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1. Introduction

Let co(x) be non-decreasing on the closed interval [a, b]. Outside the
interval co(x) is defined by w(x) = co(a) for x < a and co(x) = m(b) for
x > b. Let 5 denote the set of points of continuity of a>(x) and D denote
the set of points of discontinuity of co(x). R. L. Jeffery [5] has defined the
class %, of functions f{x) as follows:

f(x) is defined on the set S • [a, b] and f{x) is continuous at each point
of S • [a, b] with respect to the set S. If x0 e D then f(x) tends to a limit
(finite or infinite) as x tends to xo-\- and x0— over the points of the set 5.
These limits will be denoted by /(#0+) and f(x0—) respectively. When
x < a, f(x) = /(«+) and f(x) = f{b~) when x > b. f{x) may or may not
be defined at points of the set D.

Let ^ 0 denote the class of functions f{x) of *% for which f(xo-\-) and
j{x0—) are finite, x0 e D.

In [5] Jeffery has also introduced the following definition:

DEFINITION 1.1: For any x and k^O with x-\-heS, the function
tp{x, h) is defined by

f(x+h)-f(x-)

y>(x, h) =

, h > 0, cj(x+h)—a)(x—)^O

, h<0, co(x+h)-m{x+) ^ 0
(o{x-\-h)— co(x+)

0, a)(x+h) — a)(x±) = 0.

(o{x-\-h)—co(x—)

f(x+h)-f(x+)

The upper and lower limits of f(x, h) as h -» 0-\-(x-\-h e S) are called
respectively the Upper and Lower co-derivatives of f(x) at x on the right
and are denoted by D+fJx) and D+fa(x). If D+fa{x) = D+fa(x), the
common value is called the co-derivative of f(x) at x on the right and is
denoted by f'+(l)(x). Similarly the left co-derivatives D-fu(x), D_fu(x) and
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fLa(x) of f(x) are defined. If f+a(x) = f'_a(x), the common value is called
the co-derivative of f(x) at x and is denoted by f'a{x).

Any set of points a = x0 < x± < x2 < • • • < xn = 6 such that
cofo.J ^ w ^ ) (i = 1, 2, • • •, n) is called an co-subdivision ([1], [2]) of
[a, b]. In [1] the following definition has been introduced.

DEFINITION 1.2: Let f(x) be defined on [a, b] and be in the class <̂ .
The least upper bound of the sums

V = i\f(xt+)-f(xt_1-)\

for all possible co-subdivisions x0, xt, x2, • • -,xn of [a, b] is called the total
co-variation, Vm(f; a, b), of f(x) on [a, b]. If Va{f; a, b) < +00, then f{x) is
said to be a function of bounded variation relative to co, BV—a>, on [a, b].

The purpose of the present paper is to study some properties of co-
derivatives of a function f(x) e& and to show that if f{x) is BV—u> on
[a, b], then f'u{x) exists and is finite at all points of [a, b] except on a set of
co-measure (§ 2) zero and that f'a{x) is summable (LS) (§2) on [a, b].
We require the following known results.

THEOREM 1.1. ([5], lemma 2). Let E be any set on [a, b]. Let each
point a; of £ be the left hand end point of a sequence of closed intervals
[x, x+^j] for which h{ -> 0. Let !F denote the family of all intervals thus
associated with the set E. Then for every s > 0 there exists a finite family
of pairwise disjoint closed intervals A1, A2, • • •, AN of ^ for which

2 to*[EAt) > w*{E)-e, 2 \At\u < co*(E)+e,
»=1 i = l

where a>*{E) denotes the outer co-measure and \E\a the co-measure (§2)
of the set E.

THEOREM 1.2. This theorem is obtained from theorem 1.1 by replacing
'left hand' by 'right hand' and [x, x+hf] by [x—ht, x].

Throughout the paper the following notations will be used. So

denotes the union of pairwise disjoint open intervals (at, bt) in [a, b] on
each of which <o(x) is constant, Sx = {a1, blt a2, b2, • • •}, S2 = SS1, and
S3 = [a, b] • S—(S0-\-S2)- Then cofa) < <o(x2) for every pair xltx2 with
x1 < x2 where one of them at least is a member of S3. If f{x) e °ll', then
f'a>(x) = 0 on So and f'a(x) exists at each point of D.

