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1. Introduction

Let w(z) be non-decreasing on the closed interval [a, b]. Outside the
interval w(z) is defined by w(z) = w(a) for z < a and w(r) = w(b) for
xz > b. Let S denote the set of points of continuity of w(x) and D denote
the set of points of discontinuity of w(z). R. L. Jeffery [5] has defined the
class %, of functions f(x) as follows:

f(x) is defined on the set S - [, b] and f(z) is continuous at each point
of S - [a, b] with respect to the set S. If 2, e D then f(z) tends to a limit
(finite or infinite) as # tends to x,+ and z,— over the points of the set S.
These limits will be denoted by f(x,+) and f(x,—) respectively. When
z < a, f(x) = f(a+) and f(z) = f(b—) when = > b. f(x) may or may not
be defined at points of the set D.

Let %, denote the class of functions f(x) of % for which f(z,+) and
f(xy—) are finite, z, € D.

In [5] Jeffery has also introduced the following definition:

DEerFInITION 1.1: For any z and % s 0 with z-+4 € S, the function
y(z, &) is defined by

h>0, w@th)—o@—)#0

y@ h) = flet+h)—fE+)

h<0, w@E+h)—o@+) =0

0, w(t+h)—ow@t) = 0.

The upper and lower limits of y(z, &) as 4 — 0+ (x+h e S) are called
respectively the Upper and Lower w-derivatives of f(x) at x on the right
and are denoted by D+f,(x) and D.f,(x). If Dtf,(x) = D,f,(x), the
common value is called the w-derivative of f(z) at = on the right and is
denoted by f,,(x). Similarly the left w-derivatives D-f,(x), D_f,(x) and
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f o(x) of f(x) are defined. If f,,(x) = f_,(x), the common value is called
the w-derivative of f(z) at z and is denoted by f, (z).

Any set of points a =y <2, <2, <--+<<x,=0b such that
w@,_,) #ok) =12+, n) is called an w-subdivision ([1], [2]) of
[a, b]. In [1] the following definition has been introduced.

DeriniTION 1.2: Let f(z) be defined on [a, b] and be in the class %.
The least upper bound of the sums

V= 3 f@t)— @)

=1

for all possible w-subdivisions x,, 2, %,, * - -, z, of [a, b] is called the total
w-variation, V,(f; a, b), of f(x) on {a,d]. If V (f; a, b) << + o0, then f(x) is
said to be a function of bounded variation relative to w, BV —w, on [a, b].

The purpose of the present paper is to study some properties of w-
derivatives of a function f(x) € % and to show that if f(z) is BV —w on
[a, b], then f/ (x) exists and is finite at all points of [, b] except on a set of
w-measure (§ 2) zero and that f,(x) is summable (LS) (§2) on [a, b].
We require the following known results.

TaeoreM 1.1. ([5], lemma 2). Let E be any set on [a, b]. Let each
point & of E be the left hand end point of a sequence of closed intervals
[z, x+A,] for which 4; — 0. Let & denote the family of all intervals thus
associated with the set E. Then for every ¢ > 0 there exists a finite family
of pairwise disjoint closed intervals 4,, 4,, - « -, 4y of # for which

N N
2 o*(EA)) > o*(E)—e, 3 |4i, < w*(E)+s,

i1
where w*(E) denotes the outer w-measure and |E{, the w-measure (§ 2)
of the set E.

THeoreM 1.2. This theorem is obtained from theorem 1.1 by replacing
‘left hand’ by ‘right hand’ and [z, x+4,] by [x—5,, x].

Throughout the paper the following notations will be used. S,
denotes the union of pairwise disjoint open intervals (a;, b;) in [a, b] on
each of which w(z) is constant, S; = {a,, b;, a,, by, -+ '}, S; = SS;, and
Ss = [a, b] * S—(Sp+S;). Then w(z,) < w(x,) for every pair z;, x, with
x, < z, where one of them at least is a member of S;. If f(z) € %, then
f.(®) = 0 on Sy and f, (x) exists at each point of D.

