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Data from 2032 Uruguayan Aberdeen Angus cows under extensive management and recording practices were analysed with
Bayesian threshold-liability sire models, to assess genetic variability in calving success (CS), defined as a different binary trait
for each of the second (CS2), third (CS3) and fourth (C54) calving opportunities. Sire (herd) variances ranged from 0.08 to 0.11
(0.10 to 0.20) and heritability from 0.27 to 0.35, with large credibility intervals. Correlations between herd effects on CS at
different calving opportunities were positive. Genetic correlation between CS2 and CS4 was positive (0.68), whereas those
involving adjacent calving opportunities (CS2—CS3 and CS3—CS4) were negative, at —0.39 and —0.54, respectively. The residual
correlation CS2—CS3 was negative (—0.32). The extent of uncertainty associated with the posterior estimates of the parameters
was further evaluated through simulation, assuming different true values (—0.4, —0.2, +0.2 and +0.4) for the genetic
correlations and changes in the degree of belief parameters of the inverse Wishart priors for the sire covariance matrix.
Although inferences were not sharp enough, CS appears to be moderately heritable. The quality of data recording should be
improved, in order to effect genetic improvement in female fertility.
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Introduction

In the last decades, genetic improvement of beef cattle
breeds has been focused mainly on growth traits. However,
profitability of beef production in a beef herd is directly
related to a high reproductive rate. Female reproductive
traits appear to be the most economically important char-
acters in many production systems (Newman et al., 1992;
Phocas et al., 1998; Urioste et al, 1998). Hence, fertility
should be included as part of the breeding objectives for
beef cattle. However, the possibility of using reproductive
information as a selection tool for breeders faces difficul-
ties, especially under extensive pastoral conditions.
Reproductive performance is a complex trait with many
components. Several such components have been investi-
gated as measures of female reproductive performance.
In beef cattle, focus has been on calving date (Bourdon
and Brinks, 1983; Buddenberg et al., 1990), or the related
calving day (Ponzoni, 1992) or days to calving (Meyer et al.,
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1990; Johnston and Bunter, 1996; Donoghue et al., 2004a).
Recently, heifer pregnancy status and the outcome of
subsequent rebreeding have attracted interest (Evans
et al., 1999; Doyle et al., 2000; Eler et al., 2004). Calving
success (CS) has been studied as well (Meyer et al., 1990;
Mercadante et al., 2003; Donoghue et al, 2004d). Rust
and Groeneveld (2001) summarised advantages and dis-
advantages of different component traits. It seems that a
completely satisfactory measure of reproduction has not
emerged yet.

Reproductive variables are strongly influenced by man-
agement and nutrition. In addition, the level of develop-
ment of the recording system represents a constraint,
making prediction of breeding values a difficult task. This is
particularly true for some pasture mating systems where
information on females is extremely scarce, e.g. the situa-
tion reported by Rust and Groeneveld (2002) for South
African conditions. Under extensive management systems,
the number of traits and the frequency at which they can be
measured is low. Often, reproduction information on cows
can be derived only from birth records of their offspring,
since female reproductive performance is seldom recorded.
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This is the case of the Aberdeen Angus breed in Uruguay,
where a national genetic evaluation scheme is under
development. At present, expected progeny differences
for growth traits are reported routinely, but no genetic
evaluation of female reproductive ability is available yet.

In addition, many reproductive measures, such as CS,
heifer pregnancy and rebreeding performance outcomes,
are typically binary traits, i.e. without continuous pheno-
typic expression, and analysis must centre on the prob-
ability of success (1) or of failure (0). Bayesian methods for
categorical data are potential candidates for analysis of
many reproductive traits. Markov chain Monte Carlo
(MCMC) methods can be used in Bayesian threshold
models for inferring genetic parameters of categorical traits
(Sorensen et al., 1995) and this approach has been applied
in dairy cattle to health (e.g. Heringstad et al., 2001; Chang
et al., 2004) and reproductive data (e.g. Averill et al., 2004;
Gonzalez-Recio et al., 2005).

