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Abstract
A slowdown or a speedup in response times across experimental conditions can be taken as
evidence of online deployment of knowledge. However, response-time difference measures
are rarely evaluated on their reliability, and there is no standard practice to estimate it. In this
article, we used three open data sets to explore an approach to reliability that is based on
mixed-effects modeling and to examinemodel criticism as an outlier treatment strategy. The
results suggest that the model-based approach can be superior but show no clear advantage
of model criticism. We followed up these results with a simulation study to identify the
specific conditions in which the model-based approach has the most benefits. Researchers
who cannot include a large number of items and have a moderate level of noise in their data
may find this approach particularly useful. We concluded by calling for more awareness and
research on the psychometric properties of measures in the field.

Introduction
Applied second language (L2) researchers have been using tasks based on response time
(RT) to tap into learners’ grammar and vocabulary knowledge (e.g., Elgort, 2011;
Granena, 2013) as well as individual differences in attributes such as procedural
memory capacity (e.g., Buffington et al., 2021). Some of these measures, traditionally
used to index online language processing in the psycholinguistics literature, have
become commonplace in second language acquisition (SLA). This is in part because
they are believed to tap into the knowledge that is available for automatic processing, a
fundamental basis for authentic language use (e.g., Elgort, 2011; Suzuki, 2017). Exam-
ples of suchmeasures includeword-monitoring tasks (Godfroid&Kim, 2021; Granena,
2013; Suzuki et al., 2022), self-paced reading (SPR) tasks (Fang &Wu, 2022b; Godfroid
& Kim, 2021; Marsden et al., 2018), and judgment tasks in the priming paradigm
(Elgort, 2011; Hui et al., 2022a; Plonsky et al., 2020). In data analysis, researchers using
these measures typically focus on differences in RTs across experimental conditions. In
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a word-monitoring or SPR task, for example, a slowdown in response (or processing)
when encountering ungrammaticality is taken as evidence of the learner’s sensitivity to
anomalies, which in turn is interpreted as a manifestation of the learner deploying the
relevant grammatical knowledge online.

Although these tasks have been useful, applied researchers should exercise caution.
An important reason is that these tasks are often used in the psycholinguistics literature
to demonstrate a group-level effect, so the extent to which these tasks function well as
an individual-difference measure in applied contexts remains an open question
(Draheim et al., 2019). In this light, researchers must pay more attention to the
fundamental psychometric properties of these tasks, such as reliability. However, the
reliability of these measures is rarely reported in both SLA and neighboring fields such
as cognitive psychology (e.g., Marsden et al., 2018; Parsons et al., 2019; Plonsky &
Derrick, 2016). Even when it is reported, the estimation method is not always detailed.
As a result, how reliability has been and should be computed is a mystery, leaving
applied researchers in a quandary because there is no obvious standard practice to
follow. Such a lack of reference in the literature can severely limit researchers’ ability to
make strong claims about what these tasks measure and the relationship between the
object of measurement and other variables of interest (McKay & Plonsky, 2021). In this
article, we take a step toward an informed, standardized approach to computing
reliability for RT differences by evaluating three estimation methods first with three
open data sets and thenwith simulated data sets. A secondary goal of this paper is also to
improve researchers’ awareness of the importance of appropriately estimating the error
associated with their instruments. Here, we present two studies, the first of which
concerns a model-based approach to reliability for RT-difference measures. We then
report a series of simulations that were based on the results of the first study to elucidate
the specific conditions under which the model-based approach may have the most
benefits.

Use of response-time difference measures

The ways in which language processing is investigated in psycholinguistics have
inspired L2 researchers to apply online methods to address fundamental questions
in SLA. For example, some SLA researchers have been interested in using these
methods to measure implicit and automatized explicit knowledge (e.g., Bowles,
2011; Ellis, 2005; Vafaee et al., 2017) because learners can access this knowledge
rapidly and effortlessly in real-time processing and fluent language use (Ellis, 2005). In
this light, a direct way to tap into this kind of knowledge is to emphasize the processing
of the learner in themeasurement of linguistic knowledge. This emphasis has led to the
rapid adoption of online measures in SLA research (e.g., Elgort et al., 2018; Godfroid,
2020; Marsden et al., 2018), especially when these tasks are now available from various
data collection platforms (Patterson & Nicklin, 2023). Given the focus of the present
paper on reliability, we limit our discussion to measures that involve a comparison of
performance (typically response or processing times) between different experimental
conditions.

First, Godfroid and Kim (2021) used both word monitoring and SPR tasks to
measure implicit grammatical knowledge of six target structures (three morphological
[e.g., third person -s] and three syntactic [e.g., embedded questions]). In the SPR task,
for example, 131 English learners read grammatical or ungrammatical versions of
stimulus sentences (e.g., The old woman enjoys reading many different famous novels
(p. 615)). Participants were told to press a button that recorded the time that elapsed

228 Bronson Hui and Zhiyi Wu

https://doi.org/10.1017/S027226312300027X Published online by Cambridge University Press

https://doi.org/10.1017/S027226312300027X


from the previous hit to proceed to the next word. Given that the spillover region (e.g.,
reading) followed the critical grammatical feature in question, participants were
expected to show sensitivity to grammatical violations if they had implicit knowledge
of the target structure. This sensitivity was operationalized and measured as a slow-
down in processing when encountering ungrammaticality, compared with the gram-
matical baseline condition. In analytical terms, the difference in RTs between the
grammatical and the ungrammatical trials represented an indication of implicit knowl-
edge (e.g., Granena, 2013; Maie & DeKeyser, 2020; Suzuki, 2017; Suzuki et al., 2022).

In some cases, researchers expect to observe a speedup in the processing of SPR
times. This approach can be based on consistent evidence for faster processing of
formulaic language than matched control phrases (see Siyanova-Chanturia, 2013, for
an overview). This processing advantage is attributed to the entrenchment of these
units in memory as a result of frequent exposures (Siyanova-Chanturia & Martinez,
2014). Therefore, faster reading times can be expected when learners read a sentence
containing formulaic language than a matched control version. For example, Fang and
Wu (2022b) investigated Chinese learners’ knowledge of the either–or construction in
English. In an SPR task, participants read stimulus sentences such as Jay painted either |
the big house | or the old car | for his family over the summer (p. 9), with or without either.
The authors reported a speedup in reading times for the critical region (in this example,
or the old car) in the trials that contained either, suggesting that these learners used their
knowledge of formulaic construction to predict upcoming information in reading.