2. oj-measure of a bounded set and Lebesgue-Stieltjes integral

The «-measure |(a, /3)|w ([5], § 1) of an open interval (a, /9) is defined
by I (a, /S)|w = co(/3—)—co(a-f-). The co-measure \G\U of a bounded open set
G = 2i(ai>/?i)» where the open intervals (a,-, &) are pairwise disjoint, is
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defined by \G\a = 2il(ai» &)L- I f G i s void> t n e n IGL = °- The co-measure
\I\a of a closed interval / = [a, /?] is defined by |/|w = a>(|S-f)—co(a—).
The co-measure |.F|W of a bounded closed set F is defined by

where / is the smallest closed interval containing F and CZF denotes the
complement of F with respect to / . The outer co-measure u>* (E) of a bounded
set E is the infimum of the co-measures of all bounded open sets containing
E and the inner co-measure a>*(E) is the supremum of the co-measures of
all closed sets contained in E. If co*(E) = «*(.£), the set £ is said to be
co-measurable and the common value is denoted by \E\a. Two sets A1 and
A 2 are said to be separated relative to co-measure or co-separated if corre-
sponding to every s > 0 there exist open sets Gly G2 with Gx D Ax, G2 D A2

such that IGiGal,,, < e. A function /(a;) defined on the co-measurable set E
is said to be co-measurable ([5], def. 2) if for every real number r, the
set E(f > r) = {x; x e E and /(x) < r} is co-measurable.

Let f(x) be co-measurable on the bounded set E and J. < f(x) < 5
on E. Let .4 = £/„ < yx < y2 < • • • < yn = B be a subdivision of [A, B]
and e£ = E(y{ rg / < yi+1) (i = 0, 1, 2, • • •, n - 1 ) . The limit of 2?=o2/^iL
as max \yt—«/i_1| -> 0 is called the Lebesgue-Stieltjes integral ([5], def. 3)
of f{x) over £ and is written as jEfdco. This definition may be extended to
unbounded functions in the usual way.

One can verify that (i) the results of the sections 1—4 ([6]), Ch. Ill)
and the theorems 2.7, 2.17 — 2.20 ([4], Ch. II) corresponding to co-measures,
(ii) the results of the sections 1, 2 ([6], Ch. IV) and the theorems 3.9—3.11
([4], Ch. Ill) corresponding to co-measurable functions (iii) the results
of the sections 2, 3 ([6], Ch. V) and 1, 2 ([6], Ch. VI) corresponding to
Lebesgue-Stieltjes integral, are true. Whenever necessary we shall refer
these results with a star for the corresponding results of co-measures,
co-measurable functions and Lebesgue-Stieltjes integral.

If a property P is satisfied at all points of a set A except a set of
co-measure zero, then it will be said that P is satisfied almost everywhere
(a>) in A or at co-almost all points of A.

3. w-density of sets

DEFINITION 3.1. (cf. [4], def. 5.2, p. 114).

Let A be any subset of S3, x be any point and

v = [x, x+h] (h > 0, x+h e S).
Then

(o*(Av) o)*(Av)
lim sup , lim inf

https://doi.org/10.1017/S1446788700007278 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007278


348 M. C. Chakrabarty [4]

are respectively called the right upper and lower co-densities of A at x.
If these limits are equal, their common value is the right co-density of A at
x. Similar difinitions are given for left co-densities of A. If the left and right
co-densities of A at x are equal, their common value is the co-density of A
at x. Since at*(Av) 5S \v\a for any interval v it follows that none of the four
co-densities can exceed unity.

DEFINITION 3.2. Let A be a subset of S3 and x be any point. A is said
to be co-dense at x if m*(Av) > 0 for any open interval v containing x.
A is said to be co-dense in itself if A is co-dense at each point of A.

THEOREM 3.1. Let A be a subset of S3. Then at almost all points (co)
of A the co-density of A is unity.

COROLLARY 3.1.1. If A C 53 then A is co-dense at almost all points (a»)
of A.

THEOREM 3.2. Let A and B be two subsets of S3. HA and B are co-
separated, then at almost all points (co) of one set the co-density of the
other is zero.

THEOREM 3.3. Let A and B be two subsets of S3. If at almost all
points (co) of A the co-density of B is zero, then A and B are co-separated.

The above theorems can be proved in a way analogous to that used
in proving the results of the section 5.2 ([4], Ch. V) by making use of the
theorems 1.1 and 1.2.