Bayesian analyses of reproductive traits using threshold
models are rare in beef cattle (Donoghue et al., 2004b and
2004d; Spangler et al., 2006). There is a need for further
characterisation of CS, because it is easy to record under
extensive conditions. The objective of this study was to
assess CS as a heritable female reproductive trait under
pastoral conditions, using simple Bayesian threshold-liabi-
lity sire models that account for the discrete nature of the
measure. The Uruguayan situation was used as an example
of a scenario in which this candidate trait can provide a tool
for beef cattle breeding improvement programmes under
extensive conditions.

Material and methods

Data

Records were from the Uruguayan Aberdeen Angus data-
base. The initial data set had approximately 33 000 calving
records and 14000 cows in 56 herds. Variables that are
often used for describing female fertility include joining or
mating dates and type of mating (artificial insemination (Al)
or natural service). This type of information was not avail-
able systematically in this database. Calving records from
cows with missing sire or birth date, born in the fall, age
<600 days at calving, used as embryo transfer donors
or recipients or with calving interval <280 days, were
removed. The data used for analysis included spring calving
cows with a clearly identified first calving at the age of 2 or
3 years, and with all subsequent calvings. In this database,
70% of the animals are pedigree cows. Because of this,
such cows have an extra economic value and tend to stay in
the herd longer than grade cows, even if they do not calve
for several years. On the other hand, grade cows are often
treated like pedigree cows. Therefore, the assumption that
all non-pregnant cows remained in the herd seemed rea-
listic. Hence, a cow with no recorded calving in a specific
year(s), but appearing in subsequent year(s), was assigned
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a zero (failure to calve) score in the corresponding year(s)
between two identified calvings.

As a consequence of this editing strategy, there was no
variation in the outcome of first calving since all cows
included had a first (success) calving record. We focused on
the second, third and fourth calving opportunities, because
there were very few cows with records on subsequent
parturitions. CS was defined as a binary trait: females that
calved were coded as 1, whereas cows failing to calve were
coded as 0. CS at the three different calving opportunities
was treated as a different trait. No distinction between
observations obtained from natural or artificial mating was
made, following Donoghue et al. (2004c), who reported a
high genetic correlation between days from calving to first
insemination under artificial or natural mating, suggesting
that it is the same trait.

Herd and year levels with less than five obser
vations were discarded. After this editing process, the final
data set consisted of 2032 records from cows having a
second calving opportunity, born in 1975 through 2000,
in 24 herds; 1080 and 947 cows had a third and a
fourth calving opportunity, respectively. A total of 444
male ancestors, including 409 sires with daughter records
and their sires and maternal grandsires, were in the pedi-
gree file. Further description of data and genealogy is in
Table 1.

Statistical procedures

Threshold liability models (e.g. Gianola and Foulley, 1983)
were used for the analysis of CS as a binary response.
The threshold model postulates an underlying continuous
random variable, called liability, A, such that the observed
binary responses (y) are the result of the following

Table 1 Descriptive statistics of the data set

(@) Number of observations by effect in the model

Effect Mean Min Max
Herd 85 5 496
Year 86 10 377
Sire 5 1 63

(b) Completeness of information in the genealogy

n %
Sire + SS" + MGS" 266 59.9
Sire +SS 76 171
Sire + MGS 18 4.1
Only sire 84 18.9
Total 444 100.0

*SS = sire of sire; MGS = maternal grandsire.
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where 7 is a fixed threshold and y;= 1 or 0 corresponds to
the observed success or failure to calving for observation j,
respectively. In a univariate setting, liability is assumed to
be normally distributed with mean vector x and covariance
matrix R = la2, where 2 is the variance in the underlying
scale. Since the threshold and o2 are not identifiable, these
parameters are usually set to some arbitrary values (7= 0
and aé = 1) to denote origin and scale of measurement,
respectively.

Univariate, bivariate and trivariate models were fitted
to describe CS (0, 1) data at the second, third and
fourth calving opportunities. Preliminary runs indicated that
including or excluding from the model effects such as age at
first calving, age at calving and previous physiological
status did not affect estimates of dispersion parameters.
One disadvantage of including age at first calving or pre-
vious physiological status of cows in the model is that these
variables may reflect environmental and genetic compo-
nents, probably those we want to detect. Service bulls and
mating management (Al or natural service) were available
for calving but not for failing cows, hence they could not be
used for further analysis. With the purpose of using a simple
model, these effects were not fitted in final analyses.