In addition to SPR, judgment tasks in the priming paradigm have also been used to
index learners’ lexical knowledge (e.g., Elgort, 2011; Hui et al., 2022a). Priming often
involves the presentation of a prime before a target. The prime is meant to influence the
processing of subsequent linguistic information contained in the target due to prime–
target orthographic, phonological, and/or semantic relationships (see Trofimovich &
McDonough, 2011, for an overview). Elgort (2011) introduced this technique to the
field as a measure of the representational aspects of vocabulary knowledge as a result of
intervention in an applied context. In her study, participants learned pseudowords (e.g.,
obsolate) using flashcards. With three lexical decision tasks using different kinds of
priming—namely, form priming, masked-repetition priming, and semantic priming—
the author showed that deliberate learning of words can result in knowledge indexed
by these implicit tasks. For example, inmasked-repetition priming, participants made a
faster lexical decisionwhen the target was preceded by an identical prime (e.g., obsolate-
OBSOLATE) than by an unrelated prime (e.g., mythical-OBSOLATE). Again, a faster
RT in related trials, compared with unrelated trials, constituted a measure of “the
formal-lexical representations of the stimuli” (p. 382). The formation of these repre-
sentations was interpreted as learning products in the wake of deliberate word-learning
activities.

So far, we have focused our discussion on indexing grammatical and lexical
knowledge with RT difference tasks. In addition, these tasks can be used to measure
attributes of individual differences such as procedural memory capacity (Buffington
et al., 2021;Maie, 2022). In an alternating serial RT task, for example, participants in the
study by Buffington et al. (2021) saw a picture of a dog head filling a position in a row of
four circles. The participants were instructed to press the button that corresponded to
the position. In all experimental trials, the target location was dictated by a predeter-
mined sequence unknown to the participant, alternated with random positions.
Specifically, the odd-numbered trials were sequenced according to a pattern, whereas
the even-numbered trials were random. The idea of the design was that if participants
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could learn the predetermined sequence through exposures, they were expected to
respond faster in patterned, sequenced trials than in random trials. Thus, the ability to
learn a hidden sequence, an attribute linked to proceduralmemory capacity, is quantified
by a comparison of RTs in patterned versus random trials. This RT difference has been
used in the literature as an individual-differencemeasure of procedural memory capacity
(e.g., Brill-Schuetz & Morgan-Short, 2014; Faretta-Stutenberg & Morgan-Short, 2018;
Maie, 2022).

Taken together, measures that involve differences in RTs have been adopted to index
grammar and vocabulary knowledge, as well as cognitive attributes such as procedural
memory capacity. Given the ubiquity of RT-difference measures in SLA, there is a need
to consistently evaluate the measures that researchers begin to rely on, especially when
they are applied to a novel context of investigation (e.g., adopted from psycholinguistics
to SLA). A central aspect of such an evaluation is instrument reliability.

Instrument reliability in SLA
A cornerstone of quantitative research is measurement, which can be defined as the
principled assignment of numerical values to objects, attributes, or events (e.g., Stevens,
1946). In SLA, linguistic knowledge in the L2 is perhaps themost important attribute to
measure. The ways in which we measure knowledge such that, for example, a learner
scoring higher on a grammar test possessesmore or better grammatical knowledge than
their peers is thus fundamental to our work. At the same time, measurement error is
inevitable because researchers are often unable to tap into the constructs of interest
directly (McKay & Plonsky, 2021). On this account, appropriately estimating the
amount of error is critical because it allows researchers to understand the limitations
of their instruments and represents one of the very first and most critical steps in
evaluating ameasure. Reliability, or consistency across measurements, has traditionally
been regarded as a necessary condition for validity. As Davis (1992) put it more than
three decades ago, “an unreliable measure cannot be valid” (p. 606). In other words,
interpretations of scores largely assume that the individual demonstrates at least some
consistency in their scores across independent measurements (American Educational
Research Association et al., 2014). Indeed,McKay and Plonsky (2021) argue that claims
cannot be made about what is being measured and its relationship with other variables
without sufficient evidence that the score in question is consistent at acceptable levels.
Therefore, reliability deserves more attention in any scientific pursuit. Otherwise,
researchers could be drawing conclusions without confirming their measurement is
reliable, which renders the claims potentially more questionable than they should be.

From a statistical point of view, unreliability should also be addressed to the extent
that is possible. When researchers build a general linear model, predictor variables are
assumed to be measured without error. Using an unreliable measure to predict an
outcome then violates this assumption. Even when the RT-difference measure is the
outcome of the model, the variance in the outcome that is not explained by the model
can be due to (1) its own unreliability, (2) the lack of sufficient explanatory power of the
predictors, or (3) a mix of both. When an unreliable measure is used as either a
predictor or the outcome, researchers are losing statistical power because the true
relationship between the predictors and the outcome can be masked by error. This loss
of power can be critical, especially when researchers in some subfields are already
struggling to have sufficiently large sample sizes (Loewen & Hui, 2021; Vitta et al.,
2021). However, if researchers are able to maximize instrument reliability, we can then
focus on a more substantive search for factors that can explain a phenomenon
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examined by the researchers. In summary, instrument reliability plays an important
role in quantitative research in SLA and should be considered in the constant evaluation
of instruments.

Reliability for response-time differences
Despite the fundamental role of instrument reliability, L2 researchers often do not
report the internal consistency of their tests (McKay & Plonsky, 2021; Plonsky &
Derrick, 2016). Researchers using RT-difference measures, such as SPR and judgment
tasks, are no exception (Marsden et al., 2018; Plonsky et al., 2020). Although non-
reporting does not necessarily imply low reliability (Plonsky &Derrick, 2016), there is a
growing literature that should concern researchers, particularly those relying on RT
differences.

First, in psycholinguistics, Tan and Yap (2016) reported shockingly low levels of
reliability in masked-repetition and semantic priming. In their study, 240 native
English speakers performed tasks within the masked-repetition and semantic priming
paradigms in separate experimental blocks. The authors evaluated the consistency of
the measurements with two reliability measures: split-half reliability and test-retest
reliability (see McKay & Plonsky, 2021, for an overview of reliability measures). The
former typically involves dividing data collected within one single experimental session
into two halves (e.g., odd- and even-numbered items) before computing a correlation
between the performance in the two subsets of data. The latter uses data gathered from
the same participant but in separate test sessions. These two reliability estimates may
seem similar at first sight, but discrepancies between the two have recently been
reported, suggesting that the underlying factors influencing the level of reliability
estimated by these approaches might differ (Oliveira et al., 2022; West et al., 2018).
In Tan and Yap (2016), the correlation coefficients for the repetition priming ranged
from .21 (Pearson, test-retest) to .43 (robust, split-half). For the masked semantic
priming, these figures were between .05 (Pearson, split-half) and .17 (robust, split-half).
The authors cautioned that “the unreliability…makes [themeasures] a poor candidate
for studying individual differences” (p. 195).

