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Abstract

The inexpressive Description Logic (DL) FL0, which has conjunction and value restriction as
its only concept constructors, had fallen into disrepute when it turned out that reasoning in
FL0 w.r.t. general TBoxes is ExpTime-complete, that is, as hard as in the considerably more
expressive logic ALC. In this paper, we rehabilitate FL0 by presenting a dedicated subsumption
algorithm for FL0, which is much simpler than the tableau-based algorithms employed by highly
optimized DL reasoners. Our experiments show that the performance of our novel algorithm, as
prototypically implemented in our FLower reasoner, compares very well with that of the highly
optimized reasoners. FLower can also deal with ontologies written in the extension FL⊥ of FL0

with the top and the bottom concept by employing a polynomial-time reduction, shown in this
paper, which eliminates top and bottom. We also investigate the complexity of reasoning in DLs
related to the Horn-fragments of FL0 and FL⊥.

KEYWORDS: description logics, reasoning, subsumption

1 Introduction

Description Logics (DLs) (Baader et al. 2003; 2017) are a well-investigated family of

logic-based knowledge representation languages, which are frequently used to formalize

ontologies for application domains such as the Semantic Web (Horrocks et al. 2003) or

biology and medicine (Hoehndorf et al. 2015). To define the important notions of such

an application domain as formal concepts, DLs state necessary and sufficient conditions

for an individual to belong to a concept. These conditions can be Boolean combinations

of atomic properties required for the individual (expressed by concept names) or prop-

erties that refer to relationships with other individuals and their properties (expressed

as role restrictions). For example, the concept of a parent that has only daughters can

be formalized by the concept description C := ∃child.Human�∀child.Female, which uses

the concept names Female and Human and the role name child as well as the concept

∗ This paper is under consideration in Theory and Practice of Logic Programming (TPLP).
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constructors conjunction (�), existential restriction (∃r.D), and value restriction (∀r.D).

Constraints on the interpretation of concept and role names can be formulated as gen-

eral concept inclusions (GCIs). For example, the GCIs Human � ∀child.Human and

∃child.Human � Human say that humans have only human children, and they are the

only ones that can have human children. DL systems provide their users with reasoning

services that allow them to derive implicit knowledge from the explicitly represented one.

In our example, the above GCIs imply that elements of our concept C also belong to

the concept D := Human � ∀child.Human, i.e., C is subsumed by D w.r.t. these GCIs.

A specific DL is determined by which kind of concept constructors are available.

In the early days of DL research, the inexpressive DL FL0, which has only conjunction

and value restriction as concept constructors, was considered to be the smallest possible

DL. In fact, when providing a formal semantics for so-called property edges of semantic

networks in the first DL system KL-ONE (Brachman and Schmolze 1985), value restric-

tions were used. For this reason, the language for constructing concepts in KL-ONE and

all of the other early DL systems (Brachman et al. 1991; Peltason 1991; Mays et al. 1991;

Woods and Schmolze 1992) contained FL0. It came as a surprise when it was shown that

subsumption reasoning w.r.t. acyclic FL0 TBoxes (a restricted form of GCIs) is co-NP-

hard (Nebel 1990). The complexity increases when more expressive forms of TBoxes are

used: for cyclic TBoxes to PSpace (Baader 1990; Kazakov and de Nivelle 2003) and for

general TBoxes consisting of GCIs even to ExpTime (Baader et al. 2005; Hofmann 2005).

Thus, w.r.t. general TBoxes, subsumption reasoning in FL0 is as hard as subsumption

reasoning in ALC, its closure under negation (Schild 1991).

These negative complexity results for FL0 were one of the reasons why the atten-

tion in the research of inexpressive DLs shifted from FL0 to EL, which is obtained from

FL0 by replacing value restriction with existential restriction as a concept constructor.

In fact, subsumption reasoning in EL stays polynomial even in the presence of gen-

eral TBoxes (Brandt 2004). The reasoning method employed in Brandt (2004), which

is nowadays called consequence-based reasoning, can be used to establish the PTime

complexity upper bounds also for reasoning in the extension EL+ of EL (Baader et al.

2005). This approach also applies to Horn fragments of expressive DLs such as SHIQ,

for which reasoning is ExpTime-complete, but consequence-based reasoning approaches

behave considerably better in practice than the usual tableau-based approaches for ex-

pressive DLs (Kazakov 2009). The DL FL0 is not Horn,1 but it shares with EL+ and

Horn-SHIQ that (general) TBoxes have canonical models, that is, models such that a

subsumption relationship between concept names follows from the TBox if and only if

it holds in the canonical model. Consequence-based reasoning basically generates these

models. However, whereas the canonical models for EL and Horn-SHIQ are respectively

of polynomial and exponential size, the canonical models for FL0, called least functional

models (Baader et al. 2018a), may be infinite.

In this paper we build on and extend the results from Michel et al. (2019). We devise

a novel algorithm for deciding subsumption w.r.t. general FL0 TBoxes, describe a first

implementation of it in the new FLower reasoner,
2 and report on an evaluation of FLower

on a large collection of ontologies, which shows that FLower competes well with existing

highly optimized DL reasoners. Basically, our new algorithm generates “large enough”

1 Actually, reasoning in its Horn fragment is PTime (Krötzsch et al. 2007; 2013).
2 https://github.com/attalos/fl0wer.
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parts of the least functional model and achieves termination using a blocking mechanism

similar to the ones employed by tableau-based reasoners. The key idea of the implemen-

tation is to apply the TBox statements like rules and to use a variant of the well-known

Rete algorithm for rule application (Forgy 1982), adapted to the case without negation.

To create a large set of challenging FL0 ontologies we have used, on the one hand, the

OWL 2 EL ontologies of the OWL reasoner competition (Parsia et al. 2017) transformed

into FL0 by exchanging the quantifier and omitting too small ontologies as too easy. On

the other hand, we have extracted FL0 sub-ontologies of decent size from the ontologies

of the Manchester OWL Corpus (MOWLCorp).3

In the next section, we introduce FL0 and its extension FL⊥ with the top (�) and

the bottom (⊥) concepts. We recall the characterization of subsumption based on least

functional models from Baader et al. (2018a), introduce a normal form for FL0 TBoxes,

and show that the bottom concept ⊥ and the top concept � can be simulated by such

TBoxes. In Section 3, we introduce our new algorithm, and prove that it is sound, com-

plete, and terminating. Section 4 considers the Horn fragments of FL0 and FL⊥. First, we

show that, for Horn-FL0, our algorithm can be restricted such that it runs in polynomial

time. A polynomial upper bound for subsumption in Horn-FL0 has already been shown

in Krötzsch et al. (2007; 2013) for an extension of Horn-FL0 that contains ⊥. However,

this extension is weaker than Horn-FL⊥. In fact, we also show in Section 4 that sub-

sumption in Horn-FL⊥ is PSpace-complete, and that it becomes ExpTime-complete in

a small extension of Horn-FL⊥. Section 5 describes how to realize our novel algorithm

based on Rete, and Section 6 presents our experimental results, which evaluate several

optimizations of the algorithm, and compare its performance with that of existing highly

optimized DL reasoners.

2 Preliminaries on FL0 and extensions

We introduce the DL FL0, recall the characterization of subsumption based on least

functional models from Baader et al. (2018a), introduce a normal form for FL0 TBoxes,

and show that the bottom concept ⊥ and the top concept � can be simulated by such

TBoxes.

2.1 Syntax, semantics, and functional interpretations

Syntax. Let NC and NR be disjoint, at most countably infinite sets of concept names

and role names, respectively. An FL0 concept description (concept for short) C is built

according to the following syntax rule

C ::= A | C � C | ∀r.C, where A ∈ NC, r ∈ NR.

Additionally allowing the use of the top concept � and the bottom concept ⊥ in the

above rule yields the DL FL⊥. A general concept inclusion (GCI) for any of these DLs

is of the form C � D, where C and D are concepts of the respective DL. A TBox is a

finite set of GCIs. The signature sig(C) (sig(T )) of a concept C (TBox T ) is the set of

concept and role names occurring in C (T ). For convenience, we use further functions

3 https://zenodo.org/record/16708.
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to refer only to the concept names and only to the role names in an expression. For a

concept or TBox E, we set sigC(E) = sig(E) ∩ NC and sigR(E) = sig(E) ∩ NR.

The expression ∀r.C is called a value restriction. For nested value restrictions we use

the following notation: given a word σ = r1 · · · rm ∈ NR
∗, m ≥ 0, over the alphabet NR

of role names, and a concept C, we write ∀σ.C as an abbreviation of ∀r1. · · · ∀rm.C. For

the empty word ε, we have ∀ε.C = C.

Semantics. An interpretation I is a pair I = (ΔI , ·I), consisting of a non-empty set

ΔI (the domain of I) and an interpretation function ·I that maps every concept name

A ∈ NC to a subset AI ⊆ ΔI of the domain, and every role name r ∈ NR to a binary

relation rI ⊆ ΔI ×ΔI . The interpretation function is extended to (complex) concepts

as follows:

(C �D)I := CI �DI , �I := ΔI , ⊥I := ∅, and

(∀r.C)I := {d ∈ ΔI | ∀e ∈ ΔI .(d, e) ∈ rI → e ∈ CI}.

