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Summary

A queue at which arrivals occur randomly in batches of fixed size r and
for which the service times are independent negative exponential variates
is considered. Expressions are obtained for the moments of the transient
waiting time distribution and the distribution of the number of customers
in the system just before the nth batch arrives. The distribution of the num-
ber of customers served in a busy period is also determined.

1. Introduction

Suppose that batches consisting of r customers arrive at times t0, tlt • • •,
tn, • • • and define

T](t) = the number of customers in the system at time t including the one,
if any, being served,

Vn = « ? ( ' . - 0 )

Suppose also that r]0 = a ^ 0.
The interarrival times, T, = ts — tt_lt j = 1, 2, 3, • • •, are independently

distributed with distribution function A (x) — 1 — er**, x ^ 0, and the
service times are distributed independently of each other and of the inter-
arrival times with distribution function B(x) = 1 — tr^.x ^ 0.

The process t){t) has been studied in the case r = 1 by Ledermann and
Reuter (1) and Bailey (2). Luchak (3, 4) has found the transient distribution
of rj(t) in the case where r is a random variable with distribution defined by
Er{r = / } = Ci, / = 1,2, . . . , m .

In the present paper we consider, instead of the process r\{t) in continuous
time, the process r\n which is a Markov chain. The resulting expression for
the transient probability of emptiness (from which the distribution of r\n

can be deduced) can be expressed in terms of binomial probabilities and is
much simpler than the corresponding transient probability of emptiness
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in continuous time. Foster (7) has determined the limiting distribution,
pi = lim,,.,^ Pr{»?B = /}, in the more general case where A (x) is arbitrary.

2. The distribution of ijn

Since the service times are negative exponential variates we can consider
the server as generating a sequence of potential departure points constitut-
ing a Poisson process, a potential departure being a real departure if there
is at least one customer in the system when it occurs.

Let at = Pr{; potential departures occur in an interarrival period)

and il, = 2« ,
_;

Then if a = X\l + n, $ = ft/X + fi, it follows that a, = a/?', A, = §>.
The probabilities P" satisfy the equations

00

P" — V P""1 A

00

oo

P" = V Pn~1a, i = r r 4- 1 • • •

Substituting for ak, Ak in these equations we find that for n ^ 1,

(1) pPi=*P]_1, j = 2,3,---,r,
fSP» = P« _ « i ^ L 1 # / = r + 1, r + 2, • • -,

with the initial condition, P? = 6. , = \
10 otherwise.

In order to solve these equations we define the generating functions

n - 0

i-0

Then from equations (1) it is found that
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pP^w) - j?dB(1 = *P0(w) - «<So,0)

fiPt(w) - /3<5M = P H ( » ) - <5a.,_1, j = 2, 3, • • •, r.

and hence

(2) Plz, w) = — : —
v ' v ' p — z + a.wzr+1

Once PQ{W) is determined the transient probabilities P" can be found by
expanding (2). However, it is simpler to determine the moments of the
distribution of r\n as described in § 3. An explicit expression for P0(w) is
given by the following theorem.

THEOREM

(3) 1 "

where

2(
j=o \ 1

+l \ J
nr+n+a-1 /nr I M _L a _ 1 \

3=n \ 7 /

PROOF. By Lagrange's theorem (5) the equation z = /3 + aw2r+1, |w| < 1,
has only one root z = f in the region |z| < 1. Since P(z, w) is convergent
for \z\ ^ 1, [zê l < 1, f must also be a zero of the numerator of (2)

(4) ... Pi(w, = '*»•*+(i-l.K-«-fl = / (c ) .

From the Lagrange expansion of P0(w) we have

(5) PO(W) = «5o,0+ 2 {/)-'[/'(a)*"
n-i n

Now

and
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(6)

— Coefficient of zn~x in the expansion of - —
(OLZ)

The theorem is proved by substituting in the series (5) from equation (6).

Note 1. The terms y>ntt appearing, in PJ can easily be determined from
tables of the binomial distribution (which are readily available for values
of nr + n -\- a up to 150). This reduces the determination of PJ to a
simple arithmetical operation. For larger values of n the binomial probabili-
ties can be calculated using the method of continued fractions described
by Bahadur (6) or by using the recurrence relation

q i ( ) Pq+p( .