In SLA, Buffington et al. (2021) reported a split-half reliability of .42 for the
alternating serial RT task discussed above, based on the performance of 119 partici-
pants. Relatedly, authors who rely on serial RT tasks to investigate statistical learning
(outside of SLA) have also expressed serious concerns about the poor psychometric
properties of the available individual-difference measures for statistical learning
(Arnon, 2019; Lammertink et al., 2020; Oliveira et al., 2022; Siegelman et al., 2017;
West et al., 2017). For example, Arnon (2019) examined three statistical learning tasks
(two auditory and one visual) which were administered to both children and adults
twice, with a two-month gap between administrations. The test-retest reliability
estimates varied from .45 to .70, depending on the task in the adult data. When
correlating the different tasks, which are meant to index a similar construct
(i.e., statistical learning ability), the highest figure was .41. For the child data, the
picture was even more gloomy, as the test-retest reliability for individual tasks ranged
from .01 to .33, with the highest correlation between tasks at .33.

In cognitive psychology more generally, tasks believed to tap into cognitive abilities,
such as executive functioning, also showed only moderate test-retest reliability, as
reported in Hedge et al. (2018). For example, intraclass correlations were at .40 and .57
for the RT results of a flanker task, where participants indicated the direction of an
arrow in the middle of others that point in the same (congruent) or different
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(incongruent) directions. Given this level of reliability, it might not be surprising that
tasks that, again, are supposed to tap into the same construct (i.e., the flanker and
Stroop tasks) correlated with each other at only .14 (Hedge et al., 2018). Other studies
have also warned researchers about this reliability issue with RT difference tasks in
individual differences research in cognition (e.g., Paap & Sawi, 2016; Verhaeghen &De
Meersman, 1998).

What merits special attention here is that many of these tasks have consistently been
reported to elicit robust effects at the group level but the very same task is very
unreliable when used to examine individual differences. This reliability paradox
(Hedge et al., 2018) urges researchers to pause and evaluate RT-difference measures.
Indeed, a reviewer suggested that “the field of individual differences in cognition is
experiencing somewhat of a measurement crisis.” Although the extent to which this
statement is true remains an open question, a serious yet simple questionmust be asked:
What are we measuring with these tasks after all?

Potential sources of unreliability
Given the general unreliability, researchers should seek to understand the sources of
unreliability. First and foremost, the unreliability can be due to substantive factors that
can be related to the particular processes that the tasks seek to examine. For example,
Tan and Yap (2016) argued that the psycholinguistic mechanisms underlying semantic
priming are controlled, as opposed to automatic, in nature. Therefore, the performance
of the same individual can vary greatly, causing inconsistency in the measurement.
West et al. (2018) suggested that the complex nature of the procedural processes,
relative to processes related to declarative memory, is the reason why tasks used for
assessing procedural learning (i.e., the serial RT tasks) were significantly less reliable
than the tasks for declarative learning (i.e., free recall tasks) in their data. In other cases,
researchers believe that some of these tasks are not measuring what it is designed to
after all; instead, they might be tapping into theoretically less interesting constructs,
such as processing speed and strategies (e.g., Hedge et al., 2022; Miller & Ulrich, 2013;
Rouder et al., 2022).

The second source of unreliability can be statistical. Specifically, the low reliability
can be due to a lack of sufficient variance between participants (e.g., Clark et al., 2022;
Hedge et al., 2018). This means that participants are not different enough to show
reliable individual differences. This may be due to homogeneous sampling and the
nature of the attribute being measured in which individuals do not differ much (Hedge
et al., 2018). This can also be caused by the design of the task. For example, it can be too
easy for the sample and thus, there is a ceiling effect; and/or it can be that there is little
variability in item difficulty (Clark et al., 2022; Hedge et al., 2018). Related to task
design, intuitively, data might have some random noise if the participant is tested from
home and the set-up of the participant’s technology plays a critical role (e.g., Patterson
& Nicklin, 2023).

Finally, the source of unreliability can also be computational. That is, the way in
which the RT-difference data are preprocessed and analyzed could have contributed to
the low level of consistency. For example, Buffington et al. (2021) speculated that
computing difference scores between trial types may be “the source of low reliability”
(p. 647). In the analysis code that these authors shared, they applaudingly documented
their thought process in pinpointing the cause of inconsistency. They wrote that
outliers “needed to be addressed,” and the outlier treatment strategy they had employed
“did seem to help.” Among all potential sources, the computation of consistency levels
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is possibly the one that applied researchers, who use these measures to address their
substantive research questions (as opposed to methodologists who examine these
methods), can act on because they can compute reliability based on an informed
approach. If that is the case, the natural question is then how researchers should
estimate reliability for RT-difference data.

Estimating reliability for response-time differences
As mentioned, there is a lack of consensus on how to estimate internal consistency for
RT-difference data. Here, we discuss three methods: computing RT differences based
on (1) raw RTs, (2) by-participant z-transformed RTs, and (3) estimates of RT
differences based on mixed-effects modeling.

First, an intuitive approach is to compute the RT difference for each item across two
trial types (e.g., related vs. unrelated or grammatical vs. ungrammatical). For example,
when a slowdown in processing is expected for grammatical violations, a 500-ms
response on a grammatical trial and a 550-ms response on an ungrammatical
trial translate into a 50-ms slowdown. This difference can be used to index one’s
grammatical sensitivity. What Buffington et al. (2021) argued is that this difference
score, aggregated across items, is not reliable. The unreliable nature of difference
(or change) scores has long been a concern in social sciences (e.g., Cronbach & Furby,
1970; Gulliksen, 1950). Similar arguments have beenmademore recently in the context
of RT research (Draheim et al., 2019). One reason for such an inconsistency is that
subtraction can reduce the between-participant variance relative to error variance (e.g.,
Hedge et al., 2018). In other words, by subtracting the RT in one trial from that in
another trial, the researcher removes the useful, common information carried by the
two RTs that makes the individual participant unique in the sample (i.e., the between-
participants variance). What is left then is random variation within the individual
(i.e., within-participant variance), contributing to the overall unreliability. Another
criticism of a raw difference is that it does not adequately account for baseline
differences between individuals (e.g., Tan & Yap, 2016). For example, a 50-ms slow-
down indexes somewhat different levels of change for a learner whose baseline RT was
500 ms versus their peer whose baseline was, say, 300 ms. In this respect, taking one’s
baseline into account could yield better reliability.

One way to do that is the second approach that we discuss here. Following this
approach, researchers first compute z-score-transformed RTs, based on each partici-
pant’s ownmean and standard deviation (Hutchison et al., 2008; Tan&Yap, 2016). This
step allows researchers to put participants on an equal footing because all participants
have a mean RT of zero and the change scores (RT differences) are expressed in their
own standard deviation unit. In this way, the baseline RT for each participant is
accounted for in the computation, which addresses the limitations of using raw RTs.