There was a high degree of confounding between age of
cow and year of birth, since 92% of cows calved at 3 years
of age. Under extensive conditions, the year effect is a
descriptor of variation in climate and pasture conditions.
Finally, we were also interested in herd variability as a way
to ascertain differences in nutrition and management,
relative to genetic variability. Hence, liabilities were
expressed as a linear function of effects of cows’ birth year,
herd, sire of cow and of a residual.

The trivariate model is described in what follows, with
the bivariate and univariate models being special cases. In
matrix notation, the model can be represented as

A=Xp+2Zh+Zs +e,

where X is an n X 1 vector of unobserved liabilities, B is a
vector of calving year (or cows' birth year) effects of order
p; his a vector of herd effects of order g; s is a vector of sire
expected progeny differences of order r; e is the vector of
residual effects and X, Z, and Z. are known incidence
matrices.

Residuals were assumed to be distributed according to
the multivariate normal process e ~N(0, Ry ® 1), where |
is an identity matrix of appropriate order, and

1 rns na
Ro = T 13
Symm. 1
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is the within-cow residual (co)variance (correlation) matrix
of the order k, where k is the number of calving opportu-
nities (2, 3 or 4), and r;; is the residual covariance between
calving opportunities i and j. For k>1, for cows lacking
data for all calving opportunities, ‘missing liabilities’ were
included in an augmented posterior distribution, assuming
missingness was at random.

A sire model, with sire and maternal grand sire pedigree
information, was used to avoid pitfalls of the animal
threshold model in connection with estimation of genetic
parameters (Moreno et al., 1997).

Prior and posterior distributions

Independent proper uniform priors (—9999, 9999) were
assigned to each of the elements of 8. With a small number
of records per herd, the possibility that all observations fall
in the same category, either one or zero, arises. When this
occurs, the maximum likelihood estimates of such effects,
when treated as fixed, are not finite. Moreno et al. (1997)
showed that assigning herd effects a Gaussian prior dis-
tribution centred at zero in Bayesian analysis, helps in
reducing biases in inferences about variance components.
Therefore, a multivariate normal prior was used for herd
effects, with the specification

h~N(0, Hy®1),
where
hy, hys hya
Ho = hs3 hsa
Symm. haa

is the k X k (co)variance matrix between herd effects on the
k calving opportunities, and I is an identity matrix of the
order g X q.

Sire expected progeny differences on the liability scale
were assigned the multivariate normal prior

SNN(Oa GO & A)a

where
92,2 923 Q24
Gy = 933 934
Symm. 944

is the (co)variance matrix between sire expected progeny
differences for the k calving opportunities, g;; is the sire
covariance between CS at the ith and jth calving opportu-
nities, and A is the known additive genetic relationship
matrix between sires. Independent inverse Wishart priors
were assigned to both Hy and Gy, and the chosen hyper-
parameter values were as in Chang et al. (2002). Further-
more, each of the diagonal elements of Gy was bounded
between 0 and 1/3, implying that the prior density of her-
itability is also bounded as 0 < #* < 1. Finally, independent
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bounded uniform priors r;;: U(— 1, 1) were assigned to the
residual correlations in matrix R.

The fully conditional posterior distributions needed for
Gibbs sampling can be derived from the joint posterior
density, after augmentation with the liabilities (Sorensen
et al, 1995). However, the fully conditional posterior
distribution of Ry does not have a recognisable form, since
all residual variances are equal to one. A random walk
Metropolis algorithm was employed to sample residual
correlations from their posterior distributions, as described
in Chang et al. (2002).

Genetic correlations were calculated from the matrix
Gy as

gij
loij = 75—
A 9i,i9]

where rg ;i is the genetic correlation between CSs at dif-
ferent opportunities. Similarly, heritability of liability to CS
was calculated as

hZ — 4gi,i
"o(gii+hii+1)’

where h? is the heritability of liability for CS at oppor-
tunity /, and g;; and h;; are the sire and herd variances,
respectively.