The GCI C � D is satisfied in I, denoted as I |= C � D, if CI ⊆ DI . The interpretation

I is a model of the TBox T , denoted as I |= T , if I satisfies all GCIs in T . The concept

C is subsumed by the concept D w.r.t. T , denoted as C �T D, if CI ⊆ DI is satisfied

in all models I of T .

To decide subsumption in FL0, it is sufficient to consider so-called functional inter-

pretations, which are tree-shaped interpretations in which every element has exactly

one child for each role name. In such interpretations, domain elements are identified by

sequences of role names.

Definition 2.1

An interpretation I = (ΔI , ·I) is called a functional interpretation if ΔI = NR
∗ and for

all r ∈ NR, r
I = {(σ, σr) | σ ∈ NR

∗}. It is called a functional model of the FL0 concept

C w.r.t. the FL0 TBox T if I |= T and ε ∈ CI . For two functional interpretations I and

J we write

I ⊆ J if AI ⊆ AJ for all A ∈ NC.

The notion of a functional interpretation fixes the domain and the interpretation of role

names. Thus, a functional interpretation is uniquely determined by the interpretation of

the concept names. Given a family (Ii)i≥0 of functional interpretations, their intersection

J :=
⋂

i≥0 Ii is the functional interpretations that satisfies AJ =
⋂

i≥0 A
Ii .

Lemma 2.1 (see Baader et al. 2018a)

Given an FL0 concept C and an FL0 TBox T , the functional models of C w.r.t. T are

closed under intersection. In particular, this implies that there exists a least functional

model IC,T of C w.r.t. T , i.e., a functional model of C w.r.t. T such that IC,T ⊆ J holds

for all functional models J of C w.r.t. T .

In Baader et al. (2018a), subsumption in FL0 was characterized as inclusion of least

functional models as follows: given FL0 concepts C,D and an FL0 TBox T , we have

C �T D iff ID,T ⊆ IC,T . (1)

For our purposes, the following characterization of subsumption turns out to be more

useful.
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Theorem 2.1

Given FL0 concepts C,D and an FL0 TBox T , we have C �T D iff ε ∈ DIC,T .

Proof

Assume that C �T D. Then ε ∈ CIC,T (which we know since IC,T is a functional model

of C w.r.t. T ) implies ε ∈ DIC,T since IC,T is a model of T . Conversely, ε ∈ DIC,T

implies that IC,T is a functional model of D w.r.t. T , and thus ID,T ⊆ IC,T , which

yields C �T D by (1).

2.2 Normal forms for FL⊥ and FL0 concepts and TBoxes

An FL⊥ concept is in normal form if it is of the form

• � or ⊥, or

• a non-empty conjunction of concepts of the form ∀r.⊥, A, ∀r.A, where A ∈ NC and

r ∈ NR.

An FL⊥ TBox is in normal form if it contains only GCIs of the form C � D, where C,D

are in normal form, and C is not ⊥ and D is not �. In addition, FL0 concepts (TBoxes)

in normal form are FL⊥ concepts (TBoxes) in normal form that contain neither � nor ⊥.

It is easy to see that every (FL⊥ or FL0) TBox T can be transformed in linear time

into a TBox in normal form such that all subsumption relationships in the signature of

T are preserved. For this, one removes tautological GCIs with ⊥ on the left-hand side

or � on the right-hand side, and flattens value-restrictions ∀r.E with E �∈ NC ∪ {⊥}.
To flatten an occurrence of ∀r.E in a GCI C � D means that E is replaced by a fresh

concept name AE . If the occurrence is within C, then the GCI E � AE is added to the

TBox, and otherwise AE � E.

It is well-known that subsumption between complex concepts can be reduced in linear

time to subsumption between concept names. In fact, we have C �T D iff A �T ′ B,

where A,B are concept names not occurring in C, D, or T , and T ′ is obtained from T
by adding the GCIs A � C and D � B.

Proposition 2.1

Subsumption in FL⊥ (FL0) w.r.t. TBoxes can be reduced in linear time to subsumption

of concept names w.r.t. FL⊥ (FL0) TBoxes in normal form.

For subsumption between concept names A,B in the DL FL0, the characterization of

subsumption given in Theorem 2.1 means that, to decide whether A �T B holds, it is

sufficient to check whether the root of IA,T is contained in BIA,T , that is, whether the

label of this root contains the concept name B.

2.3 Reducing subsumption in FL⊥ to subsumption in FL0

Subsumption between concept names in FL⊥ can be reduced to subsumption in FL0

using the following transformation rules on normalized FL⊥ TBoxes T :

T1 Replace ⊥ and � everywhere by the fresh concept names A⊥ and A�, respectively;

T2 add the axioms A⊥ � B for all B ∈ sigC(T );

T3 add the axioms B � A� and A� � ∀r.A� for all B ∈ sigC(T ) and all r ∈ sigR(T ).
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We denote the TBox resulting from this transformation as FL0(T ).

Lemma 2.2

For all FL⊥ TBoxes T in normal form and all concept names A, B occurring in T , we

have A �T B iff A �FL0(T ) B.

Proof

“⇐”: Assume that A ��T B. Then there is a model I of T such that AI �⊆ BI . We

modify I to an interpretation J by setting A⊥
J := ∅ and A�

J := ΔI , and leave the

domain as well as the interpretation of the other concept names and the role names as

in I. It is easy to see that J is a model of FL0(T ) that satisfies AJ = AI �⊆ BI = BJ .

“⇒”: Assume that A ��FL0(T ) B, and let I be a model of FL0(T ) that contains

an element d0 with d0 ∈ AI \ BI . We may assume without loss of generality that all

elements of ΔI are reachable from d0 via a path of roles in sigR(T ). Due to the GCIs

introduced by T3, d0 ∈ AI yields d0 ∈ A�
I , and thus d ∈ A�

I holds for all d ∈ ΔI .

We also know that d0 �∈ A⊥
I since otherwise the GCI A⊥ � B added by T2 would yield

d0 ∈ BI , contradicting our assumption that d0 is a counterexample to the subsumption.

The interpretation J is obtained from I by removing all elements of A⊥
I . Then d0 is

an element of ΔJ and it satisfies d0 ∈ AJ \ BJ . Thus, it remains to show that J is a

model of T .

First, note that A�
J = ΔJ = �J and A⊥

J = ∅ = ⊥J . This implies that it is enough

to prove that the GCIs from T transformed by T1, which are satisfied by I since it is a

model of FL0(T ), are also satisfied by J . For this, it is in turn sufficient to show that,

for all concepts C in normal form occurring in FL0(T ) and all d ∈ ΔJ we have d ∈ CI

iff d ∈ CJ . For concept names this is trivial by the definition of J . Thus, consider a

value restriction of the form ∀r.A1.

First, assume that d ∈ (∀r.A1)
I , but d �∈ (∀r.A1)

J . Then there is an element e ∈ ΔJ

with (d, e) ∈ rJ , but e �∈ A1
J . However, since e ∈ ΔJ , we already know that e �∈ A1

J

implies e �∈ A1
I . Since we also have (d, e) ∈ rI , this contradicts our assumption that

d ∈ (∀r.A1)
I .

Second, assume that d ∈ (∀r.A1)
J , but d �∈ (∀r.A1)

I . Then there is an element e ∈ ΔI

with (d, e) ∈ rI , but e �∈ A1
I . If e ∈ ΔJ , then we also have (d, e) ∈ rJ and e �∈ A1

J ,

which contradicts our assumption that d ∈ (∀r.A1)
J . Otherwise, we must have e ∈ A⊥

I

since e was removed. But then the GCIs introduced by T2 yield e ∈ A1
I , contradicting

our assumption on e.4

Since normalization of an FL⊥ TBox and the transformation into an FL0 TBox

described in this subsection are polynomial, we obtain the following result.

Theorem 2.2

Subsumption in FL⊥ can be reduced in polynomial time to subsumption in FL0.

3 Subsumption algorithm for FL0 with general TBoxes

We define a decision procedure for subsumption of two concepts w.r.t. a TBox based

on a finite representation of the least functional model obtained by “applying” GCIs

4 Note that A1 cannot be A� since a value restriction of the form ∀r.� is not normalized.
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like rules. By Proposition 2.1, it is sufficient to focus on FL0 TBoxes in normal form

and subsumption between concept names. We can then use Lemma 2.2 to extend the

applicability of our algorithm to FL⊥.

In the remainder of this section, T denotes a FL0 TBox in normal form, and we focus

on the task of deciding A �T B for two concept names A, B occurring in T . For the sake

of simplicity, we assume in this section that NC and NR consist exactly of the concept

and role names occurring in T . In particular, this means that NC and NR are finite and

their cardinalities are bounded by the size of T .