However, there are two additional points to note here: First, following either of these
approaches, researchers may need to decide on their handling of missing data. The RTs
can be coded as missing when participants respond incorrectly or when the RT is
outside the data-trimming threshold. Indeed, (applied) psycholinguists often adopt a
counterbalanced design where each participant sees only one of two versions (e.g.,
grammatical) of the item, in order to avoid participants being exposed to very similar
trials and thus creating unwanted confounding. All these situations are not uncommon
in the analysis of data in psycholinguistics. One way to handle missing data in
estimating reliability is thento discard the item when one of the two RTs is missing.
This can result in discarding more data than necessary and has implications for
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statistical power and the intended inference researchers wish to make. The second way
to get around the problem is to perform an aggregation before subtraction. That is, each
participant has a mean RT for each of the two trial types before the computation of an
RT difference. If there were no missing data, the two orders of operation
(i.e., aggregation before subtraction and subtraction before aggregation) yield identical
results mathematically. However, with missing data, aggregation before subtraction
means that average RTs likely result from different items. Although averaging across
(a large number of) items should generally lead tomore accurate results, onemight still
question the extent to which the items that go into the computation for both trial types
are similar enough to warrant a direct comparison.

Second, aggregating an effect across items, be it before or after subtraction, should
remind applied psycholinguists of how researchers used to carry out separate
by-participant and by-item analyses for RT data, which are no longer recommended
(e.g., Baayen et al., 2008). The reason is that by-participant aggregations essentially
ignore the variability in the effects associated with the item and vice versa. The more
contemporary approach is to simultaneously model participant and item variability by
implementing a mixed-effects model (e.g., Baayen et al., 2008). Generally, a mixed-
effects model results in more accurate estimates and represents a more parsimonious
analysis of the data. It is not an exaggeration to suggest that applied psycholinguists are
already intimately familiar with the technique.

In the present context of estimating the reliability for RT differences, the use of such
amodel is rare in SLA. This approach represents the third approachwe discuss here: the
model-based approach. Not adopting this approach can be seen as a missed opportu-
nity because, again, many researchers are already familiar with these types of models.
Moreover, it has the advantage of simultaneously modeling random effects associated
with both item and participant, accounting for dependency in the data as a result of
individual-difference factors specific to the participant (e.g., processing speed) and
characteristics specific to the item (e.g., frequency). Perhaps less discussed in SLA is also
the ability of a mixed-effects model to handle missing data through (restricted)
maximum likelihood (e.g., Hox et al., 2018), addressing the missing data challenge
discussed above. Therefore, a model-based approach should be a promising candidate
to arrive at more accurate reliability estimates.

One way to understand a mixed-effects model is to imagine that a regression line is
fitted for each participant and for each item (level-2 units). That means that every level-2
unit has its own intercept and slope terms (when they are allowed to vary). When there
are, for example, 40 participants in the data set, there can be 40 intercept and 40 slope
values, as well as a correlation between them. Simultaneously, the fixed effects, which
researchers often interpret, are computed by the algorithm, taking into account these
random effects. The critical information here in relation to reliability assessment is this:
The by-participant random slope for each individual represents amodel-based summary
of the main effect (slowdown or speedup) specific to the learner. Therefore, the
by-participant random slopes can be seen as individualized difference scores, after
accounting for all relevant random effects. The use of by-participant random-slope
values as a basis for estimating reliability, on this account, should produce better results.

We should note, at this point, that we are not the first to suggest that mixed-effects
models can be used to estimate the reliability of RT-difference measures. Previous
authors (e.g., Rouder & Haaf, 2019) have already suggested the same. Rouder and Haaf
(2019) were interested in the cause of the low correlation between two attentional
control tasks, the Stroop and flanker tasks, as reported by Hedge et al. (2018). They
retested the data of Hedge et al. (2018) and reported better test-retest correlations based
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onmodel estimates. Overall, the authors observed an increase of around .20, compared
with the non-model-based sample correlations. Given the promising evidence of
Rouder and Haaf (2019), it is high time to test the extent to which a model-based
approach to estimating reliability is appropriate for the RT-based L2 data.

In addition, the model-based approach offers an unexplored opportunity to treat
outliers in reliability assessments. As discussed, Buffington et al. (2021) pointed out in
their analysis code that outliers can be detrimental to the overall instrument reliability.
Although the authors handled outlier RTs using more conventional strategies based on
means and standard deviations of individual participants, the extent to which a model-
based approach might offer better results remains an open question. In RT-based
research, Baayen and Milin (2010) have shown the benefits of engaging in model
criticism as away to trimRTdata, althoughmodel criticism is not always used to handle
outliers in analyzing SPR data (e.g., Marsden et al., 2018). This approach amounts to
fitting an initial mixed-effects model to the raw data to first identify and remove
observations with a large, standardized residual (e.g., an absolute value larger than 2.5,
Baayen & Milin, 2010). With the trimmed data set, researchers refit the model to the
data with the samemodel specifications. According to these authors, the refitted model
almost always has a better fit, with fewer observation removals needed. On this basis,
the reliability resulting from this procedure should represent a more accurate estimate
because the better model fit should produce more accurate by-participant random
slopes. Therefore, the application of this technique could further improve the estimated
reliability of the RT differences under investigation.

The present studies
Considering this review, we formulated two research questions for our first study to
assess the model-based approach to estimating reliability:

RQ1: To what extent does a model-based approach yield more reliable RT
differences?
RQ2: To what extent does model criticism as an outlier treatment strategy yield
more reliable RT differences?

Based on the results of the first study, we further addressed RQ3 in our second
simulation study to examine the boundaries of the model-based approach:

RQ3:Under what conditions, in terms of the number of items and level of error,
is a model-based approach more beneficial in estimating the reliability of RT
differences, than non-model-based approaches?

Taken together, our current attempt represents an important and ethical step for
evaluating RT-difference measures that SLA researchers begin to increasingly rely on,
moving beyond simply accepting the face value of our instruments without scrutinizing
(much) their reliability and validity (Cohen & Macaro, 2013).

Study 1: Analysis of three open data sets
Methodology

To address our first two research questions, we took advantage of open data shared by
L2 researchers. Three data sets, including data from an SPR task, a lexical decision task
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in masked-repetition priming, and an alternating serial reaction time task, were used to
estimate the reliability of RT differences. For RQ1, we tested three computational
approaches: RT differences based on (1) raw RTs, (2) by-participant z-transformed
RTs, and (3) model-based estimates of RTs. Addressing RQ2, we compared trimming
strategies based on mean and standard deviations (following the initial authors of the
data sets) with the implementation ofmodel criticism. In the spirit of open science, all R
code (R Core Team, 2022) used for data analysis is made available in the Open Science
Framework (https://osf.io/cd5r8/).