2. w-measure of a bounded set and Lebesgue-Stieltjes integral

The w-measure |(«, 8)|, ((8], § 1) of an open interval («, 8) is defined
by |(«, 8)], = w(8—)—w(x+). The w-measure |G|, of a bounded open set
G = 3,(«;, B;), where the open intervals («;, 8;) are pairwise disjoint, is
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defined by |G|, = X.l(«;, B)l,. If G is void, then |G|, = 0. The w-measure
lI], of a closed interval I = [«, 8] is defined by |I|, = w(+)—w(x—).
The w-measure |F|, of a bounded closed set F is defined by

lFlw = !I]w—!CIFlw-’

where I is the smallest closed interval containing F and C; F denotes the
complement of F with respect to I. The outer w-measure w*(E) of a bounded
set E is the infimum of the w-measures of all bounded open sets containing
E and the inner w-measure w, (E) is the supremum of the w-measures of
all closed sets contained in E. If w*(E) = w,(E), the set E is said to be
w-measurable and the common value is denoted by |E|,. Two sets 4; and
A, are said to be separated relative to w-measure or w-separated if corre-
sponding to every ¢ > 0 there exist open sets G;, G, with G; 3 4,, G, D 4,
such that |G,G,|, < &. A function f(z) defined on the w-measurable set E
is said to be w-measurable ([5], def. 2) if for every real number 7, the
set E(f>r) = {&;x € E and f(x) < 7} is w-measurable.

Let f(x) be w-measurable on the bounded set E and 4 < f(x) << B
on E. Let A =y, <y, <<y, <<-+-<y,= B be a subdivision of [4, B]
and ¢, = E(y; = f <¥;41) 6=0,1,2,---, n—1). The limit of Y7 3y,le,l,
as max |ly,—y;_,| — 0 is called the Lebesgue-Stieltjes integral ([5], def. 3)
of f(x) over E and is written as [gfdw. This definition may be extended to
unbounded functions in the usual way.

One can verify that (i) the results of the sections 1—4 ([6]), Ch. III)
and the theorems 2.7, 2.17—2.20 ([4], Ch. II) corresponding to w-measures,
(ii) the results of the sections 1, 2 ([6], Ch. IV) and the theorems 3.9—3.11
([4], Ch. III) corresponding to w-measurable functions (iii) the results
of the sections 2, 3 ([6], Ch. V) and 1, 2 ([6], Ch. VI) corresponding to
Lebesgue-Stieltjes integral, are true. Whenever necessary we shall refer
these results with a star for the corresponding results of w-measures,
w-measurable functions and Lebesgue-Stieltjes integral.

If a property P is satisfied at all points of a set 4 except a set of
w-measure zero, then it will be said that P is satisfied almost everywhere
(w) in A or at w-almost all points of 4.

3. w-density of sets

DEeFINITION 3.1. (cf. [4], def. 5.2, p. 114).
Let A be any subset of S;,  be any point and

v=[x,x+h] (h>0,2+heS)
Then
*(A *(A
tim sup 224 i i 27 4Y)
h—0 v w h—0 lvlw
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are respectively called the right upper and lower w-densities of 4 at z.
If these limits are equal, their common value is the right w-density of 4 at
z. Similar difinitions are given for left w-densities of 4. If the left and right
w-densities of A at x are equal, their common value is the w-density of A
at z. Since w*(4v) < |v|, for any interval v it follows that none of the four
w-densities can exceed unity.

DEFINITION 3.2. Let A be a subset of S; and « be any point. 4 is said
to be w-dense at z if w*(A4v) > 0 for any open interval v containing =z.
A is said to be w-dense in itself if 4 is w-dense at each point of 4.

THEOREM 3.1. Let 4 be a subset of S;. Then at almost all points (w)
of A the w-density of A4 is unity.