Let A and B be any two subsets of 53. Let AB and BA denote the
parts of A, B respectively where at least one of the four co-densities of B,
A is different from zero.

THEOREM 3.4. If A and B are not co-separated, then co*(̂ 4B) > 0 and
ft)*(-^x) > 0; also no part of AB with positive outer co-measure is co-
separated from BA and no part of BA with positive outer co-measure is
co-separated from AB.

PROOF. From theorem 3.3 it follows that co*(AB) > 0 and ca*(BA) > 0.
Let E C AB with m*(E) > 0. If possible, let E be co-separated from BA.
Write B' = B—BA. Then B = B'+BA. At each point of B' the co-density
of A and therefore of E is zero. By theorem 3.3 the sets E and B' are
co-separated. So the sets E and B = B'-\-BA are co-separated. Then by
theorem 3.2 at almost all points (co) of E the co-density of B is zero. This
contradicts the definition of AB. If E C BA and <a*(E) > 0 then as above
we can show that E and AB are not co-separated.

THEOREM 3.5. For any two sets A and B and any interval v, we have

(o*(vAB) = co*{vBA).

https://doi.org/10.1017/S1446788700007278 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007278


[5] co-derivatives and BV-to functions 349

PROOF. If A and B are co-separated then by Theorem 3.2, co*(AB) = 0
and w*(BA) = 0. Therefore ca*(vAB) = co*(vBA).

Next we suppose that A and B are not co-separated. Write Ao = vAB

and Bo = vBA. Assume that co*(yl0) < co*(B0). Let A be any open interval
containing the sets v, AB, BA. Choose an open' set G C A such that A0C G
and \G\U < co*(B0). Let F denote the complement of G relative to A.
Then a>*(FB0) > 0. Since the sets F and G are co-separated, the same is
true for the sets FB0 and GAB. Again since FB0 C v and FAB C A—v the
sets FB0 and FAB are co-separated. Hence FB0 is co-separated from
AB = G • AB+F • AB. Since FB0 C BA and (o*(FB0) > 0 this contradicts
the Theorem 3.4. Similarly we can show that the assumption co* (Bo) < co* (A 0)
leads to a contradiction. Hence co*(̂ 40) = co*(B0).

COROLLARY 3.5.1. If A and B are not co-separated, then

a>*(AB) = a>*(BA) > 0.

THEOREM 3.6. If A and B are not co-separated, then at almost all
points (co) of AB the co-density of B is unity and at almost all points (co)
of BA the co-density of A is unity.

PROOF. Let 0 < xx < T2 < • • • be a sequence of real numbers with
T,- —> 1 and let £,• denote the set of points of AB where the right lower
co-density of B is less than T4 . Consider the set En. If x e En there exists
a null sequence {ht} (h€ > 0, x+h{ e S) such that for all i

co*{Bvt)

where vt- = [x, x-\-h{]. Since BA C B we have for all i
(1) CO*K^) < T>,L.
Let !F denote the family of all closed intervals v{ thus associated with the
set En. Choose s > 0 arbitrarily. Then by theorem 1.1 there exists a finite
family of pairwise disjoint closed intervals Ax, A2, • • •, AN of & for which

(2) f co*(ZL.£„)>*,*(£n)-£, | \At\m <<o*(En)+E.

So,
N N

(o*(En)-e < 2 <o*{AtAB) = 2 «>*(^<^) [by theorem 3.5]

(3)
< T, 2 l^iL < rn[co*(£J+£] [by (1) and (2)]

Since s > 0 is arbitrary, (3) leads to a contradiction unless co*(2in) = 0.
If E' denotes the set of points of AB where the right lower co-density of B
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is less than unity, then E' = 2£U Et. Since «*(£,-) = 0 for all i,
m*(E') = 0. If E" denotes the set of points of AB where the left lower
co-density of B is less than unity, then as above we can show that
co*(E") = 0. Write E = E'+E". Then co*(E) = 0. Clearly at each point
of AB—E the co-density of B is unity.

Similarly we can show that at almost all points (w) of BA the co-density
of A is unity. This completes the proof.

THEOREM 3.7. If A be a closed set contained in S3, then A can be
expressed as A = P-\-H, where P is perfect and co-dense in itself and where
the co-measure of H is zero.