Data sets
Here, we provide minimal background information to understand the contexts from
which the original data were collected. Interested readers are referred to the substantive
publications associated with the data sets.

The first data set was shared by Fang and Wu (2022a), available on Open Science
Framework (https://osf.io/abhjv/). The associated substantive publication was
Fang and Wu (2022b). The authors administered SPR and acceptability judgment
tasks to investigate learners’ (N = 122; 135 initially, 13 removed) knowledge of
the either–or construction in English. We used only the SPR data involving learners
(bind_SPR_English_L2_version1-2.csv). Participants read, in a self-pacedmanner, two
versions of 20 sentences: one with either (e.g., Jay painted either | the big house | or the
old car | for his family over the summer) and one without (e.g., Jay painted | the big house
| or the old car | for his family over the summer). The authors reported a significant
speedup in reading times in the critical region (i.e., or the old car) on the trials that
included either compared with those without, suggesting that learners can use knowl-
edge of the either–or construction tomake predictions in reading. Given that the claims
made by the researchers were largely based on a speed up in the critical region, we also
focused on this region in our analysis as well.

The second data set we used was made public by Hui et al. (2022b), available on
Open Science Framework (https://osf.io/uyfh5/) under the Creative Commons Attri-
bution 4.0 International Public License. The associated substantive publicationwasHui
et al. (2022a). In their study, the authors administered a set of four vocabulary tests to
129 (144 initially, 15 removed) advanced English learners at an American university.
We used only the subset of data for masked-repetition priming (i.e., data_exp_35094-
v18_task-uoc2.csv). As discussed, this task was used as a vocabulary measure to index
the extent to which the lexical entries of a sample of target words (K = 40) had been
established in the mental lexicon. In the 80 critical trials (two for each of 40 items),
participants were exposed to a prime presented very briefly (55 ms) and forward
masked by a string of hashtags (####) for 500 ms. Immediately after, the participant
made a lexical decision on the target presented in the upper case to indicate whether or
not it forms an English word. The authors reported a group-level priming effect in
which participants responded faster to the target in the related, identical trials (e.g.,
patience-PATIENCE) than to the unrelated trials (e.g., occasion-PATIENCE). The
authors also reported that such priming was not observed for their nonword data,
providing further evidence for the validity of the measure.

The third data set was shared by Buffington and Morgan-Short (2022), available on
Open Science Framework (https://osf.io/ux4qs/). The associated substantive publication
was Buffington et al. (2021). The authors performed a total of six memory assessments
(three for procedural memory and three for declarative memory). We used only the data
set for the alternating serial reaction time task (i.e., ASRT_MasterData.csv). This task
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tested the ability of the participants (N = 99; 119 initially, 20 removed) to acquire an
implicit, patterned sequence in the task, which is associated with the use of procedural
memory. As reviewed, participants pressed a button corresponding to the location of a
dog’s head appearing in one of four circles. The sequence followed a second-order pattern
in that the patterned trials alternated with the random trials. There were a total of
20 experimental blocks, each of which had 85 trials (five random trials to start, followed
by 80 alternating patterned and random trials).

Analysis
For each data set, we computed a total of 22 split-half correlations, following the three
computational approaches with and without a trimming procedure (RQ1). In the case
of the model-based approach, we tested an additional trimming method—namely,
model criticism (RQ2). For the first two computational approaches (raw and z scores),
we implemented both by-participant and by-item analyses. For all reliability estimates,
we performed two correlation tests (Pearson and robust) for each analysis method (see
Figure 1).

To analyze the data, we first repeated all accuracy-based screening procedures
following the original authors. We also removed practically impossible RTs, as defined
by the authors (negative RTs for Fang&Wu, 2022a; 300ms forHui et al., 2022b; 100ms
for Buffington & Morgan-Short, 2022). This treatment was to remove completely
unusable data and differed from the trimming procedure that seeks to rid the data sets
of outliers. Although Fang and Wu (2022b) logarithmically transformed and residua-
lized the RTs on the length of the region before their further analysis, we used the “raw”
RTs in our analysis for consistency across the three data sets. As a sensitivity analysis,
we confirmed that using the logged, residualized RTs did not change our conclusion.
The resulting data sets from these preliminary processing steps represented the
untrimmed data sets for further computation.

To create the trimmed data sets, we also deleted RTs that were above the authors’
upper threshold (2.5 standard deviations from the learner’s mean for Fang & Wu,
2022a; 2500 ms for Hui et al., 2022b; and 3.0 standard deviations from the participant’s
mean for Buffington et al., 2021).

As a next step, we split each data set into two halves (i.e., odd-numbered and even-
numbered items). For Buffington and Morgan-Short (2022), we needed to assign item

Figure 1. The three computational approaches and the corresponding calculations.
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numbers to alternating trials so that every two back-to-back trials (one patterned and
one random) was considered a duplet item. Thus, we addressed issues associated with
learning that takes place during the task that can lead to serial dependence among trials
(see more discussion in Buffington et al., 2021).

To take our first computation approach, we calculated the raw difference in RTs for
each item. We aggregated it across both participants and items, such that each item
and each participant have a mean RT difference, respectively. To estimate split-half
reliability, we computed both Pearson and robust correlations with the two halved data
sets, using the cor.test( ) function in the stats package (R Core Team, 2022) and the
pbcor( ) function in the WRS2 package (Mair & Wilcox, 2020).

For the second approach, we transformed the RTs into z scores based on each
participant’s ownmean and standard deviation. After that, we computed the difference
and aggregated it across items and between participants. The correlation tests were
performed the same as in the first approach.

In terms of themodel-based approach, we constructed two separate models for each
of the two halved data sets. For all three data sets, the outcome was specified as the
inverse of RT (-1/RT), following Hui et al. (2022a). We used a maximal random-effects
structure, including all relevant random intercepts and slopes, as well as their corre-
lation (Barr et al., 2013). To resolve issues with singular fit and nonconvergence, we
used the nloptwrap optimizer from the optimx package (Nash & Varadhan, 2011) and
the partial Bayesian method implemented in the blme package (Chung et al., 2013) to
force the relevant random-effects matrices away from singularity. From the models, we
extracted the by-participant random slope for each participant before we correlated the
slopes across the two halves of each data set.

Finally, we tested whether and how model criticism as an outlier treatment strategy
might be useful (RQ2). To engage in model criticism, we first used the residuals of the
models fitted to the untrimmed data as an outlier identification strategy and then
removed observations that had a standardized absolute residual greater than 2.5
(Baayen & Milin, 2010). We refitted the models to these trimmed data sets using the
same specifications and extracted the by-participant random slopes for the correlation
tests.