2. Inspecting the expressions for y>BfO we see that .

lim v'n.o = 0 if n < (nr-\-n)k,
»->80

i.e. if ra. > /S
and

fonVn, a = P — rx if rx < ^.
n-»oo

The deviation of ipnt „ from its limiting value in the first case involves two lower
tail binomial probabilities and in the second case two upper tail binomial
probabilities.

It follows from the limiting behaviour of yM> „ that

( rx\
0 , 1 - - .

P IP.

3. The moments of the distribution of Tjm

From the derivatives of P(z, w) with respect to z at z = 1 we can derive
expressions for the moments about the origin of the distribution of rjn.
Each moment is found in terms of the transient probabilities PS and moments
of lower order. For example if Ml = 2£o 1kpl> po— 1~(r*)IP
Ml = m(l + r)/2(/? — or) then

Afr = «+-2(*l.-P.)
(7) " ' - 1

i
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and higher moments can be obtained in the same way. If the limiting distri-
bution of y\n exists, i.e. if rx < /3, then Po and Mx are the limits of PJJ and M\
respectively.

To determine M\ and M\, PJ is first found from (3) and then equations
(7) are used. The summations in (7) can be carried out either directly or by
approximating the discreet sets of values by continuous curves and integrat-
ing numerically.

4. The distribution of waiting time

If wn is the time which elapses between the arrival of the [n + l)th
batch and its commencement of service and fn{x) is the probability density
function of wn, defined for x > 0, we have

(8) /„(*)= 1 ^ 7 ^ — r r - e r " , x>0
k=i («— 1)!

and Pr{w. = 0} = P ; .
If Wn

q is the qth moment about the origin of the distribution of wn then

(9) W ^ E ^ = ^

and in particular

(10) ^
wl=~i {Ml l)

5. The distribution of the number of batches served in a busy period

Let q, be the probability that exactly / batches are served in a busy
period and let p%0 be the value of PJ given that »j0 = 0.

Then if
OO

q{w) = J q/W1, \w\ ̂  1,

it follows from the relation

Pnoo = iiP™1 + q*tV + ••• + qnfn. » ^ i .

that
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(11) q{w) = 1 - fin (W)~\ \W\<\.

Hence from equation (4)

where £ is the only root of the equation z = /? + xwzr+1, \w\ < 1, inside the
region |*| < 1.

Expanding q(w) by Lagrange's theorem we find that

-2\

i \ n

and hence
r2)

qn can be evaluated from tables of the binomial distribution or, for large
values of n, using Stirling's approximation to evaluate the binomial coeffi-
cient.

6. The relation between the batch arrivals model and M/EJ1

Consider the system M/Er/1 with k + 1 customers in the system at time
t0 — 0, the elapsed service time of the customer in service at time t0 being
equal to u. For this system let TT" = Pr {the (n + 1 )th arrival finds j customers
in the system}.

Now for the batch arrivals model suppose that »?„ = kr + 0 where d is a
random variable such that

„ / = 1 , 2 , •••,»•,
otherwise

where

Then if Q^ = 2 ' = i ^ Pr07>> = s\Vo = kr + /}< t n e probabilities nn, can be
written

The moments about the origin of the waiting time distribution of the
(n + l)th arrival at M/EJl are given by
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I a-0.2

to

Figure 1
Mean number of customers at the (« + l)th arrival for Af/M/1 starting from emptiness

(expressed as a fraction of the asymptotic value).

i-o 4 a-0.2

s M / s

10

Figure 2
Standard deviation of queue size expressed as a fraction of the asymptotic value.
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1=1

where W"tj is the value of W" obtained from equation (9) when rj0 = kr-\-j.
The distribution of the number of customers served in a busy period for

M\Er\\ is given by equation (12).

7. Numerical calculations

The probabilities Pg, n = 1, 2, 3, • • •, can be found as indicated in § 2.
Once P'o is known for / 5S n the transient moments M" and M£ can be
determined from equations (7). This method was used to derive the tran-
sient mean and standard deviation of queue size at an arrival in the partic-
ular case r = 1, t]0 — 0. The results are shown in figures 1 and 2 where the
discrete sets of points have been plotted as continuous curves. Calculations
were carried out only for traffic intensity a//? < 1 but it is to be noted that
the transient moments of the queue size distribution can be obtained in
the same way even ii a. > p.

I am indebted to Mr. P. D. Finch for his valuable suggestions during the
course of this work and to the referee for a number of helpful comments.
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