Convergence was assessed in experimental runs, using
different starting values and different chain lengths (0.5,
1.5 and 3 million samples), and monitored by a visual
inspection of trace plots. Subsequently, single chains of
3x10° (univariate) and 5x10° (bivariate and trivariate
analyses) samples were run. A burn-in period of 1x10°
samples was used, without thinning.

Simulation

In order to investigate further the extent of uncertainty
associated with the posterior estimates of the parameters,
especially the genetic correlation between CS2 and CS3, a
simulation was carried out. One hundred data sets were
generated randomly with a bivariate model resembling the
numbers and structure of the data for CS2 and CS3 and
using the posterior estimates from the real data set, with
the exception of the genetic correlation, as true parameters.
As in the observed data, CS2 and CS3 were 57% and 72%,
respectively; there were 26 year effects, 25 herds and 400
sires. For simplicity, sires were assumed unrelated. Scena-
rios investigated corresponded to true genetic correlations
of —0.4, —0.2, +0.2 and +0.4, to span over a reasonable
range of alternative values.

Results and discussion

CS at calving opportunities 2, 3 and 4 was denoted as CS2,
CS3 and CS4, respectively. Average calving rate was 66.3%
overall, and 56.8%, 72.3% and 75.3% for CS2, CS3 and
CS4, respectively. Figure 1 shows variation in calving rates
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Figure 1 Change of calving success on the second, third and fourth
calving opportunities (CS2, CS3 and CS4, respectively) over year of calving
(period 1987-2003), with the national average as a benchmark.

Table 2 Posterior distribution means, standard deviation (s.d.) and
quantiles for sire and herd variances of liability to calving success at
the second, third and fourth calving opportunities (CS2, CS3 and C54)

Sire variance Herd variance

Mean 5-95% Mean 5-95%

Trait and model (s.d.) quantiles (s.d.) quantiles
CS2
Univariate 0.13 0.06-0.22 0.16 0.07-0.31
(0.05) (0.08)
Trivariate 0.10 0.04-0.17 0.20 0.09-0.37
(0.04) (0.09)
CS3
Univariate 0.15 0.05-0.25 0.09 0.03-0.20
(0.06) (0.05)
Trivariate 0.11 0.03-0.22 0.13 0.05-0.27
(0.06) (0.07)
Cs4
Univariate 0.08 0.03-0.17 0.1 0.04-0.25
(0.04) (0.07)
Trivariate 0.08 0.02-0.19 0.10 0.04-0.21
(0.05) (0.06)

over years of calving, with the national average (MGAP-
DIEA, 2003) presented as a benchmark. Lower values are
usually expected at the second calving, due to the cow's
difficulty in meeting nutritional requirements and storing
body reserves that are adequate for subsequent reproduc-
tion after a first calving. These cows are still growing and
experiment greater nutritional stress during lactation than
fully mature cows.

Sire and herd variances for liability of CS at second,
third and fourth calving opportunities are presented in
Table 2 (bivariate analyses not shown). Plots of posterior
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Table 3 Posterior mean, standard deviation (s.d.) and quantiles for
heritability of liability to calving success in the second, third and
fourth calving opportunities (C52, CS3 and CS4)

Posterior Quantiles

Trait and model Mean s.d. 1 5-95
CS2

Univariate 0.40 0.13 0.15 0.20-0.64

Trivariate 0.30 0.10 0.08 0.12-0.51
Cs3

Univariate 0.44 0.17 0.12 0.18-0.75

Trivariate 0.35 0.17 0.07 0.11-0.67
sS4

Univariate 0.28 0.13 0.08 0.11-0.53

Trivariate 0.27 0.14 0.05 0.08-0.53

distributions seemed approximately symmetric. In the light
of the range spanned by credibility intervals, the sire variance
did not differ much between calving opportunities, and ran-
ged from 0.08 to 0.11 (trivariate estimates). Rust and Groe-
neveld (2002) reported an estimate of 0.07, close to ours.