As an additional note, whenever a correlation test returned an unexpected negative
value, we followed Buffington et al. (2021) in applying a correction according to
Krus and Helmstadter’s (1993) Equation 15—namely, corrected r = �rab

:5 1�rabð Þ. We have
marked the cases where the correction was applied in our results.

Results

We present the correlation coefficients in Tables 1 to 3. Before we address our research
questions, one striking observation is that the correlation coefficient can vary hugely
depending on the data analysis undertaken. With the same data set (e.g., Hui et al.,
2022b), the coefficient ranged from .02, indicating essentially no association between
what was measured in the two halved data sets, to .88, a satisfactory level of reliability.
This variability confirmed the dire need to develop a more informed and standardized
approach to estimating reliability.

In terms of RQ1, concerning the usefulness of the model-based approach, only the
results for theHui et al. (2022b) data showed a superiority of themodel-based approach
over the other two approaches. The reliability was in the .30 range at best with non-
model-based approaches. However, when the by-participant random slope was used as
a basis for reliability estimation, the figures were mostly in the .80 range, suggesting
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Table 1. Split-half correlations for the Fang and Wu data set

Pearson correlation coefficient Robust correlation coefficient

Trimmed Untrimmed
Model
criticism Trimmed Untrimmed

Model
criticism

Raw response times–by
participant

.36 .16 NA .36 .05 NA

Raw response times–by item .10 .29# NA .02 .32# NA
By-participant z-transformed
response times–by
participant

.15# .10# NA .17# .06# NA

By-participant z-transformed
response times–by item

.15 .36 NA .15 .36 NA

Model-based estimates .16# .20# .02# .42# .39# .16#

Note: # indicates that a correction was applied to a negative coefficient according to Krus and Helmstadter (1993). We do
not report 95% CIs and p values because it is not clear whether a correction for these statistics is needed and, if so, how to
compute them.

Table 2. Split-half correlations for the Hui et al. data set

Pearson correlation coefficient Robust correlation coefficient

Trimmed Untrimmed
Model
criticism Trimmed Untrimmed

Model
criticism

Raw response times–by
participant

.11# .07 NA .17# .08 NA

Raw response times–by item .36 .11# NA .23 .04# NA
By-participant z-transformed
response times–by
participant

.03 .15 NA .01 .15 NA

By-participant z-transformed
response times–by item

.02 .15 NA .11# .04 NA

Model-based estimates .85 .81 .88 .81 .79 .87

Note: # indicates that a correction was applied to a negative coefficient according to Krus and Helmstadter (1993). We do
not report 95% CIs and p values because it is not clear whether a correction for these statistics is needed and, if so, how to
compute them.

Table 3. Split-half correlations for the Buffington and Morgan-Short data set

Pearson correlation coefficient Robust correlation coefficient

Trimmed Untrimmed
Model
criticism Trimmed Untrimmed

Model
criticism

Raw response times–by
participant

.47# .06 NA .51# .44# NA

Raw response times–by item .02 .01 NA .01# .05 NA
By-participant z-transformed
response times–by
participant

.51# .48# NA .47# .46# NA

By-participant z-transformed
response times–by item

.07 .09 NA .06 .10 NA

Model-based estimates .46# .31 .50# .30 .30 .49#

Note: # indicates that a correction was applied to a negative coefficient according to Krus and Helmstadter (1993). We do
not report 95% CIs and p values because it is not clear whether a correction for these statistics is needed and, if so, how to
compute them.
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satisfactory levels of internal consistency. In contrast, neither the Fang andWu (2022a)
data nor the Buffington and Morgan-Short (2022) data presented a clear pattern of
which analysis method had the greater advantage in reliability. The relatively higher
levels following the model-based approach could also be achieved using other
approaches.

For RQ2, we focused on comparing the correlations computed from the trimmed
data (using conventional strategies) and from model criticism. Model criticism as an
outlier treatment strategy appeared to have improved the figures of both the Hui et al.
(2022b) and the Buffington and Morgan-Short (2022) data sets. In the case of the Hui
et al. data, the improvement was not asmarked, potentially due to the already high level
of correlations (.81 and .85). No advantage was observed for the Fang and Wu data.

Discussion

In our analysis of the three open data sets, we found that the model-based approach
was useful to varying degrees. Overall, the model-based approach only showed a clear
advantage for the Hui et al. (2022b) data set. This was, at least initially, surprising to
us. Here, we first discuss why the model-based approach demonstrated exceptional
performance with this data set. Then, we consider why this advantage did not
generalize to the other two data sets, which motivated our simulation study that
follows.

Repeatedly, we have stressed that mixed-effects models can simultaneously model
variability caused by characteristics of both individual items and participants (Baayen
et al., 2008). Therefore, the benefits of the mixed-effects approach should be most
obvious when there is a reasonable amount of participant and item variability to be
accounted for. In the Hui et al. (2022b) data, the authors used the masked-repetition
priming as a vocabulary test. Therefore, they sampled word stimuli across four
frequency bands. Put differently, words included in the experiment were of various
levels of difficulty. Highly frequent words (e.g., upset) should elicit much faster
responses than items at a lower frequency band (e.g., miniature). This means that
the intercept terms, representing the baseline RT for each item, can vary to a large
extent. Relatedly, the level of priming might also vary because there is not a lot of room
for a drastic speedup if the baseline RT is already fast. Therefore, properly modeling
item variability (in addition to participant variability) has proven to be the right strategy
because the accuracy of the estimates was improved through a phenomenon known as
shrinkage or regularization, a primary property of mixed-effects models (Baayen et al.,
2008; Winter, 2019). More accurate estimates also mean that the person-related
parameters are closer to their true values (e.g., baseline RTs [intercept] and priming
effects [slope]); therefore, the improvement in the split-half reliability was especially
obvious for this data set.

In contrast, the Buffington andMorgan-Short (2022) and Fang andWu (2022a) data
sets did not have a large amount of item variability. In Buffington and Morgan-Short
(2022), there was little variability in terms of difficulty because there were consistently
four positions in which the dog head could appear. The same was true for the study by
Fang and Wu (2022b), who focused only on one single grammatical structure (i.e., the
either–or construction). Perhaps, when there is little item variability to be accounted for
in the first place, the design of the task might prevent the mixed-effects models from
achieving their full potential. In addition, the number of itemsmight have played a role.
In the Buffington and Morgan-Short data, there were 800 items (or 1,600 trials).
Aggregating across such a large number of items yields very accurate results, as
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manifested by the higher levels of reliability in the by-participant analysis than in the
by-item analysis (see Table 3). Therefore, the aggregation-and-subtraction approaches
were not disadvantaged due to the sample size of the items. Finally, the overall level of
error should be a determining factor because the model-based approach is not a magic
wand that can remove all error and make an unreliable measure suddenly reliable.
What mixed-effects models are capable of is properly partitioning variance, thus
accounting for variance due to participant and item that could have been regarded as
error variance contributing to the unreliability of the measure. However, it cannot
remove random error from the data set.