COROLLARY 3.1.1. If A C S, then A is w-dense at almost all points (w)
of A.

THEOREM 3.2. Let A and B be two subsets of S,;. If 4 and B are w-
separated, then at almost all points (w) of one set the w-density of the
other is zero.

THEOREM 3.3. Let 4 and B be two subsets of S;. If at almost all
points (w) of A the w-density of B is zero, then A and B are w-separated.

The above theorems can be proved in a way analogous to that used
in proving the results of the section 5.2 ([4], Ch. V) by making use of the
theorems 1.1 and 1.2.

Let 4 and B be any two subsets of S,. Let A5 and B, denote the
parts of A, B respectively where at least one of the four w-densities of B,
4 is different from zero.

THEOREM 3.4. If A and B are not w-separated, then w*(4z) > 0 and
w*(B4) > 0; also no part of Az with positive outer w-measure is -
separated from B, and no part of B, with positive outer w-measure is
w-separated from Ag.

Proor. From theorem 3.3 it follows that w*(4z) > 0 and w*(B4) > 0.
Let E C Ap with w*(E) > 0. If possible, let E be w-separated from B.
Write B = B—B,. Then B = B’+ B,. At each point of B’ the w-density
of A and therefore of E is zero. By theorem 8.3 the sets E and B’ are
w-separated. So the sets £ and B = B'-+B, are w-separated. Then by
theorem 3.2 at almost all points (w) of E the w-density of B is zero. This
contradicts the definition of 4. If E C B, and w*(E) > 0 then as above
we can show that E and Ay are not w-separated.

THEOREM 3.5. For any two sets 4 and B and any interval v, we have
w*(vAg) = w*(WB,).
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Proor. If A and B are w-separated then by Theorem 3.2, w*(4z) = 0
and w*(B,4) = 0. Therefore w*(vAg) = w*(vB,).

Next we suppose that 4 and B are not w-separated. Write 4, = vAyg
and B, = vB,. Assume that w*(4,) << w*(B,). Let 4 be any open interval
containing the sets v, Ag, B,. Choose an open set G C 4 such that 4,CG
and |G|, < w*(B,). Let F denote the complement of G relative to 4.
Then w*(FB,) > 0. Since the sets F and G are w-separated, the same is
true for the sets F By and GAg. Again since FByCv and FAz C A—v the
sets FB, and FAp are w-separated. Hence FB, is w-separated from
Ag=G-Apg+F - Ag. Since FB,C B, and w*(FB,) > 0 this contradicts
the Theorem 3.4. Similarly we can show that the assumption w*(B,) << w*(4,)
leads to a contradiction. Hence w*{4,) = o*(B,).

CorOLLARY 3.5.1. If 4 and B are not w-separated, then
0*(d) = w*(B,) > 0.

THEOREM 3.6. If A and B are not w-separated, then at almost all
points (w) of Az the w-density of B is unity and at almost all points (w)
of B, the w-density of 4 is unity.

PROOF. Let 0 << 7, << 7, <--- be a sequence of real numbers with
7, > 1 and let E, denote the set of points of 4z where the right lower
w-density of B is less than 7,. Consider the set E,. If x € E, there exists
a null sequence {#;} (h; > 0, x+h; € S) such that for all ¢

w*(Bv,)
AP
where v; = [z, x+A,]. Since B, C B we have for all ¢
(1) w*(v;B4) < 1,004,

Let # denote the family of all closed intervals v; thus associated with the
set E,. Choose £ > 0 arbitrarily. Then by theorem 1.1 there exists a finite

n

family of pairwise disjoint closed intervals 4,, 4,, - - -, 45 of & for which
N N
(2) z w*(AiEn) > w*(En)_s’ 2 'Ailw < w*(En)+£'
: i=1 i=1
So,

o*(E,)—e < g:w*(A,.AB) = lzv:w* (4,By) [by theorem 3.5]
(3) i=1N i=1
<7, 21 14y < zu[w*(E,)+¢] [by (1) and (2)]

Since &£ > 0 is arbitrary, (3) leads to a contradiction unless w*(E,) = 0.
If E’ denotes the set of points of 4z where the right lower w-density of B
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is less than unity, then E’'= 3* E,. Since w*(E,) =0 for all ¢,
w*(E’) = 0. If E” denotes the set of points of Ay where the left lower
w-density of B is less than unity, then as above we can show that
w*(E") = 0. Write E = E'4+E”. Then w*(E) = 0. Clearly at each point
of Ag—E the w-density of B is unity.