PROOF. Denote by P the set of points of A where A is co-dense and
write H — A—P. Then A = P+H. By corollary 3.1.1, the co-measure of
H is zero. Let a be a limiting point of P and v be any open interval containing
a. Then v contains a point £ (^ a) of P which gives that u>*(Av) > 0.
Since v is arbitrary it follows that A is co-dense at a and therefore <x e P.
So the set P is closed. Again let cue P and v be any open interval con-
taining a. Then oi*{vA) > 0. But co*(Av) = co*(Pv). Since vPCS3,
v contains infinity of points of P; so a is a limiting point of P. Thus the set
P is perfect. Clearly P is co-dense at each point of P. This completes the
proof.

4. Results on co-derivatives of f(x) e %

THEOREM 4.1. If f(x) is in the class °U, then all the four co-derivatives
of f(x) are co-measurable on [a, b].

PROOF. We prove the theorem for the derivative D+f^x). The proofs
in the other cases are analogous. We have [a, b] = 5 0 +S 2 +-S 3 +D, where
the sets So, S2, S3, D are pairwise disjoint and co-measurable. D+fu{x) = 0
at each point of So. Since |5 2 | u = 0 and D is at most enumerable, D+fu(x)
is co-measurable on each of the sets So, S2 and D. The theorem will be
proved if we can show that D+fa(x) is co-measurable on the set S3.

For any real number r write Ar = {x; x e S3 and D+fu{x) < r} and
Br = {x; x e S3 and D+fa{x) ^ r}. Suppose that D+f^x) is not co-measur-
able on S3. There is then a real number r for which the sets Ar and Br are
not co-measurable. So by theorem 2.20* ([4], p. 59) the sets Ar and Br are
not co-separated. Let c1 < c2 < cs < • • • be a sequence of real numbers
with ct -> r. Let Eik be the set of points £ of Ar for which

(4) i
K ! co(|+A)-co(I) '

whenever 0 < h < 1/k and £+h e S. If ix sg i2 and kx ^ k2 then
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Ef k C Eik . Also if x e Ar, then x e Ei1e for some i, k. Hence from theorems
2.18* andV.20* ([4], p. 58—59) it follows that for sufficiently large i, k the
sets Eilc and Br are not co-separated. So by theorem 3.6 there is a set E C Br

with co*(E) > 0 such that at each point of E the co-density of Eilc is unity.
Let a be any point of E and c be any real number with ct < c < r. Since
D+fa{<*) > c there exists h' with 0 < h' < 1/k, <x+h' e S such that

W /(q+A')-/(a)
1 ' a>(a+A')-«u(a) "

Since the co-density of Eik at a is unity, every interval

[a, a+A] {h > 0, x+h e S)

contains infinity of points of the set Eik. Choose any f of Eik in (a, x-\-h')
and write h = oL-j-h'—g. Then |+A = <x.-\-h' and 0 < A < 1/^. So, from
(4) and (5) we have

and

from which we get

Now suppose that f -> a + over the points of Eik. Then h -> h' and from
(6) we get

(7) / («+) - / (« ) ^ [a)(a+A')-a>(a)] (c-C<).

Since co(a+A')— co(a) > 0 and c > c4l the relation (7) contradicts the fact
that f(x) is continuous at a with respect to the set S. This proves the theorem.

THEOREM 4.2. Let f{x) belong to the class °il and P be a non-void
perfect set contained in Ss. If all the four co-derivatives of f(x) are greater
than A and less than B (> A), then there exists a closed interval [c, d]
in [a, b] such that P • [c, d] is a non-void perfect set and for all (x, y) in
X = {(x,y);x ^y,ze P • [c, d] and y e [c, d] • S},

co (a;)— co («/)

PROOF. Consider the function <f>(x) defined by </>(x) = f{x)—Bco{x) on
S and <f>(x) = f(x+) — Bco(x+) on D. If x e P, then D+4>a{x) < 0. So
there is a positive number hx such that <£(«/) ^ <f>(x) for all «/ in [x, x-\-hx].
From § 293 ([3], p. 393) it follows that there is a closed interval [c1( dx~\

https://doi.org/10.1017/S1446788700007278 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007278


352 M. C. Chakrabarty [8]

in [a, b] such that P1 = P • \clt d-^ is a non-void perfect set and
<f>(y) ^ <f>(x) for all (x, y) in Xx = {{x, y);x<y,xsP1 and y e [clt dx] • S}.
Then for all (x, y) in Xx

(8) ttoM * B.
a)(x)—co(y)