The algorithm computes a finite subtree of the tree IA,T such that one can read off

the named subsumers (concept names) of A w.r.t. T at the root. The finite structure

that the algorithm operates on is called partial functional interpretation. This is similar

to a functional interpretation, except that the domain is a finite prefix-closed subset of

NR
∗, that is, a finite tree.

Definition 3.1

An interpretation Y = (ΔY , ·Y) is a partial functional interpretation iff ΔY ⊆ NR
∗ is a

finite prefix-closed set and rY = {(σ, σr) | σr ∈ ΔY} for all r ∈ NR.

Note that, as with functional interpretations, the interpretation of the role names is

already determined by the domain. Thus, it suffices to give the domain and the interpre-

tation of concept names to fix a partial interpretation.

Informally, the algorithm for deciding A �T B proceeds as follows: it starts with a

partial functional interpretation Y that has ε as only domain element, and for which

AY = {ε}. In each iteration, a domain element d of the current tree Y and a single GCI

C � D from T is chosen such that d matches C and does not match D. The tree is then

extended so that d matches D. The extension can affect both the domain and the inter-

pretation of concept names. The method proceeds in such a way that, for every generated

tree Y, the invariant Y ⊆ IA,T is satisfied. Termination is established by blocking fur-

ther extensions for duplicate elements. The algorithm terminates if the following holds

for every non-blocked element d and every GCI C � D in T : if d matches C, then d

also matches D. Soundness and completeness is shown by establishing a correspondence

between the nodes in the final tree and nodes in the least function model of A w.r.t. T .

To describe the procedure more formally, we must define the following notions:

1. the condition under which a domain element of a partial interpretation matches a

concept,

2. the extension of the tree to achieve a match of an element with the right-hand side

of a GCI, and

3. the conditions that distinguish blocked from non-blocked elements.

To address the first point, we introduce the following auxiliary notions.

Definition 3.2

Let Y = (ΔY , ·Y) be a partial functional interpretation and D a concept in normal form.

The set of elements in ΔY that match D, denoted by match(D,Y), is defined inductively

as follows:

match(A,Y) := AY for all A ∈ NC;

match(∀r.A,Y) := {σ ∈ ΔY | σr ∈ AY} for all r ∈ NR and A ∈ NC;

match(C1 � C2,Y) := match(C1,Y) ∩match(C2,Y).
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Since Y is partial functional (i.e. has at most one child per node for each role name),

it is easy to see that σ ∈ match(C,Y) implies σ ∈ CY . The converse need not be true,

as σ may have no r-child in ΔY . We say that σ ∈ ΔY violates the GCI C � D iff

σ ∈ match(C,Y) and σ /∈ match(D,Y). In this case, σ is called an incomplete element.

Given a TBox T in normal form and a partial functional interpretation Y, we define the

set of all incomplete elements as follows:

ic(Y, T ) := {σ ∈ ΔY | there is C � D ∈ T such that σ violates C � D}.

Intuitively, the elements in ic(Y, T ) are those eligible for an extension of Y toward building

a representation of the least functional model, while those in ΔY \ ic(Y, T ) are not. As

an additional filter for extensions, we define a blocking condition. First, we introduce

auxiliary notions for the blocking mechanism consisting of the standard notions of prefix,

proper prefix, and a strict total order on (NR)
∗.

Let σ, ρ ∈ NR
∗. The length of an element σ ∈ NR

∗ is denoted by |σ|. We write ρ ∈
prefix(σ) if σ = ρσ̂ for some σ̂ ∈ NR

∗, and ρ ∈ pprefix(σ) if ρ ∈ prefix(σ) and ρ �= σ. In

the latter case, ρ is called a proper prefix of σ. Let ≺ be any total order on NR
∗ such

that |σ| < |ρ| implies σ ≺ ρ for all σ, ρ ∈ NR
∗. Since NR is finite, this implies that, for

any element of σ ∈ NR
∗, there are only finitely many elements ρ such that ρ ≺ σ. In

particular, the order ≺ is well-founded.

For a (partial) functional interpretation Y = (ΔY , ·Y) and σ ∈ ΔY , we define the label

of σ in Y as Y(σ) := {A ∈ NC | σ ∈ AY}. The cardinality of Y(σ) is bounded by the size

of T , and thus there can be only exponentially many different such labels.

Definition 3.3

Let Y = (ΔY , ·Y) be a partial functional interpretation. The set of all blocked elements

in ΔY is defined by induction over the well-founded order ≺:

B1 The least element ε is not blocked.

B2 The element σ ∈ ΔY is blocked if there exists ω ∈ ΔY with ω ≺ σ such that

Y(σ) = Y(ω) and ω is not blocked.

B3 Furthermore, the element σ ∈ ΔY is blocked if there exists ρ ∈ pprefix(σ) such that

ρ is blocked.

Only elements of ΔY for which B1 or B2 holds can be blocked. All other elements are

non-blocked elements, which are collected in the set nb(Y).

Condition B2 corresponds to anywhere blocking in classical tableau algorithms: intu-

itively, if there are two nodes with the same label, it suffices to reason only on one of

them, and the ordering decides which one is used. Condition B3 corresponds to ancestor

blocking : if it is already decided that a node can be ignored, it is not necessary to consider

its descendants either. Nodes blocked due Condition B2 are called directly blocked, while

nodes blocked due Condition B3 are called indirectly blocked.

Next, we define what an extension step is. Such a step expands a single non-blocked

and incomplete element in a partial functional interpretation.

Definition 3.4

Let Y be a partial functional interpretation, T a TBox in normal form, m,n ≥ 0 and

α a GCI in T of the form α = C � (A1 � · · · �Am � ∀r1.B1 � · · · ∀rn.Bn) .
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In addition, let σ ∈ nb(Y)∩ ic(Y, T ) be a non-blocked, incomplete element in Y violating

α. Then, the expansion of α at σ in Y is the partial interpretation Z defined by

• ΔZ = ΔY ∪ {σr1, . . . , σrn};
• AZ

i = AY
i ∪ {σ} for all i = 1, . . . ,m;

• BZ
i = BY

i ∪ {σrj | 1 ≤ j ≤ n,Bj = Bi} for all i = 1, . . . , n; and

• QZ = QY for all Q ∈ NC \ {A1, . . . Am, B1, . . . , Bn}.

A partial functional interpretation Z is a T -completion of Y, written as Y �T Z, iff Z
is an expansion of some α ∈ T at some σ′ ∈ nb(Y) ∩ ic(Y, T ). We denote by �T

∗ the

reflexive transitive closure of �T and call Z with Y �T
∗ Z complete if every incomplete

element is blocked, that is, nb(Yn) ∩ ic(Yn, T ) = ∅.

Depending on the choice of σ and the GCI, there can be several T -completions of Y.

Also note that it is guaranteed that either nb(Y) ∩ ic(Y, T ) = ∅ or there exists a

T -completion of Y. Thus, in case a given Z with Y �T
∗ Z is not complete, it can be

further completed.

Given the input A0, B0 ∈ NC and T , the algorithm Subs(A0, B0, T ) for deciding A0 �T
B0 computes a sequence of T -completions until it reaches a complete partial functional

interpretation, i.e., one where no non-blocked element violates any GCI from T . The

algorithm starts with the following partial functional interpretation:

ΔY0 := {ε}; AY0
0 := {ε} and BY0 := ∅ for all B ∈ NC \ {A0}, (2)

and computes a sequence

Y0 �T Y1 �T · · · Y(n−1) �T Yn

such that Yn is complete in the sense introduced above. It answers “yes” if B0 ∈ Yn(ε)

(or equivalently ε ∈ BYn
0 ) and “no” otherwise.

Example 3.1

In this example, we illustrate the completion steps and how the blocking conditions are

applied. Let NC = {A,B,K,L,M} and NR = {r, s}. The TBox T is defined as follows:

T := { A � ∀r.A, A � B,

A � ∀s.K, K � ∀s.A,

∀s.B � L, ∀s.L � M }.

One can verify that

A �T M.

In fact, the GCIs A � ∀s.K, K � ∀s.A and A � B yield A �T ∀s.∀s.B. Using ∀s.B � L

and ∀s.L � M , we then obtain A �T M . We use a total order on NR
∗ that satisfies

ε ≺ r ≺ s ≺ rr ≺ rs ≺ sr ≺ ss ≺ rrr ≺ · · ·

and compute a sequence of completion steps for Subs(A,M, T ) sketched in Figure 1,

where

7 marks blocked elements, and

3 marks non-blocked elements not violating any GCI in T .
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Fig. 1. Example run.
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We write �ε
A�∀r.A to denote the completion step that takes ε as a non-blocked element

violating A � ∀r.A and applies the expansion. Figure 1 shows the first completion steps

needed to obtain M ∈ Y9(ε), which yields A �T M . For example, in Y1 the blocking

condition B2 is used to block the node r. In Y2, r is no longer blocked since the label of

ε has been expanded. In Y5, r gets again blocked since its label is expanded, and thus

rr is indirectly blocked due to B3. Also note that in Y6 we have rr ≺ ss and both have

the same label, but since rr is already blocked, B2 does not apply to ss, which allows

us to do further completion steps needed to derive A �T M .