Sire variances may be inflated by extreme category pro-
blems (ECP). This was detected when analysing CS3, where
a few sires with progeny groups larger than 10 daughters,
all calving, were found influential. ECPs can arise due to
incomplete recording of the Al data, or because only suc-
cessful calvings are reported in some herds, producing
confounding effects between sire and management.
Multivariate analysis attenuated this effect.

The between-herds variance seemed to be higher in CS2
(twice as large as the sire variance), which was expected.
Large differences between herds in nutrition and manage-
ment, in use of Al, in completeness of calving reporting, or
in accuracy of reporting management groups, are expec-
ted. In pasture systems, a critical physiological event is
rebreeding after a first successful calving, under varying
amounts of feed supply, while the cow is still lactating and
growing. Information on physiological status at rebreeding,
e.g. lactating or dry, was lacking, and this is critical for a
correct definition of contemporary groups. For CS3 and CS4,
the between-herd variance was somewhat larger than the
sire variance. Here, ECP problems were minor.

In spite of the limitations posed by the data set available,
there was evidence of genetic variability in CS, with a 99%
posterior probability of heritability being larger than 0.08,
0.07 and 0.05 (percentile 1 of the distribution in trivariate
analyses, see Table 3) for €S2, CS3 and CS4, respectively.
CS appears to be moderately heritable, as posterior means
ranged from 0.27 to 0.35, although credibility intervals
indicate imprecise inferences. Heritability estimates of
calving success or related traits obtained with threshold
models range from 0.03 (Donoghue et al, 2004d) to
0.25-0.27 (Silva et al., 2002; Rust and Groeneveld, 2002).
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Phocas et al. (2002), also using sire models, reported values
between 0.07 and 0.16, with large standard errors.

Our study shared similarities with the South African
situation reported by Rust and Groeneveld (2002), e.g. no
records of reproductive abilities available, except those that
could be deduced from birth dates. These authors used
standard Gaussian linear animal models on the observed
scale, and a sire model on the liability scale, under a
frequentist approach. They obtained very low estimates of
heritability with linear procedures, but an overall value of
0.27 with the sire threshold model, using a selected data
set with nearly 4000 records from 192 well-proven sires
(more than four herds and 75 offsprings per sire). This
indicated the existence of genetic variability for calving
success.

The study of Donoghue et al. (2004d) differed markedly
from ours in terms of the model (a service sire effect was
used) and the amount and quality of data. These authors
found that the service sire variance was more than three
times larger than the animal variance, producing one of the
smallest heritability estimates reported in the literature. This
result might be partly due to confounding between service
sire and mating management effects.

In a selection experiment assessing change in reproduc-
tive traits in Angus cattle, Morris et al. (2000) found that
heritability of pregnancy rate was 0.04 for cows, 0.08 for
2-year olds and 0.12 for yearlings. Johnston and Bunter
(1996) analysed calving success without adjustment for the
categorical nature of the trait, and reported a heritability
estimate of 0.11. This is higher than the estimate presented
by Meyer et al. (1990) in Angus (0.015). The latter authors
found heritabilities of about 0.08 in both Hereford and zebu
crosses. Buddenberg et al. (1990) reported a heritability
estimate of 0.17 for pregnancy rate in Angus heifers, with a
wide range in other breeds.

Phocas and Sapa (2004) investigated female fertility in
heifers from French progeny testing programmes. Fertility
was defined as calving success (0 or 1) after a fixed in-
semination period. However, the discrete nature of the trait
was ignored. Heritability (standard error) of calving success
was low, with estimated values of 0.02 (0.02), 0.00 and
0.08 (0.04) for Charolais, Limousin and Blonde d'Aquitaine
heifers, respectively. Evans et al. (1999) defined heifer
pregnancy as the observation that a heifer conceives and
remains pregnant to palpation, given exposure at breeding.
Using 986 Hereford heifers, they obtained a heritability
estimate of 0.14 with a standard error of 0.09. In a larger
data set, Eler et al. (2004) used a categorical animal model
and method R to obtain heritability estimates (standard
error) of 0.61 (0.10) and 0.68 (0.09) for heifer pregnancy.
These estimates are unusually large, and may reflect the
pitfalls of using an animal threshold model jointly with a
heuristic approach to estimation.