In light of these accounts, we performed a simulation study to show the effects of
(1) item number and (2) level of error on the usefulness of themodel-based approach to
estimating reliability for RT differences (RQ3).

Study 2: Simulations
In the previous analyses, we observed that only the Hui et al. (2022b) data benefited
from a model-based approach to estimating reliability. The overall objective of this
simulation study was to explore the strengths and limitations of the model-based
approach. It is also through this study that we address our RQ3, which we repeat here
for easier reference:

RQ3:Under what conditions, in terms of the number of items and level of error,
is a model-based approach more beneficial in estimating the reliability of RT
differences, than non-model-based approaches?

Methodology

Data simulation
Data simulation refers to creating artificial data sets for analysis. By definition,
simulated data are not authentic in the sense that they are not collected from human
participants. However, because researchers have the flexibility to determine the char-
acteristics of the data in the data generation process and a large number of data sets can
be created in one go to simulate various scenarios, it has been a useful tool for methods
research in fields such as psychology and educational sciences. Because methods
research in SLA is only taking off, the use of simulations is not yet common. Among
a small number of exceptions, power analysis appears to be one of the main uses of
simulations (e.g., Brysbaert & Stevens, 2018; Nicklin&Vitta, 2021; Vitta et al., 2021). By
manipulating parameters such as effect sizes in artificial data sets, followed by imple-
menting the relevant statistical test, the authors were able to provide sample-size
guidelines for applied researchers to achieve sufficient levels of statistical power. In
addition, data simulation has been used in methods education, allowing researchers to
more fully understand how certain statistical models operate without the need to deal
with the contamination of uncertainty naturally embedded in real data sets from
research studies (DeBruine & Barr, 2021). In the present analysis, we simulated data
sets, followed by reliability assessments, in order to identify any “sweet spots”where the
model-based approach would be most helpful in estimating reliability.

The simulation
We wrote our R code (available on our OSF page: https://osf.io/cd5r8/), based on
DeBruine & Barr (2021) and an online tutorial provided by DeBruine (2020).
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As a first step, we created a baseline data set whose parameters were set up based on
the model summary reported by Hui et al. (2022b; see Table 4), because the model-
based approach was proven the most useful for the Hui et al. (2022b) data set as
reported in Study 1. In other words, the parameters were specified according to the
model reported in Hui et al. (2022b). In brief, we simulated a situation with a within-
participant design where participants (N = 120) responded to 40 items containing both
related and unrelated trials. Themean difference between versions was set at 0.10, given
a grand mean of -1.50. With this simulated data set, we repeated two reliability
assessments, following the steps reported in Study 1 above. One assessment was based
onRTdifferences from rawRTs, and the other was based on themodel-based approach.
We did not perform the z-transformation procedure as in Study 1 because the results
were not promising in that it did not produce higher levels of reliability in the three
open data sets analyzed.

Addressing RQ3, we tested the effects of varying two parameters, the number of
items and the degree of error, while keeping other specifications constant. We then
compared the performance of the two approaches on reliability. For the number of
items, we tested eight levels (i.e., k = 20, 30, 40 [baseline], 80, 120, 160, 400, and 600). In
terms of the degree of error, we tested seven levels (i.e., Residual SD = 0.05, 0.10, 0.20
[baseline], 0.40, 0.60, 0.80, and 1.00).

Results

We present and visualize the correlation coefficients as well as their 95% confidence
intervals in Tables 5 and 6 and in Figures 2 and 3. Overall, increasing the number of
items improves the reliability for RT differences based on raw RTs. The model-
based approach reached its ceiling levels when there were 30 to 40 items. In contrast,
the raw RT approach needed up to 400 items to reach acceptable levels. For the
degree of error, increasing the level of noise in the data caused the reliability to drop,
which was expected. However, it appeared that the drop was more drastic for the
raw RT approach than for the model-based approach. When we doubled the levels
of error (i.e., from 0.20 to 0.40), the split-half correlation for the raw RT approach
essentially floored at .02, compared with a satisfactory level of .82. At the same time,
a further increase in error resulted in a deeper dive, even for the model-based
approach.

Table 4. Parameters for the baseline data set

R code variable Data specification Value

sub_n number of participants 120
sub_sd standard deviation (SD) for participants’ random intercepts 0.29
sub_version_sd participants’ slopes SD 0.03
sub_i_version_cor participant intercept-slope correlation �0.97
stim_n number of stimuli in the simulation 40
stim_sd SD for the stimuli’s random intercept 0.08
stim_version_sd stimuli’s slope SD 0.03
stim_i_cor correlations between intercept and slopes �0.18
grand_i overall mean of the dependent variable (DV) �1.50
stim_version_eff mean difference between versions: related - unrelated 0.10
error_sd residual (error) SD 0.20
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Discussion

Through a series of simulations, we have shown that themodel-based approach can be a
promising computational alternative in estimating the error of RT-differencemeasures.

Table 5. Split-half correlations for simulated data sets (varying the numbers of stimuli)

Number of stimuli Raw RT reliability [95% CI] Model-based

20 .03 [�.15, .21] .79 [.71, .85]
30 .12 [�.06, .29] .90 [.86, .93]
40 (baseline) .23 [.05, .39] .95 [.93, .97]
80 .32 [.15, .47] .95 [.93, .97]
120 .35 [.18, .50] .98 [.97, .99]
160 .50 [.35, .62] .98 [.98, .99]
400 .69 [.59, .78] .98 [.97, .99]
600 .79 [.72, .85] .99 [.99, .99]

Table 6. Split-half correlations for simulated data sets (varying the degrees of error)

Error SD Raw RT reliability [95% CI] Model-based

0.05 .81 [.73, .86] .99 [.98, .99]
0.10 .52 [.38, .64] .99 [.98, .99]
0.20 (baseline) .23 [.05, .39] .95 [.93, .97]
0.40 .07 [�.11, .25] .82[.76, .87]
0.60 .03 [�.15, .21] .63 [.50, .72]
0.80 .02 [�.16, .19] .39 [.23, .53]
1.00 .01 [�.17, .19] .18 [.00, .35]

Figure 2. Correlations and their confidence intervals for two estimation approaches varying the number of
items.
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It appears to be particularly useful when the researchers do not have a large number of
items (e.g., k= 400) andwhen the level of error is onlymoderate. In contrast, the rawRT
approach can also be useful when the number of items reaches a certain threshold and
when the error standard deviation—that is, the level of noise—is small enough. Under
these specific circumstances, the averaging of raw RT differences can also be powerful
enough that a model-based approach becomes unnecessary. In other more extreme
conditions, such as when the error level is too high, neither approach can provide a
good rescue. Taken together, the simulation confirms our intuition that there can be a
“sweet spot” where the model-based approach can be most useful. From the present
analyses, this could mean it is advisable to apply a model-based approach in situations
where the researchers cannot include a large number of items and the level of error is
only moderate.