Before we prove that the algorithm is sound and complete, we first show that the

computed sequence is always finite, thus ensuring termination of the algorithm. The

depth of a partial functional interpretation Y = (ΔY , ·Y), denoted by depth(Y), is the

maximum length of role words in ΔY , i.e., depth(Y) := max({|σ| | σ ∈ ΔY}).

Lemma 3.1

If Z is a partial functional interpretation such that Y0 �T
∗ Z, then depth(Z) ≤ 2|NC| +1.

Proof

Let Y0�T Y1�T . . .�T Yn = Z be a sequence of expansions. We show for each i, 1 ≤ i ≤ n,

that the length of words in ΔYi is bounded by 2|NC|+1. A new element σ ∈ ΔYi \ΔYi−1 is

only added by the expansion at σ of Yi−1 if σ = ωr and ω ∈ nb(Yi−1). Now, ω ∈ nb(Yi−1)

is only possible if there exist no two distinct σ1, σ2 ∈ prefix(ω) such that Yi−1(σ1) =

Yi−1(σ2). Otherwise, since either σ1 ≺ σ2 or σ2 ≺ σ1, one of these two nodes would be

blocked by blocking condition B2, and ω would be blocked by condition B3. It follows

that Yi−1(σ1) �= Yi−1(σ2) for every two distinct σ1, σ2 ∈ prefix(ω), and consequently

|ω| ≤ 2|NC| and |σ| = |ω|+ 1 ≤ 2|NC| + 1. Hence, |σ| ≤ 2|NC| + 1 for every σ ∈ ΔZ , which

yields depth(Z) ≤ 2|NC| + 1.

The upper bound on the depth of the tree in a T -completion sequence also yields

an upper bound on its overall size, since the outdegree of the tree is limited by
∣∣NR

∣∣.
Furthermore, we observe that Y �T Y ′ implies that Y � Y ′, that is a T -completion

always adds something and never removes anything. At the same time, each label set

can contain at most
∣∣NC

∣∣ many names. Thus, due to the depth bound, the bound on the

outdegree, and the upper bound on the label size, there cannot be an infinite sequence of

T -completions. Hence, Subs(A0, B0, T ) always terminates. Note that we have used both

blocking conditions, B2 and B3, in the proof.

Lemma 3.2

Subs(A0, B0, T ) always terminates.

Note, however, that our termination argument only yields a double-exponential bound

on the run time of the algorithm. The reason is that Lemma 3.1 only shows an exponential

bound on the depth of the generated trees, and thus only a double-exponential bound on

the size of these trees. At the moment, it is not clear whether one can construct examples

where the algorithm only terminates after an double-exponential number of steps, but

we also do not have a proof that it always terminates in exponential time. Thus, we

currently do not know whether the algorithm is worst-case optimal or not. However, our

experimental evaluation shows that it works reasonably well in practice.
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It remains to show that Subs(A0, B0, T ) always computes the correct result, that is,

that it is sound and complete. The following lemma is crucial for proving this.

Lemma 3.3

Let Y0 be as in (2) and Y be a partial functional interpretation that is reachable from

Y0 and complete, that is, Y0 �T
∗ Y and ic(Y, T )∩ nb(Y) = ∅. Then there is a functional

model I of T such that Y(ε) = I(ε).

Proof

We extend Y to a functional interpretation I such that Y(ε) = I(ε). Note that, in Y,

even non-blocked nodes σ need not have r-successors for all r ∈ NR. This is the case

if there is no GCI that requires generating an r-successor for σ. In the least functional

model, the successor σr exists, but it has label ∅. We will represent such successors by a

dummy node d� with an empty label in our construction.

To construct I, we first define a mapping m : NR
∗ → nb(Y) ∪ {d�} by induction on

the length of σ ∈ NR
∗ as follows:

• By definition, ε is not blocked, and thus we can set m(ε) = ε.

• Now, consider a node σr of length > 0, and assume that m(σ) is already defined.

We distinguish two cases:

— Assume that m(σ)r ∈ ΔY . Note that this node cannot be indirectly blocked

since m(σ) is then a node in ΔY that is not blocked. Thus, there exists

σ′ ∈ nb(Y) such that Y(σ′) = Y(m(σ)r). We set m(σr) = σ′.

— If m(σ)r �∈ ΔY , then we set m(σr) = d�.

Based on m and Y, we define the functional interpretation I by setting

AI = {σ | m(σ) ∈ AY} for all A ∈ NC.

It follows from Definition 3.2 that, for every σ ∈ NR
∗ and every FL0 concept C in normal

form, if m(σ) matches C in Y, then σ ∈ CI . In fact, assume that m(σ) matches C. If A

is a conjunct in C, then m(σ) ∈ AY , and thus σ ∈ AI . If ∀r.A is a conjunct in C, then

m(σ)r ∈ AY . This implies m(σ)r ∈ ΔY , and thus m(σr) satisfies Y(m(σr)) = Y(m(σ)r),

which yields m(σr) ∈ AY , and thus σr ∈ AI . This shows σ ∈ (∀r.A)I .
The other direction also holds. Assume that σ ∈ CI . If A is a conjunct in C, then

σ ∈ AI implies m(σ) ∈ AY . If ∀r.A is a conjunct in C, then σ ∈ (∀r.A)I implies σr ∈ AI ,

and thus m(σr) ∈ AY . Consequently, A ∈ Y(m(σr)) = Y(m(σ)r) yields m(σ)r ∈ AY ,

which completes the proof that m(σ) matches C

We are now ready to show that I is a model of T , that is, for every C � D ∈ T and

σ ∈ CI , also σ ∈ DI holds. Thus, assume C � D ∈ T and σ ∈ CI . The latter implies

that m(σ) matches C. This is only possible if m(σ) �= d�. Thus, m(σ) ∈ nb(Y) and since

Y is complete, m(σ) �∈ ic(Y). Consequently, m(σ) matches D, which yields σ ∈ DI .

Theorem 3.1

Subs(A0, B0, T ) is sound and complete, that is, it outputs “yes” iff A0 �T B0.

Proof

Assume that the algorithm has generated a complete partial functional interpretation Y
such that Y0 �T

∗ Y. Lemma 3.3 yields a model I of T such that I(ε) = Y(ε).
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If Subs(A0, B0, T ) outputs “no”, then B0 �∈ Y(ε). Since A0 ∈ Y(ε) = I(ε) and B0 �∈
Y(ε) = I(ε), the model I of T yields a counterexample to the subsumption relation

A0 �T B0 because this implies ε ∈ AI
0 \BI

0 .

If Subs(A0, B0, T ) outputs “yes”, then B0 ∈ Y(ε). It is easy to see that Y (σ) ⊆
IA0,T (σ) holds for all σ ∈ NR

∗. In fact, one can generate IA0,T from Y0 by an infinite

number of completion steps that also are applied to blocked nodes. Thus, whatever is

added in the sequence Y0 �T
∗ Y is also present in IA0,T . But then B0 ∈ Y(ε) yields

B0 ∈ IA0,T (ε), and this implies A0 �T B0 by Theorem 2.1.

The algorithm Subs(A0, B0, T ) shares properties with the completion method for EL
(Baader et al. 2005) as well as with tableau algorithms for expressive DLs (Baader and

Sattler 2001). Every single T -completion step extends the label set of at least one node

in the tree. Intuitively, adding the concept name A to the label set of domain element σ

corresponds to deriving A0 � ∀σ.A as a consequence of T . A single run of Subs(A0, B0, T )

not only decides whether A0 � B0 is entailed by T but computes all named subsumers

of A0. This is similar to the EL completion method and other consequence-based calculi

(Simanč́ık et al. 2011). From tableau algorithms Subs(A0, B0, T ) inherits the blocking

mechanism that ensures termination.

4 Horn and other fragments of FL0

Based on the algorithm presented in the last section, we show that subsumption between

FL0 concepts becomes tractable if one restricts to the Horn logic Horn-FL0 introduced

in Krötzsch et al. (2007). We then consider some extensions. In Horn-FL0, every GCI is

of one of the following forms:

A � C A �B � C A � ∀r.B, (3)

where A,B,C ∈ NC and r ∈ NR. Our definition differs slightly from that in Krötzsch

et al. (2007), in that they allow � and ⊥ to be used both in FL0 and Horn-FL0. To see

that this is not a major restriction, we note that for the extension of Horn-FL0 that uses

� and ⊥ anywhere where a concept is used, the reduction presented in Section 2.3 can

still be used to obtain a TBox fully in Horn-FL0 as it is presented here.

Krötzsch et al. (2007) only show the complexity for knowledge base consistency, which

is PTime-complete in Horn-FL0. We improve upon these results by showing that sub-

sumption between arbitrary FL0 concepts with respect to a Horn-FL0 TBox is tractable

as well. Note that, whereas for FL0, subsumption between concepts can be reduced to

knowledge base consistency, the restricted expressivity of Horn-FL0 does not allow for

this in the general case.