Since D~<j>a{x) < 0 for a; e Plt there is an A,. > 0 such that <f>(y) ^ </>(x)
for all ?/ in \x—hx,x]. So there is a closed interval [c2, rf2] in [clt d^ such
that P2 = Px • [c2, rf2] i

s a non-void perfect set and <f>{y) S: <£(#) for all
(x, y) in

^2 = {(x> y); * > y,x s -P2
 a n d 2/6 [C2. ^2] • •$}•

This gives that (8) holds for all (x, y) in X2. Hence for all (x, y) in

^3 = {(*. y);xj^y,xeP2 and ye [c2, rf2] • S}

the relation (8) is satisfied. Considering the function F(x) defined by
F(x) = f(x)—A(o(z) on S and F(x) = f(x+)—Aco(x+) on D we can show
that there exists a closed interval [c, rf] in [c2, rf2] such that P2 • [c, d] is
a non-void perfect set, and that

(9)
(o(x)—oi(y)

for all (x, y) in X = {(x, y); x =£ y, x e P2 • [c, d] and y e [c, d] • S}. Clearly
P2 • [c,d] = P • [c, d]. Since I C I 3 , both the relations (8) and (9) are
satisfied for all (x, y) in X. This proves the theorem.

THEOREM 4.3. Let /(*) belong to the class °lt. If E denotes the set of
points in [a, b] where f'+a(x) and fLa{x) exist and are finite but not equal,
then E is at most enumerable and \E\a = 0.

PROOF. It is obvious that ECS—So. Write Eo = E—52. Then
E0CS3. Write

E1 = {x; x e Eo and ta{x)< f'+m(x)}
and

E2 = {x; xeEQ and f+u(x) < f_{x)}.

Then Eo = £ 1 + £ 2 . Let rlt r2, r3, • • • be an enumeration of the rational
numbers. If x e E± there exists a smallest positive integer k such that

There is then a least positive integer m such that rm < x and
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for all I e (rm, x) • S; and a smallest positive integer n such that rn > x and

/(£)-/(*) ^

»(!)— co(a;)

for all I e (x, rn) • S. Combining these two relations we have

(10) /(*)-/(*) > r > ( f ) - » ( * ) }

for all 1 ^ x) in ( ^ . O ^ .
Thus to every x e Elt there corresponds a unique triad (k, m, n). If

x1, x2 are two distinct points of E±, then with the help of (10) it can be shown
that they correspond to two different triads. Since the set of all triads
(k, m, n) is enumerable it follows that Ex is at most enumerable. Similarly
we can show that 2s2 is at most enumerable; hence so is the set Eo. Since
E is enumerable and contained in S it follows that \E\a = 0.

THEOREM 4.4. Let f{x) belong to the class <%. If E denotes the set of
points in [a, b] where all the four co-derivatives of f(x) are finite but at
least one of f'+a(x) and f_a(x) does not exist, then \E\a = 0.

PROOF. Let E' denote the set of points of E where

D+fa(x)-D+Ux) > k(> 0).

From Theorem 4.1. it follows that the set E' is co-measurable. Write
Eo = E'-S2. Then E0CS3 and \E0\m = |£' |w. If possible, let |£0|w > 0.
For any positive integer r let Er denote the set of points of Eo where all
the four co-derivatives of f(x) are numerically less than r. Then Er C Er+l

for every r and Eo = 2Xi ^V We can find a positive integer N such that
\EN\a > 0. From § 2 and theorem 3.7 it follows that there exists a perfect
set B C EN such that B is co-dense in itself and |5|w > 0. Consider the
function g(x) = f(x)-\-Nco(x). On B all the four co-derivatives of g(x) are
> 0 and < 2iV. By theorem 4.2 there is a closed interval [c', d'~\ in [a, b]
such that B' = B • [cr, d'] is a non-void perfect set and

(11) 0^g(*)-g(*) ^
(o(x)—m(y)

for all (x, y) in X = {(x, y);x^y,xeB' and y e \c', d'] • S}. From defini-
tion 3.2 it follows that \B'\U > 0. Choose the positive integer m such that
\k{yn—1) ^ 2 N < \km. Let Bt denote the set of points of B' where

i(*-l)ft ^ D+gu(x) < frk (i = 1, 2, • • -, m).