In conclusion, estimates of heritability in our study
are higher than in the literature, and this may reflect differ-
ences in populations, analytical procedures, trait definition
or data structure. Trivariate analyses, using all available
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Table 4 Posterior means, standard deviation (s.d.) and quantiles (Q)
for genetic (ty), herd (r,) and residual (r.) correlations between
liabilities of calving success at second, third and fourth calving
opportunities (CS2, CS3 and CS4)

Table 5 Median, quantiles (Q) and range 90% for the distribution of
100 mean estimates of the genetic correlation between the second
and third calving opportunities (CS2 and CS3), under four scenarios
with different true genetic correlations

Parameter CS2-CS3 CS2-CS4 CS3-CS4
Iy
Mean —0.39 0.68 —0.54
s.d. 0.32 0.23 0.30
Q5 —0.80 0.13 —0.87
Q95 0.25 0.90 0.08
Th
Mean 0.56 0.39 0.38
s.d. 0.22 0.32 0.30
Q5 0.13 —0.22 —0.20
Q95 0.84 0.81 0.79
le
Mean —0.32 0.10 —0.07
s.d. 0.05 0.06 0.06
Q5 —0.40 —0.00 —0.17
Q95 —0.24 0.20 0.03
23 R
= = =rg24 '
= = 1934 '

OAN PX PN LT PO SR P
NN P RSN AN AN

Figure 2 Posterior distributions of the genetic correlations between
calving success at second and third (rg23), second and fourth (rg24) and
third and fourth (rg34) calving opportunities.

information, tended to produce lower estimates than uni-
variate analyses.

Genetic, herd and residual correlations are presented in
Table 4 (only results from trivariate analyses are shown).
Herd correlation was positive between CS2 and CS3; other
correlations included zero within the credibility interval, but
estimated mean and median values were positive as well.
This could be interpreted as levels of herd management
tending to be maintained over parities. The residual corre-
lation between CS2 and CS3 was negative. Other residual
correlations were not different from zero.

The posterior distributions of the genetic correlations
were skewed (Figure 2). Genetic correlation between CS2
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True genetic correlation

Parameter 0.4 0.2 -0.2 —-0.4
Median 0.1820 0.0336 —0.2461 —0.3876
Q5 —0.3348 —0.4774 —0.6679 —0.7351
Q95 0.5992 0.5128 0.2930 0.1355
Range 90% 0.9340 0.9901 0.9609 0.8706
% wrong sign’ 28 38 15 4

"% wrong sign: proportion of opposite sign to that of the true value.

and CS4 was positive (at 90% probability) and high.
Posterior mean and median of genetic correlations involving
CS3 were negative, with the value of zero included within
the credibility interval. There may be a negative genetic
relationship between adjacent calving opportunities. Low
genetic correlations suggest that different genes may be
acting in each case. Repeatability models (e.g. Mercadante
et al, 2003) assume a genetic correlation of one among
calving opportunities, but our results do not support a
repeated measures model. Uncertainty in all correlations
was large, however.

To investigate further the extent of uncertainty associated
with the posterior estimates of the parameters, especially
the genetic correlations, a simple simulation was carried
out. Using two traits (CS2 and CS3), the consequences of
assuming different values for the true genetic correlation
between them were illustrated.

Estimates of sire and herd variances, and of herd and
residual covariances were, on average, reasonably close to
the true values under all scenarios, and so are not pre-
sented or discussed. Table 5 shows features (median, 5-95
quantiles and 90% range) of the empirical distribution
obtained from the 100 estimates of the genetic correlation
between €S2 and CS3. These replicates are drawn from the
unknown frequentist distribution of the Bayesian posterior
mean estimator. In all cases, the 90% empirical confidence
region was very wide, indicating imprecise inference. Thus,
a sizeable proportion (0.04 to 0.38) of the replicates pro-
duced estimates of genetic correlation having a sign that
was opposite to that of the true value. This confirms that
the genetic correlation is a difficult parameter to infer, and
particularly so when estimated on an underlying scale.