Similarly we can show that at almost all points (w) of B4 the w-density

of A4 is unity. This completes the proof.

THeEOREM 3.7. If A be a closed set contained in S;, then A can be
expressed as A = P+ H, where P is perfect and w-dense in itself and where
the w-measure of H is zero.

Proor. Denote by P the set of points of 4 where 4 is w-dense and
write H = A—P. Then A = P+H. By corollary 3.1.1, the w-measure of
H is zero. Let o be a limiting point of P and v be any open interval containing
«. Then v contains a point &{7# «) of P which gives that w*(4v) > 0.
Since v is arbitrary it follows that 4 is w-dense at « and therefore « € P.
So the set P is closed. Again let « € P and v be any open interval con-
taining «. Then w*(v4) > 0. But w*(4v) = w*(Pv). Since vP CS,,
v contains infinity of points of P; so « is a limiting point of P. Thus the set
P is perfect. Clearly P is w-dense at each point of P. This completes the
proof.

4. Results on w-derivatives of f(x) e ¥

THEOREM 4.1. If f(z) is in the class %, then all the four w-derivatives
of f(x) are w-measurable on [a, b].

Proor. We prove the theorem for the derivative D+f,(x}. The proofs
in the other cases are analogous. We have [a, ] = Sg+S,+S;+D, where
the sets S,, S, S;, D are pairwise disjoint and w-measurable. D+f (x) = 0
at each point of S,. Since [S,|, == 0 and D is at most enumerable, D*f,(x)
is w-measurable on each of the sets S;, S, and D. The theorem will be
proved if we can show that D+f,(x) is w-measurable on the set S;.

For any real number 7 write 4, = {&; 2z € S; and D*f, () < 7} and
B, = {x;x € Sg and D*f,(x) = r}. Suppose that D+f, (x) is not w-measur-
able on S;. There is then a real number » for which the sets 4, and B, are
not w-measurable. So by theorem 2.20* ([4], p. 59) the sets 4, and B, are
not w-separated. Let ¢; << ¢, << ¢3 << -+ be a sequence of real numbers
with ¢, — 7. Let E,, be the set of points & of A, for which

HEH—1O) _
w@E+h)—oE) "
whenever 0 <Ak << 1/k and &+heS. If ¢, <i, and &, <k, then

(4)
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E.; CE,;,. Alsoif x e A,, thenz e Ey for some 7, k. Hence from theorems
2.18* and 2.20* ([4], p. 58—59) it follows that for sufficiently large ¢, & the
sets E;, and B, are not w-separated. So by theorem 3.6 there is a set E C B,
with w*(E) > 0 such that at each point of £ the w-density of E is unity.
Let « be any point of E and ¢ be any real number with ¢, << ¢ << 7. Since
D+f, (x) > c there exists A" with 0 < #’ << 1/k, «+4" € S such that

Hath')—f(«)
w{ath")—w(x)
Since the w-density of E,; at « is unity, every interval

[o, a+A] (B > 0, a+h € S)

(5)

contains infinity of points of the set E, . Choose any & of E,, in («, a+4')
and write 2 = a+A'—&. Then &+% = a+4" and 0 < 2 < 1/k. So, from
(4) and (5) we have

Hath)—f(x) > clw(ath)—o(a)]
and

HE+R)—1(§) < cilw(E+h)—w(E)]

from which we get

: o(x+r')—ow(f)
6 p— — _— 21 .
O HO—10) > [wfeth) —wl) [e— 22 )
Now suppose that £ - «+ over the points of E,. Then # — %’ and from
(6) we get

(7) Hoat)—f(2) = [o(xtA)—w ()] (c—c,).