Then for some integer s(l 5S s 5S w), \B,\a > 0. We can choose a perfect
set PCB, with \P\a > 0. At each point of P

\(s-l)k ^ D+gJx) < ±sk and D+g.{x) > i
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Let [c, d] be the smallest interval containing P. Clearly c, d e P. Let
[c, d] — P — 2i(ai>$)> where the intervals {a.'it B't) are pairwise disjoint.
Choose e > 0 arbitrarily with

(12) a <

We find the positive integer n such that 2 ~ n + 1 l(
a«'» &')|w < e. Write

A' = 2?-i(a*. k) and J = [c, i]—4'. Then P C I We arrange the first
n intervals (v!it B't) in the order of increasing end points and rename them
as (a1( 8J, (a2, B2), • • •, (an, Bn). Write c = 80, d = aB+1. Since P is per-
fect we have B{ < xi+1 (i = 0, 1, • • • ,«) . Then zl = 2"=oC î» ai+il- Let
p. = P • [fi(i «.+1] (i = 0, 1, 2, • • -, n). li xsPT then there exists a null
sequence (AJ (/?,- > 0, x+Af e S) such that

(13) g(xJrhi)— Six) < ^sft{cu(x+Ai)— <w(a;)}.

Let J5" denote the family of all closed intervals [x, x-\-ht] thus associated
with the set PT. By theorem 1.1 there exists a finite family of pairwise
disjoint closed intervals dlt <52, • • •, dp of 3F for which

(14) £ IV
Write

We may suppose that xx < a;2 < • • • < x^ and x± = (}T, x^k^ = aT+1.
Then a;,-)-^ < a;i+1 (i = 1, 2, • • -,fi—l). Now let J " = 2<Li ,̂- and
^1" ' = 2i"=i (xi+^t'^t+i)- We proceed in this way with each of the sets
Po> P\> ' ' '• Pn- The interval [c, d] is thus divided into a finite number of
parts consisting of the sets

(i) A" = 2"=o<' (ii) A'" = j;r=0A'T" and (iii) A'. We have

\A"L < \Pl+e, M"L > \PL~e and \A'"\a < 2e.
Now

< yk{\PT\u+eln+l)+2N\A'T"\u. [Using (11), (13), and (14).]
So,

T=0

(is) <is*
T=0 T=0
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where qT = g(/2T)— g(<xT) and ? = 2 " - I ? T - Since at each point of
P> D+So{x) > i ( s + l ) ^ proceeding as above we can show that

(16) g(d)-g(c) > i(s+l)k(\P\n-e)+q.

From (15) and (16) we get

i(s+l)k(\PL-e) < isk(\Pl+e) + We, or s

This contradicts (12). Hence \E'\a = 0.
If for a positive integer n, An denotes the set of points of E where

D+fa{x)-D+fa{x) > \\n, then

XAn = A+ = {x;xeE and D+fu(x)~D+fa(x) > 0}.
n=l

Since \An\a = 0 for each n, we have \A+\O = 0. If

A_ = {x; x e E and D~fjx) > D_fa(x)},

then proceeding as in the previous case we can show that |^4_|w = 0.
Clearly E = A++A_. So \E\a = 0.

5. Function of sets

DEFINITION 5.1. Let A be any set contained in S3 and the set function
<f>(e) be defined for sets eC A. Let x e A and ?; = [x, x-\-h] (h > 0, ar+A e S).
The right upper and lower derivatives D+<f>{e, x) and D+<f>(e, x) of <£(e) at
x are defined by

D+4>(e, x) = lim sup ^ ^ , J5+^(e, a) = lim inf
\v\A->0

If D+<f>(e, x) = D+<j>(e, x), the common value is called the right derivative
D<f)+(e, x) of <f>(e) at x. Similarly the left derivatives D~<f>(e, x), D_<f>(e, x)
and D(f>_(e, x) of <f>(e) are defined. If D(f>+(e, x) = D<j>_(e, x), the common
value is called the derivative D<f>(e, x) of <f>(e) at x.

THEOREM 5.1. Let f(x) be summable (LS) on the co-measurable set
A C S3. For any co-measurable set e C A if

then Z)0(e, x) = f{x) at almost all points (co) of ^4.