Theorem 4.1

Concept subsumption of FL0 concepts with respect to general Horn-FL0 TBoxes is

PTime-complete.

Proof

Hardness follows easily from PTime-hardness of satisfiability of propositional Horn for-

mulae. Specifically, given a Horn formulae Φ over propositional variables {p1, . . . , pm}, we
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associate to each variable pi a concept name Ai, translate clauses pi1 ∧ . . .∧ pim → pj to

GCIs A0�Ai1 � . . .�Aim � Aj , and clauses pi1∧ . . .∧pim → ⊥ to A0�Ai1� . . . Aim � B0.

Then, we transform these GCIs into ones with only binary conjunction on the left-hand

sides by introducing auxiliary concept names. It is easy to see that the resulting TBox

entails A0 � B0 iff Φ is unsatisfiable.

For inclusion in PTime, we modify the procedure described in Section 3. In contrast

to that procedure, we cannot reduce subsumption of the form C �T D to subsumptions

of the form A0 �T B0, since the axiom D � B0 need not be expressible in Horn-FL0.

However, we can restrict ourselves to subsumptions of the form A0 �T D, where A0 ∈ NC,

as for subsumptions C � D, we can add the axiom A0 � C to the original TBox, which

after normalization becomes an Horn-FL0 TBox T that entails A0 � D iff the original

ontology entails C � D.

To decide A0 �T D in polynomial time, we apply the algorithm described in Section 3

with two modifications:

1. the initial partial functional interpretation Y0 already contains several nodes which

serve as a “skeleton” of D, and

2. expansions are only applied on nodes from that skeleton.

Specifically, for D = ∀σ1.A1 � . . . � ∀σn.An, the initial partial functional interpretation

Y0 is now defined as follows:

ΔY0 =
⋃

1≤i≤n

prefix(σi) AY0
0 = {ε} BY0 = ∅ for all B ∈ NC \ {A0}.

Furthermore, expansions are only applied on nodes σ ∈ ΔY0 , that is, new nodes may be

introduced, but they are not further expanded. This restriction makes every completion

sequence polynomially bounded, because we have at most one step per pair (α, σ) ∈
T × ΔY0 . For the final interpretation Z, we check whether σi ∈ AZ

i for all 1 ≤ i ≤ n,

which corresponds to checking whether ε ∈ DZ . To show that the resulting method is

still sound and complete, we show that for the least functional model IA,T , we have

for every σ ∈ ΔY0 that Z(σ) = IA,T (σ). For this, it suffices to show that, for every

d ∈ Y0 and C ′ � D′ ∈ T , σ ∈ (C ′)Z implies σ ∈ (D′)Z . Since T is in Horn-FL0,

C ′ does not contain universal role restrictions. Consequently, if σ ∈ match(C ′,Z), the

expansion already made sure that σ ∈ match(D′,Z) and consequently that σ ∈ (D′)Z .

It follows that Z(σ) = IA,T (σ) for all σ ∈ ΔY0 . This means that A �T D iff ε ∈ DZ .

Our method runs in polynomial time and is sound and complete, and thus subsumption

with Horn-FL0-TBoxes can be decided in polynomial time.

Remark 4.1

The proof of Theorem 4.1 uses the fact that we only need to consider role-successors of

roles that occur on the left-hand side of a GCI (in case of Horn-FL0 there are no such

roles to consider). We use this observation in an optimization of FLower to improve

reasoning times.

For many DLs, such as ALC and ALCI, it is common to define their Horn-fragments

as their intersection with Horn-SROIQ. If we define Horn-FL⊥ in this way, we obtain

a DL in which value restrictions can occur on the left-hand side in axioms of the form
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A � ∀r.B � ⊥, where A,B ∈ NC and r ∈ NR. Specifically, in Horn-FL⊥, every axiom is

of the form

A � B A �B � C A � ∀r.A A � ∀r.B � ⊥, (4)

where A,B,C ∈ NC ∪ {�,⊥} and r ∈ NR.

Theorem 4.2

Subsumption between concept names is PSpace-complete for Horn-FL⊥.

Proof

Both directions can be shown by showing a relation to Horn-FL−, for which subsumption

between concept names is also PSpace-complete (Krötzsch et al. 2007). Horn-FL− is

similar to Horn-FL⊥, but instead of axioms of the form A � ∀r.B � ⊥, it allows for

axioms of the form A � ∃r, where the semantics of ∃r is defined by (∃r)I = {d | ∃e ∈
ΔI , (d, e) ∈ rI}. The Horn-FL− axiom A � ∃r is equivalent to the Horn-FL⊥ axiom

A � ∀r.⊥ � ⊥, which means every Horn-FL− ontology can be easily translated into

Horn-FL⊥. This establishes PSpace-hardness of Horn-FL⊥.

For inclusion in PSpace, we show how every Horn-FL⊥ ontology can be translated in

polynomial time into a Horn-FL− ontology. For this, we replace every axiom α of the

form A�∀r.B � ⊥ by the axioms A � ∃rα, A � ∀rα.B and B�B � ⊥, where rα is fresh

for every such axiom α. In addition, for every such fresh introduced role rα and every

axiom of the form C � ∀r.D, we add C � ∀rα.D. Intuitively, A � ∀r.B � ⊥ is satisfied

iff every instance of A has some r-successor that does not satisfy B. As there may be

several such axioms, we need to distinguish between different r-successors for each such

axiom. Horn-FL− is not expressive enough to do that directly, which is why we use a

different role for every such axiom.

Let T be the TBox before this transformation and T ′ the result, and A, B be two

concept names occurring in T . We show that T |= A � B iff T ′ |= A � B.

(⇒) Assume T ′ �|= A � B, which means there exists some model I ′ of T ′ s.t. I ′ �|=
A � B. We construct a model I of T s.t. I �|= A � B by setting ΔI = ΔI′

, AI = AI′

for all A ∈ NC, and

rI = rI
′ ∪

⋃
α=(A′�∀r.B′�⊥)∈T

rI
′

α

for all r ∈ NR. For every introduced role name rα and every axiom A′ � ∀r.B′ ∈ T ,

we have I ′ |= A′ � ∀rα.B′, which yields I |= A′ � ∀r.B′. Furthermore, for every

α = A′ � ∀r.B′ � ⊥ ∈ T and d ∈ (A′)I , there exists (d, e) ∈ rI
′
s.t. (d, e) ∈ rI

′

α and

e ∈ (B′)I
′
, which implies e �∈ (B′)I and d �∈ (∀r.B′)I . Thus, we have show that I is a

model of T and that I �|= A � B, and thus T �|= A � B.

(⇐) Now let I be a model of T s.t. I �|= A � B. Based on I, we construct a model I ′

of T ′ s.t. I ′ �|= A � B. For every α = A � ∀r.B � ⊥ ∈ T and d ∈ AI , there exists some

e ∈ ΔI s.t. (d, e) ∈ rI and e �∈ BI . The interpretation rI
′

α of the role rα is defined as

the set of all those pairs (d, e). All other concept and role names are interpreted as in

I. The resulting interpretation I ′ satisfies all axioms in T ′ and thus T ′ �|= A � B.

Summing up, we have shown that T �|= A � B iff T ′ �|= A � B, and thus that subsump-

tion between concept names in Horn-FL⊥ can be polynomially reduced to subsumption

between concept names in Horn-FL−.
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We have used a modification of the algorithm presented in Section 3 to show that

subsumption in Horn-FL0 is PTime-complete, thus indicating optimality of our algo-

rithm for this fragment. To deal with ⊥, we could try to employ the reduction presented

in Section 2.3, which introduces a concept name for ⊥. Unfortunately, this approach

cannot work for Horn-FL⊥. In fact, if we generalized axioms of the form A � ∀r.B � ⊥
to ones that use a concept name instead of ⊥, we would have to allow axioms of the form

A�∀r.B � C. This makes the logic powerful enough to cover the whole language of FL0,

as we can represent axioms of the form A�∀r.B1 �∀s.B2 � C using A�∀r.B1 � D and

D�∀r.B2 � C, and axioms of the form A�∀r.B � ∀s.C using A�∀r.B � D, D � ∀r.C,

where in each case, D is fresh. In fact, already allowing more than one value restriction

on the left-hand increases the complexity.

If we further relax Horn-FL⊥ to allow several value restrictions on the left-hand side,

the logic becomes again ExpTime-complete. In Horn-FL+
⊥, axioms are of the forms listed

in (4) and the following form:

∀σ1.A1 � . . . � ∀σn.An � ⊥, (5)

where for 1 ≤ i ≤ n, σi ∈ NR
∗ and Ai ∈ NC.

Hardness of Horn-FL+
⊥ can be shown based on the reduction used in the proof for

Proposition 1 in Baader and Théron (2020) employed to show ExpTime-hardness of

FL0. The reduction uses a TBox that is not in Horn-FL+
⊥ and does not even con-

tain ⊥. However, it uses a special concept name F which essentially mimics the be-

havior of ⊥. Replacing F by ⊥ creates a Horn-FL+
⊥ TBox with a similar behavior.

