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Abstract. For a function u harmonic in the unit disk �, there holds the inequality∫ 2π

0
Mp,βu(eiθ ) dθ ≤ Cp,β

∫
�

|u(z)|p(1 − |z|)β dm(z),

where p > 0 and β > −1, and

Mp,βu(eiθ ) = sup
0<r<1

|u(reiθ )|p(1 − r)β+1.
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Let � be the open unit disk of the complex plane. The following theorem was
proved by Gehring [2] for p > 1 and by Hallenbeck [3] for 0 < p ≤ 1.

THEOREM A. If u is a function harmonic in � such that

I(u) :=
∫

�

|u(z)|p(1 − |z|)β dm(z) < ∞ (1)

where p > 0, β > −1, then

lim
r→1−

|u(reiθ )|p(1 − r)β+1 = 0, for almost all θ ∈ [0, 2π ]. (2)

Here dm stands for the Lebesgue measure in the plane. The class of
harmonic functions satisfying (1) is called the harmonic Bergman space ap

β. Various
generalizations of this result can be found in [5–8].

Here we prove that the convergence in (2) is dominated. In order to state the result
we define the maximal function Mp,βu by

Mp,βu(eiθ ) = sup
0<r<1

|u(reiθ )|p(1 − r)β+1.

THEOREM 1. If u is a function harmonic in � satisfying (1), where p > 0, β > −1,

then

J(u) :=
∫ 2π

0
Mp,βu(eiθ ) dθ < ∞. (3)
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Moreover, there is a constant C = Cp,β such that J(u) ≤ CI(u).

Before proving this theorem, we show how it can be used to prove Theorem A.
Namely, let u satisfy (1), and let

Tu(eiθ ) = lim sup
r→1−

|u(reiθ )|(1 − r)(β+1)/p,

and uρ(eiθ ) = u(ρeiθ ), 0 < ρ < 1. Since T(uρ)(eiθ ) = 0 for all θ , and Tu ≤ T(uρ) +
T(u − uρ), we have, by Theorem 1,∫ 2π

0
{Tu(eiθ )}p dθ ≤

∫ 2π

0
{T(u − uρ)(eiθ )}p dθ

≤ CI(u − uρ), 0 < ρ < 1.

Since limρ→1 I(u − uρ) = 0 (this is well known and easy to see), we have Tu(eiθ ) = 0
for almost all θ.

For the proof of Theorem 1, we need the inequality

sup
|z−a|<ε

|u(z)|p ≤ Cp

ε2

∫
|z−a|<2ε

|u(z)|p dm(z) (4)

due to Hardy and Littlewood [4] and Fefferman and Stein [1], in the case 0 < p < 1.

In the case p ≥ 1, this is a consequence of the sub-harmonicity of |u|p.
Proof of Theorem 1. Let rj = 1 − 2−j, j ≥ 0. Then

J(u) ≤
∫ 2π

0
dθ

∞∑
j=0

2−j(β+1) sup
rj≤r≤rj+1

|u(reiθ )|p. (5)

For a fixed θ, let aj = (rj + rj+1)eiθ /2 and εj = (rj+1 − rj)/2 = 2−j−2. From (4), we
conclude that

2−j(β+1) sup
rj≤r≤rj+1

|u(reiθ )|p ≤ C2−j(β+1)22j
∫

|z−aj |<2−j−1
|u(z)|p dm(z). (6)

On the other hand, simple calculation shows that |z − aj| ≤ 2−j−1 implies

2−j−2 ≤ 1 − |z| and |z − eiθ | ≤ 3 × 2−j−2 ≤ 2−j−1.

Hence,

2−j22j ≤ 24 P(z, eiθ ), for |z − aj| < 2−j−1,

where P(z, eiθ ) denotes the Poisson’s kernel

P(z, eiθ ) = 1 − |z|2
|z − eiθ |2 .

From this and (6), we get

2−j(β+1) sup
rj≤r≤rj+1

|u(reiθ )|p ≤ C2−jβ
∫

rj−1≤|z|≤rj+2

P(z, eiθ ) |u(z)|p dm(z)

≤ C
∫

rj−1≤|z|≤rj+2

(1 − |z|)βP(z, eiθ ) |u(z)|p dm(z)
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where r−1 = 0 and we have used the inclusion

{z: |z − aj| ≤ 2−j−1} ⊂ {z: rj−1 ≤ |z| ≤ rj+2}.
Hence, by summation from

j = 0 to ∞, we get

∞∑
j=0

2−j(β+1) sup
rj≤r≤rj+1

|u(reiθ )|p ≤ C
∫

�

(1 − |z|)βP(z, eiθ ) |u(z)|p dm(z).

Now we integrate this inequality over θ ∈ [0, 2π ] and use the formula∫ 2π

0
P(z, eiθ ) dθ = 2π

together with (5) to get J(u) ≤ CI(u), which was to be proved. �
REMARK 1. If p > 1 or if p > 0 and u is holomorphic, then the proof can be made

shorter. Namely, we can apply the Hardy–Littlewood maximal theorem to get∫ 2π

0
sup

rj≤r≤rj+1

|u(reiθ )|p dθ ≤ Cp

∫ 2π

0
|u(rj+1eiθ )|p dθ.

From this and (5), it follows that

J(u) ≤ Cp

∞∑
j=0

2−j(β+1)
∫ 2π

0
|u(rj+1eiθ )|p dθ,

≤ Cp

∫ 1

0
(1 − r)βr dr

∫ 2π

0
|u(reiθ )|p dθ,

where we have used the ‘increasing’ property of the integral means.
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