PROOF. Let H denote the set of points of A where D<f>(e,x) = f(x).
Choose e > 0 arbitrarily. Then by theorem 3.9* ([4], p. 77) there exists a
closed set F C A with ]F\a > |̂ 4|w—e such that f(x) is continuous at each
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point of F with respect to F. Let E denote the set of points of F where
the co-density of F is unity. Then by theorem 3.1, \E\a = \F\U. Write
B = A — F. For x e E, let v = [x, x+h] {h > 0, x+h e S). We show that
as A ^ O (I) <t>(vF)l\v\u-+f{x) for all x e E and (II) <f>(vB)l\v\a -> 0 at
almost all points (co) of £.

Let a; e E. Choose r\ > 0 arbitrarily. Then a (5 > 0 exists such that
\f{x')—f{x)\ < rj for all x' e {x—8, x+6) • F. Then

or

Since the co-density of i7 at a; is unity, letting A -> 0 in (17) and noting that
t] is arbitrary we get

which proves (I).
Let n be a positive integer and En denote the set of points of E where

(18) lim sup f |/|<fe>/Mw > 1/n, (w = [as, x+A], A > 0, Z + / J e S).
A->-0 JvB

If possible, let co*(EJ = k > 0. Since |/(x)| is summable (LS) on A by
theorem 8* ([6], p. 148) we can find a positive number r\ < \k such that
for any co-measurable set eC A we have

f
(19)

J e
< — whenever \e\a < 2

Since the co-density of B is zero at each point of E, if x e En we can choose
a sequence of closed intervals vt = \x, x-\-h{] (h{ > 0, hi -> 0, x+A< e S)
such that for all i

(20) f \f\dco > 1 K-L and \vtB\u < ^v^.
JV(B n

Let IF denote the family of all intervals v{ thus associated to the set En.
Then by theorem 1.1 there exists a finite family of pairwise disjoint closed
intervals Alt A2, • • •, AN of IF for which

(21) | f t , * ( Z l i £ n ) > c o * ( £ J - ^ | \At\u< co*(£„)

Write « = 2tiAiB- T h e n from (20) and (21) we get \e\a < 2rjk and
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n i=i n in

which contradicts (19). Hence co*(En) = 0. Let Eo denotes the set of points
of E where the left hand member of (18) is positive. Then Eo = ^££=1En

which gives that co*(E0) = 0. This proves (II).
Let x e E' = E—Eo and v = [x, x+h] (h > 0, x+h e S). We have

^ 4 ) = +&F) tfpB)

L IL ll
Letting h -> 0 and using (I) and (II) we get D</>+(e,x) — f(x) from (22).
Similarly we can show that D<f>_(e, x) = f(x) for all x belonging to a set
E"CE with \E"\a = \E\U. If C = E'E", then D<f>(e,x) = f{x) at each
point of C and |C|W = \E\a = \F\a. SoHDC which gives that A—HCA-C
and (o*(A— H) < e. Since e > 0 is arbitrary we get co*(A— H) = 0. This
proves the theorem.

6. Results on BV—eo functions

THEOREM 6.1. Let f{x) be BV—co on [a, 6]. If E denotes the set of
points in [a, b] where at least one of the four co-derivatives of f(x) is infinite,
then |£ | u = 0.

PROOF. Since f(x) is BV—a> on [a, b] it follows that f(x) e ^ 0 . Let
E' = E-S2. Then £ ' C 5 3 and |£ 'L = \E\U. Write

E1 = {x;xe E' and D+fJx) = +oo},

£ 2 = {x; x e E' and D+fw(x) = —oo},

£ 3 = {x; a; e E' and D~fa(x) = +oo},

£4 = {a;; a; e E' and D-fa)(x) = — oo}.

Then £ ' = £ 1 + £ 2 + £ 3 + £ 4 . Let N be any positive number. If x e E1

there is a null sequence {h(} (ht > 0, x+h( e S) such that for all i

/(*+»«)-/<*) > i y
)—co (a;)

(23)

Let «F denote the family of all intervals [*, *+A<] thus associated with
the set Et. Choose e > 0 arbitrarily. Then by theorem 1.1 there exists
a finite family of pairwise disjoint closed intervals Alt A%, • • •, An

) of & for which

(24) I \AtEx\m > \Ej_l-e, | \At\. <
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Now

8 = 1 » = 1

So from (23) and (24) we get

(25) I l/fo+A,)-/(*,)| > N(\Ex\a-e).
i=l

We may assume that
xx < x2 < • • • < xn.

Then
Xi+k{ < xi+1 (i = 1, 2, • • •, n—1).