Specifically, F occurs on the right-hand side of the subsumption test, in axioms of the

form A � B � ∀w1.F � . . . � wn.F � F (Axiom 2), A1 � . . . � An � ∀r.F (Axiom 7)

and in axioms F � ∀r.F , which are added for every role name r used in the reduc-

tion (Axioms 8 and 9). All other axioms are in Horn-FL0. Thus, replacing F by ⊥
results in a TBox of the desired form. We argue that in the resulting TBox, C � ⊥
is entailed iff C � F is entailed in the original TBox, where C does not contain

F . If C � F is entailed by the original TBox, clearly C � ⊥ is entailed by the

transformed.

For the other direction, assume that C � F is not entailed by the original ontology,

and let I be a witnessing model with d ∈ CI \ F I such that every domain element is

reachable by a path of role-successors from d. We transform I into I ′ by removing all

elements in F I . Since I |= F � ∀r.F for all r ∈ NR, we have for all domain elements

e ∈ ΔI′
and words w ∈ NR

∗, e ∈ (∀w.F )I iff e ∈ (∀w.⊥)I . It follows that for every axiom

of the form A �B � ∀w1.F � . . . � ∀wn.F � F in T , I ′ |= A � ∀w1.⊥� . . . � ∀wn.⊥ � ⊥,

and for every axiom of the form A1 � . . . � An � ∀r.F , I ′ |= A1 � . . . � An � ∀r.⊥. The

axioms ⊥ � ∀r.⊥ ∈ T are naturally entailed. None of the remaining axioms have value

restrictions on the left-hand side, and are thus also entailed by I ′. Consequently, I ′ is a

model of the transformed TBox.

Thus, we have shown that the reduction used in Baader and Théron (2020) to show

ExpTime-hardness of FL0 can be adapted to show ExpTime-hardness of Horn-FL+
⊥.

Theorem 4.3

Deciding subsumption in Horn-FL+
⊥ is ExpTime-complete.
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5 A Rete-based implementation

Our implementation of Subs(A0, B0, T ) in FLower employs a variant of the algorithm for

Rete networks (Forgy 1982) to allow for a fast generation of completions of the partial

model to be constructed. Specifically, the Rete network tests on all domain elements

satisfaction of all GCIs at the same time. It stores also partial matches so that they

can be quickly continued once additional information is available. In addition, FLower

uses optimized data structures to allow for a fast and memory-efficient navigation in the

current model, as well as to speed-up the implementation of blocking.

5.1 Rete network for the TBox to speed-up matching of GCIs

In order to compute a sequence of T -completions Y0 �T Y1 �T Y2 �T · · · starting from

the initial partial functional interpretation Y0, we can employ a GCI C � D ∈ T like a

rule of the form

?σ ∈ match(C,Yi) → ?σ ∈ match(D,Yi),

where ?σ ranges over the non-blocked domain elements of Yi, to obtain the next expan-

sion. Overall, the rules corresponding to the GCIs from the TBox are applied during a run

of Subs(A0, B0, T ) in a forward-chaining manner to yield the sequence of T -completions.

In each expansion step i, one has to compute the elements that violate a GCI, i.e.,

the pairs (σ,C � D) ∈
(
ΔYi ∩ nb(Yi)

)
× T such that σ matches C but not D in Yi.

Since there is potentially a large number of elements in ΔYi that has to be matched

against a large number of left-hand sides of GCIs (patterns) in the TBox in each step,

we have chosen to implement this task using the Rete algorithm for many pattern/many

object matching (Forgy 1982), which is tailored to efficiently compute forward chaining

rule applications. The general idea is to integrate the matching tests of all GCIs using

a Rete network, which is in our case a compressed network-representation of the TBox.

In each completion step, the extension of a tree Yi only affects a small number of its

elements: the matching element σ itself and/or its children. This makes the Rete-based

algorithm particularly efficient in our setting, because it stores matching information

across completion steps to avoid reiterating over the whole set of pairs
(
ΔYi ∩ nb(Yi)

)
×T

in each step. Only those elements with changes have to be re-matched again in the next

completion step.

For a given element, the network tests which left-hand sides of a GCI are matched

and triggers the extension for the corresponding right-hand side. This Rete network

corresponds to a graph using three kinds of nodes: a single root node, a set of intermediate

nodes and a set of terminal nodes. Intuitively, the intermediate nodes check for matches of

parts of the left-hand side of a GCI, while the terminal nodes hold the right-hand side

of a GCI that is ready to be applied to an element. To process an element σ ∈ ΔY , a set

of so-called tokens is passed from the root node through the intermediate nodes to the

terminal nodes. Such a token is a pair of the form (σ, r) ∈
(
NR

∗,NR ∪ {ε}
)
. Intuitively,

the token (σ, ε) is used to check whether σ matches the concept names on the left-hand

side of a GCI, while a token of the form (σ, r) with r ∈ NR is used to check whether σ

matches value restrictions with the role name r.

There are the following three types of intermediate nodes that process tokens arriving

from predecessor nodes in the network:
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• A concept node is labeled with a concept name B ∈ NC and sends an incoming

token (σ, s) to all successor nodes iff σs ∈ BYi .

• A role node is labeled with an s ∈ NR ∪{ε}. An arriving token of the form (σ, s′) is

handled as follows. If s ∈ NR and s′ = s, then it sends (σ, s′) to all successor nodes.

If s = ε, then it sends the token (σs′, ε) to all successor nodes.

• An inter-element node is labeled with a tuple (s1, . . . , sm) ∈ (NR ∪ {ε})m. It stores

all arriving tokens and sends a token (σ, ε) to its successor nodes once all tokens of

the form (σ, s1), . . . , (σ, sm) have arrived at this node.

The overall network is structured in layers. The root node with no incoming edges is on

top. All successors of the root node are concept nodes. The root node takes an element of

the form σ = ρr ∈ NR
∗ and sends the token (ρ, r) to all successor nodes. A successor of a

concept node can only be another concept node or a role node. A role node leads directly

to an inter-element node and inter-element nodes lead to terminal nodes. Intuitively,

paths of concept nodes corresponds to conjunctions of concept names a token must

satisfy in order to pass through them. These concept names either need to be matched

on the current element or on its immediate role successors. If the path of concept names

goes into a role node labeled with ε, this corresponds to a match on the current element.

If it goes into a role node labeled with a role name r, this corresponds to a match on its

r-successors. The inter-element nodes again correspond to a conjunction that combine

the successful matches of the different role-successors.

Example 5.1

As an example of the structure of a Rete network compiled from a TBox, consider the

following normalized TBox:

Tex = { A2 �A4 �A5 � ∀r1.A3 � ∀r1.A4 � ∀r2.A1 � B7,

∀r2.A3 � ∀r2.A4 � B8,

∀r1.A6 � ∀r1.B9 }.

The corresponding Rete network is displayed in Figure 2 with the root node (Layer 1)

and the three leaves being terminal nodes representing the left-hand sides of the three

GCIs (Layer 5). The intermediate nodes are concept nodes representing (conjunctions of)

named concepts (Layer 2), role nodes (Layer 3) or the inter-element node representing

the conjunction of value restrictions for different roles from the first GCI in Tex (Layer 4).

In the preprocessing phase, FLower compiles the normalized TBox T into the corre-

sponding Rete network. In the main reasoning phase, FLower saturates the initial partial

functional interpretation Y0 by the Rete algorithm. To unleash the full potential of this

Rete-based approach, we need to store the current model in a way that allows for fast

access of its successor nodes, which is discussed in the next subsection.

5.2 Numerical representation of partial functional interpretations

The operations FLower needs to perform repeatedly on the current partial functional

interpretation Yi for a given domain element are the following:

1. quickly access its direct successors when a GCI is applied,

2. quickly decide whether a smaller domain element with the same label set exists to

test Condition B2 for direct blocking, and
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root

A1 A2 A3 A6

A4 A4

A5

r2 ε r1 r2 r1

(ε, r1, r2)

B7 B8 ∀r1.B9

Fig. 2. Rete network for the TBox Tex from Example 5.1. Intermediate nodes are drawn in
round shapes: concept nodes in light circles, role nodes in dark circles, and the inter-element

node in an ellipsis. Terminal nodes are in displayed as boxes.

3. quickly decide whether a domain element is an ancestor of another element to test

Condition B3 for indirect blocking.

To obtain a space-efficient representation of the partial functional interpretation that

supports these operations with minimal overhead, we use an integer-based representation

with the basis |NR| + 1. Specifically, we fix an enumeration of the role names in T :

NR = {r1, . . . , rn}. A word σ = ri1ri2 . . . rim ∈ NR
∗ is then represented as

index(σ) =
∑

1≤j≤m

ij(n+ 1)m−j .

