + 1:11 (" — qi)}, (n even).
Combining (4.2), (4.4),and (4.12), we obtain the number N (I, G,,n,s,2v + 7).

THEOREM 4.1. Let 4 be an n X n symmetric, nonalternate matrix of full rank
over GF(q), and let C be an s X s alternate matrix of rank 2v over GF(q). The
number of s X n matrices X of rank 2y + 1 over GF(q) such that XAXT = C
isN(A,C,n,s,2y + 1) = N, Fy, n,2v)®(2v, n,s, 1), where N(L,, F,, n, 2v)
is given in Theorem 3.3 and ®(2v, n, s, 7) is given in (4.4) in case n is odd, and
in (4.12) in case n is even.

Suppose 4 is an # X » symmetric, nonalternate matrix of rank p over
GF(q) and C is an s X s alternate matrix of rank 2y over GF(g). By Theorem
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2.2, Theorem 2.3, and Lemma 2.1, N4, C, n, s, r) = N(R,, Gy, n, s, 1),
0 < r < min (s, n), where R, is the n X n matrix

v o]

over GF(g). If X = [XX,]isany s X » matrix of rank r over GF(q) such that
XR, X" = G,, where X1iss X pand Xasiss X (n — p), then

5, o1l *”
(4.13) [X1X2] i = X]XlT = G«,-
0 0 r
X
Further, rank X = 7 implies rank X; =2 » — ( — p). For any r,

max (r — n + p—2v,0) =7 = min [min (s, p) — 2y, r — 2v], the number
N({,, Gy, p, s, 2y + 7) of s X p matrices X; of rank 2y + 7 over GF(g) such
that XX, = G, is given in Theorem 4.1. Consider any such matrix X,. By
(4.13), any s X (r — p) matrix X, such that X = [X,X,] has rank r yields
XR,X" = G,. Thenumber of such matrices Xsis the number L (s, p, #,2v + 7,7),
given in Lemma 2.2. Thus, we have determined the number N(4, C, n, s, 7) =
N(R,, Gy, n,s,7),in case rank 4 = p < n.

THEOREM 4.2. Suppose A is an n X n symmetric, nonalternate matrix of rank p
over GF(q) and Cis an s X s alternate matrix of rank 2v over GF(q). The number
of s X n matrices X of rank r, 2y < r = min (s, n), over GF(q) such that
XAXT = C is given by

a(s,p,7y1)
N(4,Cn,s,7) = 2 N(I,,Gyp,52y +1)-L(s,p,n,2y + 7,7).
T=h(T,7,p,7Y)
where N(I,, Gy, p, S, 2v + 1) s given in Theorem 4.1, L(s, p, n, 2y + 7, 7) is
given in Lemma 2.2, where h(r, n, p, ¥v) = max (r — n 4+ p — 2v, 0), and
where d (s, p, v, r) = min [min (s, p) — 2y, r — 2v].
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