Since xt e S3 the points

a ^ xx, xx+kx, x2, x2+k2, • • -, xn, xn+kn ^ b

form a co-subdivision of [a, b]. So from (25) we get

(26) Vat(f;a,b)>N(\E1l-e).

Since N and s are arbitrary the relation (26) cannot hold unless \Ex\a = 0.
Similarly we can show that \Ei\l0 = 0 (* = 2, 3, 4). So \E\a = 0. This

proves the theorem.

THEOREM 6.2. If f(x) is BV—co on [a, b] then f'a(x) exists and is finite
except on a set of co-measure zero.

PROOF. Let Ex denote the set of points of [a, b] where at least one of
the four co-derivatives of f{x) is infinite, E2 denote the set of points of
[a, b] where all four co-derivatives of f{x) are finite but at least of one of
f'+a {x) and f'_a (x) does not exist, E3 denote the set of points of [a, b] where
/+„(*) and f'_u(x) exist finitely but are different. Then from theorems 4.3,
4.4 and 6.1. \Et\u = 0 (* = 1, 2, 3). Write E = Ex+E2+E3. Then \E\a = 0
and at each point of the set [a, b] — E, f'a(x) exists and is finite. This proves
the theorem.

THEOREM 6.3. If f{x) is BV—a, on [a, b], then f'a(x) is summable (LS)
on [a, b].

PROOF. We have [a, b] = S0+S2+S3+D where the sets So, S2, S3,
D are pairwise disjoint and co-measurable. Since |SO|W = 0, |S2|W = 0,
f^x) is summable (1.5) on the sets So, S2. The set D is at most enumerable.
So we can take its elements as a.x, <x2, <x3, • • •. Write Dt = {aj. Clearly

jD
Since f(x) is BV—to on [a, b] the series 2il/(a«+)~/(a<~)l ^s convergent.
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Hence by theorem 5* ([6], p. 146) f'a(x) is summable (LS) on D. From
theorem 3* ([6], p. 145) it follows that the theorem will be proved if we
can show that f'^x) is summable (LS) on S3.

Assume that fo(x) is not summable (LS) on S3. Let E denote the set
of points of S3 where f'u(x) exists and is finite. Then by theorem 6.2,
|£L = |S8L. Writeg(x) = | / 1 » | a n d £ n = E (0 ^g ^ n) (n = 1, 2, 3,—).
Then J£ gdu> ->- oo as n -> oo. Let N be any positive number. We fix n such
that JEfig^co > 2V+1. Let H e a positive number with k > max {|S3|U, 1}.
By theorem 8* ([6], p. 148) we can find a positive number e < 1/4& such
that for any co-measurable set eC En with \e\a < e we have $egdco < J.
For any co-measurable set e C En we define <£(e) = Je^co. Let

= {x; x e and

By theorem 5.1, \EO\U =
then

limlim f
7l-»-0 Juf

|w. If xe Eoa.ndv — [x, x-f-A] (h > 0, x-\-h e S),

\f(x+h)-f(x)\
= g(x) = hm .

So we can choose a sequence of intervals

{wj (vt ~ [x, x+hf], ht > 0, ht -> 0, x+ht e S)

such that for all i

gdco \f(x+hi)~j(x)
(27)

•'.i

< e.
ht)~m(x)

Let IF denote the family of all intervals vi thus associated with the set Eo.
By theorem 1.1 we can select a finite family of pairwise disjoint closed inter-
vals Alt A2, • • -, Am (At = [x{, Xf+kf]) of !F for which

(28)
i = l

\E9At\u > \E0\a-e, \E0\a+s.
i = l

Write A = 2JLi^«£o and B = En-A. Then from (28) \B\U < e. Now
from (27) and (28) we have

gA»-2ll/(*

So

(29)

/»

f ^ c o - | = f gdco- f g i c o -
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We may suppose 1that

Then xi-\-ki < xi+1 (i =

= •tl> **'l

1

xx

2

M.

<

C.

xi

»

:

Chakrabarty

! < • • • < * «

m— 1). Since

^2 1 2 ' *

53, the points

b

[16]

form a co-subdivision of [a, b]. So from (29) we have Va{f;a,b) > N.
Since N is arbitrary, it follows that Va(f; a, b) — +oo which contradicts
the hypothesis. Hence f'^x) is summable (LS) on S3.

I am grateful to Dr. P. C. Bhakta for his kind help and suggestions in
the preparation of the paper.
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