This representation reduces various operations on words that are relevant for the algo-

rithm to fast arithmetic operations in the following ways:

1. the length of σ is
∣∣σ| = �logn+1(index(σ))

⌋
,

2. the ri-successor of σ has index: (n+ 1) · index(σ),
3. the direct predecessor of σ has index

⌊
index(σ)
n+1

⌋
, and

4. checking whether ρ is an ancestor of σ, that is whether σ ∈ pprefix(ρ), can be done

by checking whether

index(σ) =

⌊
index(ρ)

(n+ 1)(|ρ|−|σ|)

⌋
.

Note that this numerical encoding also directly provides an ordering on elements ≺ as

required: specifically, we define this ordering by σ ≺ ρ iff index(σ) < index(ρ).

The labels of each domain element are stored in a tree map, which is a data structure

that associates each index with a non-empty label to its label set. The inverse of this
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σ1

σ2 σ3

...

σ4

σ5 σ6

...

σ7

σ8 σ9

σ1

σ2 σ3

...

σ4

σ5 σ6

...

σ7

σ8 σ9

Fig. 3. Example of blocking interactions in a partial functional interpretation. Gray elements
are blocked, and the dotted arrow indicates an element directly blocking another.

map is also stored, to quickly obtain which domain elements have a given label set. This

operation is required to test the blocking Condition B2.

5.3 Implementation of blocking

After each expansion step it needs to be tested whether the blocking conditions B1 to

B3 are fulfilled for the elements of the partial functional interpretation. Unfortunately,

there can be intricate interactions between the blocking statuses of different elements.

Although GCIs are only applied on elements that are not blocked, the labels of a blocked

element can change if a GCI is applied on some of its predecessors. As elements that are

themselves blocked cannot block other elements, such a change in the label of a blocked

element can lead to chain-reactions where the blocking status of a number of elements

changes once information is propagated into a single element. An example of this effect

is visualized in Figure 3. On the left-hand side, σ3 blocks σ4, which makes the nodes σ5

and σ6 indirectly blocked. Thus, these nodes cannot block other nodes themselves. In our

example, we assume σ6 and σ9 to have the same labels. σ9 is not blocked by σ6, since

σ6 is blocked. Blocking σ9 would thus make the overall reasoning procedure incomplete.

Now imagine some extension makes the node σ1 blocked. The resulting situation is shown

on the right-hand side. Since σ3 becomes indirectly blocked, it cannot block σ4 anymore.

Consequently, also the descendants of σ4 become unblocked, and now σ9 becomes blocked

by σ6, even though there is no connection between these nodes and σ1.

To determine directly blocked nodes, FLower uses two hash maps. One is mapping each

node to its label set, and the other one is mapping each label set to a node. In addition,

FLower stores for each node whether it is blocking another node, directly blocked, or

indirectly blocked. If the label set of a node changes, FLower determines via the hash

maps whether this change results in directly blocking or unblocking any nodes, and

updates their blocking status accordingly. For every node whose blocking status changes,

the indirect blocking status of their successors is recursively updated. If the indirect

blocking status changes (as seen for σ6 in the last example), FLower checks via the hash

maps whether the blocking status of other nodes has to change as well, and invokes those

changes. This process is continued recursively until all affected blocking statuses have

been updated.

6 Evaluation of the FLower reasoner

The FLower reasoner is implemented in Java. It takes as input a general FL⊥ TBox T in

OWL format (Cuenca Grau et al. 2008) and normalizes the input TBox. If the ontology
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uses � or ⊥, the transformation rules from Section 2.3 are applied. FLower realizes the

following reasoning tasks.

Subsumption: Given two OWL classes A and B, decide whether A �T B holds.

Subsumer set: Given an OWL class A, compute all classes B in T for which A �T B

holds.

Classification: Decide for all pairs of named OWL classes A and B occurring in T
whether the subsumption A �T B holds.

To decide subsumption FLower runs Subs(A0, B0, T ), but stops as soon as the subsumer

candidate B0 occurs at the root of the tree. For computing the whole subsumer set of A0,

a single complete run of Subs(A0, B0, T ) is sufficient, where the choice of B0 is actually

irrelevant. All subsumers of A0 can be found at the root of the final tree. Classification is

done by running Subs(A0, ∗, T ) for each named class A0 in T separately. (Again, the used

subsumer candidate B0 is irrelevant for this kind of reasoning task and can be replaced

by any concept other than A0 or �. This is indicated here by the wildcard ∗.) The Rete

network for T is created only once and is reused for the remaining runs of Subs(∗, ∗, T )

during classification. Furthermore, FLower uses caching to reuse precomputed subsumer

sets.

Our evaluation of FLower investigates two aspects. First, we wanted to see which

optimizations implemented in FLower turned out to be effective and, second, we wanted

to see how FLower’s performance compares to other state-of-the-art DL reasoner. As

most other DL reasoners that can handle (extensions of) FL0 implement tableau-based

methods, such a comparison would also tell us whether our new approach based on least

functional models is competitive in terms of performance. We report on both kinds of

evaluations in this section. In order to be able to assess the performance of FLower, we

needed to find suitable test ontologies first.

6.1 Test data

We generated two corpora for our evaluation. The first corpus Ore-Corpus is based

on the ontologies of the OWL EL classification track from the OWL Reasoner Evalua-

tion 2015 (ORE 2015) (see Parsia et al. 2017). The benchmarks of the ORE 2015 have

the advantage that they have been balanced according to different criteria such as size,

expressivity and complexity, and consist of many application ontologies. However, unfor-

tunately no track is dedicated to ontologies in FL⊥. We thus generated FL⊥ ontologies

from ontologies written in EL by “flipping” the quantifier, that is, by replacing ∃ by ∀.
We furthermore dropped axioms involving role inclusions, nominals, or other operators

that cannot be expressed in FL⊥. From the resulting corpus, we removed all ontologies

with less than 500 concept names, resulting in a set of 209 FL⊥ ontologies.5

While the ontologies used by the ORE do not contain a lot of FL⊥ axioms, we found

larger usage of them in the Manchester Ontology Corpus (MOWLCorp), which is a

large ontology corpus containing 34,741 OWL ontologies that were obtained by web-

crawling (Matentzoglu et al. 2013). The second corpus, Mowl-Corpus, is based on

5 In the initial study on FLower’s performance (Michel et al. 2019) was an undetected bug which lead
to more ontologies being discarded. There we used only 159 ontologies.
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Fig. 4. Numbers of axioms and concept names in the ontologies under consideration. The
y-axis shows in logarithmic scale the number of axioms and concept names of the respective

ontology, for which we ordered the values along the x -axis.

MOWLCorp. From each ontology in MOWLCorp, we removed axioms that could not

be expressed in FL⊥. If the resulting ontology contained at least 500 concept names,

it was included in our corpus. This resulted in a set of 382 FL⊥ ontologies. While the

Ore-Corpus contains more complex axioms and a more balanced set of ontologies, the

Mowl-Corpus contains axioms that were obtained from application ontologies without

modifications and thus preserves the original way of modeling.

Figure 4 shows the distribution of different parameters in the two corpora: number

of concept names and number of axioms. The largest ontology in Ore-Corpus has

3,137,899 axioms, while the largest ontology in Mowl-Corpus has 279,682 axioms.

In order to evaluate the subsumption task, we generated 80 individual subsumption

tests per ontology for the Ore-Corpus, composed of 40 tests with positive and 40 tests

with negative outcome. Since this resulted in a large number of reasoning experiments

to be performed, this experiment was only performed on Ore-Corpus, for which we

assumed the most insights due to its more varied nature compared to Mowl-Corpus.

Positive tests were generated by randomly selecting a concept name, and then randomly

selecting a subsumer of it. Negative tests were generated by randomly selecting a concept

name, and then randomly selecting another concept name that does not subsume the

first. For FLower, positive subsumption tests are easier, as the reasoner stops as soon

as the subsumption relation has been proven. For tableau-based reasoning systems, the

expected behavior is the other way around, as these reasoners try to create a counter-

example to contradict the subsumption to be tested. Thus, evaluation results might not

be as informative if one would just generate pairs for the subsumption test randomly

without distinguishing between positive and negative tests as it was done in the earlier

study (Michel et al. 2019).
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6.2 Evaluation setup

In the initial study on FLower, we compared the performance for all three implemented

reasoning tasks Subsumption, Subsumer Set and Classification (Michel et al. 2019).

Although the OWL API supports computing subsumer sets and is implemented by

all considered reasoner systems, it would not yield an informative test, since all three

tableaux-based systems classify the entire ontology before returning the subsumer set,

as inspection of their source code revealed. This makes a comparison simply unfair

and less insightful, which is why we restricted this study to the tasks Subsumption and

Classification.

For subsumption tests, we used the Ore-Corpus and the concept pairs for positive

and negative subsumptions. For each subsumption test, the timeout was set to 1 min.

Both Ore-Corpus and Mowl-Corpus were used to evaluate the classification task.

For each classification reasoning task, the timeout was set to 10 min.

In addition to the running times measured for the two reasoning tasks, we also com-

pared the computed results. While this comparison is easy for the Subsumption tests, for

Classification, we computed a checksum for the classification result, and checked whether

it was the same for every reasoner.