General discussion and conclusion
In this article, we took a step to search for a more informed, potentially standard
computational method to estimate the reliability of RT differences, a type of measure
that SLA researchers are beginning to rely on.We carried out two sets of analyses using
both open, authentic (Study 1) and artificial, simulated (Study 2) data sets. The results
of Study 1 demonstrated that model-based approaches can be very powerful in yielding
a high reliability level compared with methods based on raw RT or z-transformed RT
differences, but only in certain cases, and that adding the model criticism did not yield
more reliable results. In Study 2, we highlighted situations where the model-based
approach can be useful, but we also demonstrated that this approach is not a magic
wand that can remove error from an unreliable measure. Therefore, we argue that

Figure 3. Correlations and their confidence intervals for two estimation approaches varying the level of
error.
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the model-based approach presented in this article represents an alternative that
researchers should consider, especially under certain circumstances. As in any data
analysis, there is almost always more than one acceptable procedure (see, e.g., Steegen
et al., 2016). For example, Suzuki et al. (2022) reportedCronbach’s alpha for their word-
monitoring measure (as a grammatical sensitivity index). Researchers have also exam-
ined the use of a model-based Bayesian approach on RT-based tasks (Haines et al.,
2020). The present analysis remains silent on how our approach, based on mixed-
effects modeling, would compare to theirs.

When themodel-based approach yields a good level of reliability, researchers should
use it. In that case, provided that the RT difference is the outcome, researchers should
engage inmixed-effects modeling, as they probably would. On the other hand, if the RT
difference is on the predictor side of the equation, as an individual-difference measure,
we suggest that researchers first model the RT data with a mixed-effects model. Then,
they can use the by-participant random slopes for the condition as a predictor and/or
allow it to interact with other variables. Inwork involving structural equationmodeling,
such as themeasurement of explicit and implicit knowledge, the RT-differencemeasure
may be an indicator of a common factor. The use of the random slopes in these cases is
also appropriate because of the relatively high reliability (although measurement error
is already taken into account in the building of a common factor model).

However, wemust stress that researchers should treat study design as the first line of
defense in tackling potential unreliability. For example, to the extent that resources
allow, researchers may consider having a greater number of items. Brysbaert and
Stevens (2018), for example, recommended having 1,600 observations (e.g., 40 partic-
ipants times, 40 items) to run a well-powered study. When considering sample-size
planning, many SLA researchers focus almost entirely on the interplay between the
number of participants, expected effect sizes, significance levels, and statistical power
(see, e.g., Loewen &Hui, 2021). In fact, the number of items (shown in Study 2) and the
reliability of the instrument (discussed in the introductory sections) should receive
more attention. In addition to the number of items, there should ideally be sufficient
variability in terms of item difficulty so as to differentiate able and less able participants.
This can be achieved by including more grammatical structures or words in different
frequency bands. For example, Suzuki et al. (2022) and Godfroid and Kim (2021) had
four and six grammatical structures in their test, respectively. Hui et al. (2022b)
included vocabulary items in four frequency bands. All these design features will help
researchers reach a satisfactory level of reliability.

More generally, we echo previous calls for more consistent reporting of instrument
reliability (Marsden et al., 2018; Plonsky & Derrick, 2016). In the present case of
RT-difference measures, researchers can report the split-half reliability based on the
by-participant random slopes for experimental conditions. This information is criti-
cally important for understanding the uncertainty surrounding the measurement and
the limitations of the instrument. Consumers of research need this information to
evaluate claimsmade in studies and/or to determine the extent to which the instrument
is of sufficient quality to be adopted in subsequent research. As L2 researchers
increasingly embrace open science practices, more materials are publicly shared in
repositories such as IRIS (Marsden et al., 2016). Reliability information represents one
of the criteria that researchers can take advantage of tomake an informed assessment of
the quality of the instrument.

In relation to adopting materials, researchers should also share trial-level data (e.g.,
Hui et al., 2023; Isbell, 2021; Marsden & Morgan-Short, 2023). Although the overall
reliability is informative, subsequent researchers are in a position to further improve the
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instrument in their own study through an item analysis of the shared data. For example,
specific items may not be eliciting the intended effects (e.g., priming) due to some
overlooked item characteristics. These incidences can create noise in the data that can
be difficult to identify by simply inspecting the overall reliability levels. Access to trial-
level data allows subsequent researchers to revisit and inspect the items more thor-
oughly (e.g., by examining the by-item random slopes) to identify potentially ques-
tionable items. Then, they can either revise or remove the item(s), making the overall
instrument a better version in subsequent work. We would like to mention that our
search for appropriate data sets to analyze for Study 1 was not straightforward. For
example, we encountered studies that were awarded anOpenData badge, but trial-level
data were not included. Despite the challenges, we are very thankful for researchers who
do share their data because they have made more methods research possible.

Moreover, we join previous calls for the sharing of reproducible analysis code (Hui&
Huntley, 2021; In’nami et al., 2022). Analysis code can reveal the procedure one has
undertaken to arrive at the reported reliability. As discussed in the introductory
sections, specific steps in the estimation of reliability for RT differences may be seen
as a mystery because the computation is often not detailed and there is no standard
practice. In such cases, many applied researchers would benefit from knowing how
reliability is computed in previous studies. That is not to say that researchers should
blindly follow what others have done. On the contrary, the analysis code provides
methodologists with a way to understand current practices, a first step toward
refining them.

Finally, although the scope of this study is limited to reliability, we would like to raise
researchers’ awareness of validity issues because the ultimate goal for research is to have
both reliable and valid measures. Reliability is only a necessary, not sufficient, criterion
for a validmeasure. Evenwhen there are ways to promote reliability, these tasks can still
be reliably measuring an irrelevant construct. If that turns out to be the case, SLA
researchers might want to consider redesigning and/or developing new measures
intended specifically for individual differences research (Burgoyne et al., 2022; Draheim
et al., 2022; Draheim et al., 2021; Weigard et al., 2021).

To conclude, we have demonstrated that mixed-effects modeling can provide an
alternative for researchers to estimate the reliability of RT differences more accurately
and that model criticism as an outlier treatment strategy does not necessarily result in
better reliability and thus may not be necessary for measuring reliability. Although this
approach performs very well under specific conditions and it cannot magically remove
error from a measure, it represents a promising option for researchers using RT
differences in their work. We also hope that this article can enhance researchers’
awareness of the need to constantly evaluate the psychometric properties of the
measures we rely on.
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