A second approach was used to illustrate the uncertainty
(due to the data structure) associated with the genetic
correlation estimates. It consisted of modifying the degrees
of belief parameters of the inverse Wishart priors for the
sire covariance matrix, with increasing values (10, 50, 100
and 100), meaning that a higher weight is assigned to
the prior values. Assigning zero correlation in the prior
distribution of sire (co)variance and different degrees of
belief, a single MCMC chain with 5 million samples was
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Table 6 Changes in posterior means, standard deviation (s.d.) and
quantiles (Q) with varying degrees of belief parameters (10, 50, 100
or 1000) of the Inverse Wishart priors for the sire covariance matrix

Degrees of belief

Parameter 10 50 100 1000
CS2—-CS3
Mean —0.045 —0.001 0.001 0.000
s.d. 0.343 0.143 0.100 0.032
Q5 —0.626 —0.237 —0.162 —0.052
Q95 0.513 0.235 0.164 0.053
CS2-CS4
Mean 0.139 0.020 0.008 0.001
s.d. 0.323 0.140 0.099 0.032
Q5 —0.392 —-0.212 —0.156 —0.051
Q95 0.680 0.250 0.171 0.053
CS3-CS4
Mean —0.090 —-0.015 —0.007 —0.001
s.d. 0.298 0.137 0.099 0.032
Q5 —0.591 —0.242 —0.169 —0.053
Q95 0.397 0.211 0.155 0.051

run. Burn-in consisted of 2 million iterations. The 3 million
samples from the posterior distribution were subsampled
every 100 steps, so that 30 000 draws were used to com-
pute the posterior mean estimate of the genetic correlation.
Results are shown in Table 6. Clearly, as more weight was
given to the prior, correlations tended to zero and uncer-
tainty decreased. This is interpreted as strong evidence that
the data contained a limited amount of information for
inferring genetic correlations, as posterior inference is
sensitive with respect to the prior.

Estimates of correlations for CS have not been published
before. Negative phenotypic correlations between adjacent
calvings were reported under low input systems (e.g.
Morris, 1980) but how much of that is due to a genetic
component is unclear. The simulation and the different
weightings given to priors (Tables 5 and 6) support the view
that the estimate of genetic correlation obtained from
the Uruguayan data is not a methodological or structural
artifact. Rather, it is an estimate associated with a
large uncertainty produced by the limited amount of data.
Furthermore, the posterior probability of positive values
of the genetic correlation estimated from real data was
relatively high.

Areas of future improvements could include new alter-
natives to the genetic model used in this study; the current
model eventually did not completely disentangle environ-
mental and genetic effects, due to a sparse additive rela-
tionship matrix with only sires and maternal grandsires.
Also, cows assumed empty may be misclassified and this
could inflate (co)variances, as suggested by Spangler et al.
(2006). With the present recording scheme it is not possible
to check the relevance of such misclassification. Therefore,

https://doi.org/10.1017/51751731107000390 Published online by Cambridge University Press

Genetic variability of calving success in Angus cows

more research based on improved data quality is needed.
Our findings reinforce the need to strengthen the Uru-
guayan database and illustrate the power of the Bayesian
approach for describing uncertainty.

Conclusions

More appropriate statistical techniques make possible the
attaining of a better description of genetic variation for
reproductive traits. Besides being moderately heritable,
calving success is simple, inexpensive and easy to record.
Estimates of genetic correlations were, however, associated
with large uncertainty. One of the limitations found in this
study is the difficulty to define overall fertility, since success
at a given parity seems to decrease the chances of success
in the subsequent parity.

At present, CS is not an immediately available option for
genetic evaluation of reproduction in beef cattle under
circumstances like those exemplified with the Uruguayan
Angus data. This could change if recording becomes more
accurate and genetic models are improved. The quality of
data could be improved in the Angus recording scheme, by
recording joining dates, service bulls, pregnancy status of
heifers and cows, entry and exit dates, type of service
management used (Al or natural service) and final outcome
of the breeding season, even if no calf results from the
service. Capturing additional genetic variation using a
continuous and genetically correlated indicator trait such as
calving day should also be desirable. If these changes were
adopted, breeders will have tools to effect direct selection
on economically important female reproduction traits.
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