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Abstract. For a function # harmonic in the unit disk D, there holds the inequality

2w

Aaﬂmé%descaﬁﬁgmnva—wﬂfdm@x

where p > 0 and 8 > —1, and

M, gu(e”) = sup |u(re”)P(1 —r)f+!.

O<r<l
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Let D be the open unit disk of the complex plane. The following theorem was
proved by Gehring [2] for p > 1 and by Hallenbeck [3] for 0 < p < 1.

THEOREM A. If u is a function harmonic in D such that
10 = [ P~ 12 dmz) < o0 M
D
wherep > 0, B > —1, then
linll lu(reé®)P(1 — r#*1 =0, for almost all € [0, 27]. 2)
r—1-
Here dm stands for the Lebesgue measure in the plane. The class of
harmonic functions satisfying (1) is called the harmonic Bergman space a’/; Various
generalizations of this result can be found in [5-8].

Here we prove that the convergence in (2) is dominated. In order to state the result
we define the maximal function M, gu by

M, gu(e”) = sup |u(re”)P(1 —r)f+!.

O<r<l

THEOREM 1. If u is a function harmonic in D satisfying (1), where p > 0, 8 > —1,
then

2
J(u) = Mp,,gu(eie) do < oo. 3)
0
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Moreover, there is a constant C = C, g such that J(u) < CI(u).
Before proving this theorem, we show how it can be used to prove Theorem A.

Namely, let u satisfy (1), and let

Tu(e”) = lim sup |u(re™)|(1 — r)EHV/P,

r—1-
and u,(e?) = u(pe”), 0 < p < 1. Since T(u,)(e?) =0 for all 0, and Tu < T(u,) +
T(u — u,), we have, by Theorem 1,
2 ) 2 ]
{Tu(e®) do < {T(u — u,) )y do
0 0
< CI(u —u,), 0<p<l.

Sincelim,_, I(u — u,) = 0 (this is well known and easy to see), we have Tu(e”) = 0
for almost all 6.
For the proof of Theorem 1, we need the inequality

C
sup P <5 [ e dme) )
|z—al<e & |z—a|<2e

due to Hardy and Littlewood [4] and Fefferman and Stein [1], in the case 0 < p < 1.
In the case p > 1, this is a consequence of the sub-harmonicity of |u|’.

Proof of Theorem 1. Letr; =1 — 2_f,j > (. Then

2 0
J(u)f/ de ZTMH) sup |u(re?)|P. (5
0

=0 Ij=<F=<rjy

For a fixed 0, let a; = (r; + rj41)e /2 and &; = (rj31 — r;)/2 = 27772, From (4), we
conclude that

Ij<r=<rjy1

2IFD sup fu(re)p < C27IFHDY f W) dm(z). ©)
|z—a;] <21

On the other hand, simple calculation shows that |z — a;| < 27~! implies
272 <1—|z| and |z—e€¥| <3 x272 <277
Hence,
272% < 24 P(z,¢?), for|z— aj| < 271
where P(z, ¢”) denotes the Poisson’s kernel
1 —|z)?

0y _
P(z,¢") = e

From this and (6), we get

<

27D sup  Ju(re®)) < C2‘-7ﬁ/ P(z, &) |u(z)|” dm(z)
ri-1=z1= 40

e f (1 — 12 PGz, ) lu(2)P dm(z)

—1=zI= 42
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where r_; = 0 and we have used the inclusion

. i1 .
{zilz —ajl <277} C{zirjmy < |zl S 1jga).

Hence, by summation from

j=0to oo, we get

o0
D 27 sup Ju(re”) < C / (1 — |z])P P(z, €7) [u(z)I” dm(z).
=0 1j<r<rji1 D

Now we integrate this inequality over 6 € [0, 2] and use the formula
2 )
/ P(z, ") do =27
0

together with (5) to get J(u) < CI(u), which was to be proved. L]

REMARK 1. If p > 1 or if p > 0 and u is holomorphic, then the proof can be made
shorter. Namely, we can apply the Hardy-Littlewood maximal theorem to get

2 2w
/ sup |u(re®)” do < C,,/ |u(rj+1ei0)|1’ de.
0 0

Tj=<F=rjt1

From this and (5), it follows that

0 2
I = G 32 [ jutyaep do.
j=0 0

1 2
=< Cp/o (1- r)ﬂrdr/O lu(re”)|” de,

where we have used the ‘increasing’ property of the integral means.
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