As a test system we have used an Intel Core i5-4590 CPU machine with 3.30GHz and

32 GB RAM, using Debian/GNU Linux 9 and OpenJDK 11.0.5. Java was called with

-Xmx8g to set the maximum allocation pool (heap) size to 8 GB. We only measured the

running time of the actual reasoning task and not the time for loading the ontology.

6.3 Evaluating FLower’s optimizations

Although the current version of FLower is certainly not highly optimized, it implements

several optimizations. We first evaluated the effect of the different optimizations within

FLower:

Multithreading The main algorithm computes all subsumers for a given concept name.

For the task of classification, we partition the concept names into batches of size

48 plus one partition for the rest, and compute the subsumers for each partition in

a different thread.

Ancestor blocking Ancestor blocking corresponds to the blocking conditionB3. While

the method might not terminate without this condition, it is the interaction of

this blocking condition with B2 that makes the implementation of blocking more

challenging (see Section 5.3). To assess the impact of this blocking condition, we

allowed to deactivate ancestor blocking in the implementation.

Role filtering We do not generate r-successors for roles r ∈ NR that do not occur on the

left-hand side of a GCI. As pointed out in Remark 4.1, this optimization preserves

soundness and completeness. Moreover, as shown in the proof for Theorem 4.1,

reasoning in Horn-FL0 becomes polynomial with this optimization, so that one

would expect a big impact of this optimization.

Global caching When performing classification, we store previously computed sub-

sumer sets. If a node with a concept name is added for which we already have a

subsumer set, we add all the subsumers to that node and block it. The node only

becomes unblocked when new concept names are added to its label by subsequent

reasoning steps.
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Fig. 5. Timeouts and running times for subsumption tests w.r.t. Ore-Corpus with the
different optimizations.

We compared the following configurations of our reasoner:

• FLower with no optimizations,

• FLower-MT (multithreading activated),

• FLower-MT-AB (multithreading and ancestor blocking),

• FLower-MT-AB-GC (multithreading, ancestor blocking and global caching), and

• FLower-ALL with all four optimizations activated.

Figure 5 shows the results for the subsumption experiment, while Figure 6 shows the

results for the classification experiments. Here and in the figures that follow, we use

logarithmic scaling on both axes, and we show for the runs that caused a timeout the

maximal value (1 minute for subsumption, and 10 min for classification).

For the subsumption tests, the biggest impact was caused by ancestor-blocking, de-

spite the additional obstacles in the implementation. On the other hand, considering that

termination can only be guaranteed with ancestor-blocking activated, and that the addi-

tional blocking condition may lead to fewer nodes being generated, a positive effect was

to be expected. In fact, for Ore-Corpus, with ancestor blocking activated, the timeout

rate dropped from 17.91% to 4.10%. However, this positive effect was only notable for

the ontologies in Ore-Corpus, which can be explained by the simpler structure of the

ontologies in Mowl-Corpus which in turn lead to simpler functional models. For a sin-

gle subsumption task, the other optimizations merely seem to create an overhead and

do not improve the performance in general. This is obvious for the caching procedure,

which only brings a benefit if more than one subsumption task is performed. The largest

impact here seems to be obtained by the role filtering. Interestingly, FLower’s reasoning

time seems hardly correlated with the number of classes in the ontology – only if this

number becomes very large, optimizations seem to have even a negative impact.
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Fig. 6. Timeouts and running times for classification with the different optimizations. Note
that the curve for FLower-MT-AB-GC is almost completely hidden under the curve for

FLower-ALL.

For classification computed on the Ore-Corpus, besides ancestor blocking, global

caching makes a noticeable impact, though it is not as large as one would expect for this

task. In contrast, the impact of role filtering is not as strong, though it decreases the
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Fig. 7. Timeouts and running times for subsumption tests w.r.t. Ore-Corpus for the different
reasoners.

number of timeouts from 2.99% to 2.61%. We also observe that for Mowl-Corpus, none

of the optimizations apart from multithreading seem to be really indispensable. Again

this can be explained by the simpler structure of the ontologies considered here.

6.4 Comparison with other DL reasoners

We evaluated FLower to see how its reasoning times compare with those of other state-of-

the-art DL reasoners. We used the configuration of our DL reasoner with all optimizations

active: FLower-ALL. Since there is no other dedicated reasoner for FL0, we used reasoner

systems that can handle expressive DLs of which FL0 is a fragment. Here, we focused

on reasoners which are implemented in Java just as FLower, and selected the following

three state-of-the-art reasoning systems:

• HermiT,6 version 1.3.8.510,

• Openllet,7 version 2.6.3, and

• JFact,8 version 5.0.1.

All three reasoners implement the OWL API (Horridge and Bechhofer 2011), which allows

us to measure and compare the time needed for the reasoning tasks alone – excluding

6 hermit-reasoner.com.
7 github.com/Galigator/openllet.
8 jfact.sourceforge.net.
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Fig. 8. Timeouts and running times for classification with the different reasoners.

the time for loading the ontologies using the OWL API. Note that furthermore, all three

reasoners implement tableaux-based algorithms, so that this comparative evaluation also

serves as a comparison of the different approaches: least functional model generation vs.

tableaux-based approach. Regarding the actual reasoner implementations, we note that

these are all complex and mature reasoning systems that come with more sophisticated
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optimizations than FLower, which makes it even more surprising that FLower performs

quite well in comparison. The timeouts and reasoning times of FLower compared with

those of the above three reasoners, are shown in Figure 7 for the subsumption experiment,

and in Figure 8 for the two classification experiments.

Interestingly, for the subsumption tests, the performance of both FLower and HermiT

seems hardly affected by the number of concept names in the ontology. This number

has a much bigger impact for JFact and Openllet which need orders of magnitude more

running time than FLower and HermiT to decide subsumption for the test cases. However,

while some subsumption tasks still lead to timeouts for HermiT in 0.0047% of cases, no

timeouts were observed by FLower. Generally, FLower performs substantially better for

this task (on this test set) than the other DL reasoners.

For classification on Ore-Corpus, our measurements indicate that FLower performs

the best among the four systems. JFact’s running time is roughly an order of magnitude

higher than the one of FLower. HermiT has twice as many timeouts as Openllet, but

the picture on running times is more mixed, where HermiT often performed better than

Openllet. FLower again almost halved the number of timeouts compared to Openllet, but

here, the performance looks consistently better than for all other reasoners. Interestingly,

the (interpolated) performance curves of FLower, HermiT, and Openllet show very similar

characteristics, as they develop almost synchronously. This may suggest that the same

kind of ontology is difficult for all three systems and for both reasoning approaches. For

Mowl-Corpus, the general picture is in principle similar. We can see a clear ranking

between the reasoners, with FLower performing generally the best. For this corpus there

were only timeouts for JFact. Again, the (interpolated) performance curves of HermiT

and Openllet are similar to the one of FLower– albeit less strongly as in the case of

the Ore-Corpus. However, this may support the earlier finding that the same kind of

ontology could be difficult for both reasoning approaches.

To sum up, the running time of FLower for testing subsumption and for computing

classification is on average substantially better than the one of JFact, Openllet, and even

of HermiT. This is a remarkable result of a comparison between a newcomer system

that implements only a few optimizations and well-established systems that have been

developed for years. Our comparative evaluation suggests that the same kind of ontology

may be difficult (or, alternatively, be easy) for reasoners based on the computation of

least functional models as well as for tableaux-based reasoners.

7 Conclusions

The main contribution of this paper is a novel algorithm for deciding subsumption in the

DL FL0 w.r.t. general TBoxes, and a practical demonstration that this algorithm is easy

to implement and behaves surprisingly well on large ontologies. Our reasoner FLower

outperforms state-of-the art DL reasoners for testing subsumption and for classifying

general TBoxes.

One may ask, however, why a dedicated reasoner for FL0 is needed, given the facts

that the worst-case complexity of reasoning in FL0 is as high as for the considerably

more expressive DL ALC and that there are very few pure FL0 ontologies available. We

argue that such a dedicated reasoner may turn out to be very useful. First, the latter
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fact could be due to a chicken and egg problem: as long as no dedicated reasoner for

FL0 is available, there is no incentive to restrict the expressiveness to FL0 when creating

an ontology. When extracting our test ontologies, we observed that quite a number of

application ontologies have large FL0 fragments. Second, regarding the former fact, it

is well-known in the DL community that worst-case complexity results are not always

a good indication for how hard reasoning turns out to be in practice. Third, some DL

reasoners such as Konclude9 and MORe (Romero et al. 2012) make use of specialized

algorithms for certain language fragments as part of their overall reasoning approach,

with impressive improvements of the performance. Our efficient subsumption algorithm

for FL0 may turn out to be useful in this context. Finally, quite a number of non-

standard reasoning tasks in FL0 w.r.t. general TBoxes have recently been investigated

(Baader et al. 2016, 2018, 2018a, 2018b). The algorithms developed for solving these

tasks usually depend on sub-procedures that perform subsumption tests or that use the

least functional model directly. Our reasoner FLower thus provides us with an efficient

base for implementing such non-standard inferences.
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