Since w(x+A')—w(x) > 0 and ¢ > c,, the relation (7) contradicts the fact
that f(z) is continuous at « with respect to the set S. This proves the theorem.

THEOREM 4.2. Let f(z) belong to the class % and P be a non-void
perfect set contained in S;. If all the four w-derivatives of f(x) are greater
than A4 and less than B (> 4), then there exists a closed interval [c, 4]
in [a, b] such that P - [¢, d] is a non-void perfect set and for all (z, ¥) in
X={xy,x#*yxeP-[c,d]andye[c, d]-S}

f@)—1y) _ 5
T o@)-wly) T

A

Proor. Consider the function ¢(x) defined by ¢(x) = f(x)—Bw(x) on
S and ¢(z) = f(x+)—Bw(@x+) on D. If xe P, then D*¢, (x) < 0. So
there is a positive number %, such that ¢(y) =< ¢(x) for all y in [z, z-+A,].
From § 293 ([3], p. 393) it follows that there is a closed interval [¢q, 4]
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in [a,b] such that P, = P-:[¢,d,] is a non-void perfect set and
$(y) < ¢(x) forall (x,y) in X, = {(x,y);* <y, xeP,and ye[c, d,]- S}
Then for all (z, y) in X,

f)—1(y)
w(@)—w(y)
Since D—¢,(x) < 0 for x € P, there is an 4, > 0 such that ¢(y) = ¢(z)

for all y in [z—4A,, ]. So there is a closed interval [¢,, d,] in [¢;, d,] such
that P, = P, - [c,, d,] is a non-void perfect set and ¢(y) = ¢(z) for all

(z, y) in

IA

(8) B.

X,={ y);x >y xePyand y € [c,, dy] - S}.
This gives that (8) holds for all (z, y) in X,. Hence for all (z, ) in
X;={®y);x#y xePyandye[c,, dy] - S}
the relation (8) is satisfied. Considering the function F{(z) defined by
F(z) = f(x)—Aw(x) on S and F(x) = f(x+)—Aw(x+) on D we can show

that there exists a closed interval [c, 4] in [c,, d5] such that P, - [c, d] is
a non-void perfect set, and that

o) 1< @1

o (*)—w(y)
forall (z,y) in X = {(x,y);x #y,x € Py- [c,d] and y € [¢, 4] - S}. Clearly
P,:[c,d] = P [c,d]. Since X CX,, both the relations (8) and (9) are
satisfied for all (z, ) in X. This proves the theorem.

THEOREM 4.3. Let f(x) belong to the class #. If E denotes the set of
points in [a, b] where f.,(x) and f’,(z) exist and are finite but not equal,
then E is at most enumerable and |E|, = 0.

Proor. It is obvious that ECS—S,. Write E,= E—S,. Then
E,CS,;. Write
E,={zzeEjand [ () < fL.(2)}
and
E,={z;ze Eyand f,,(x) < [ (@)}

Then Ej, = E,+E,. Let 7, 7,, 7, --- be an enumeration of the rational
numbers. If x € E, there exists a smallest positive integer % such that

fl—m(x) < rk < f—;-w(x)
There is then a least positive integer m such that »,, < « and

£(&)— (@)
o) —o@
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for all £ € (7,,, ) - S; and a smallest positive integer » such that », > « and

HE)— 1)

o) —o@)
for all £ € (x, 7,) - S. Combining these two relations we have
(10) HE) —f =) > r{o(§)—o (=)}

for all £(£ =) in (r,,, 7,) - S.

Thus to every z € E,, there corresponds a unique triad (%, m, n). If
x,, x, are two distinct points of E,, then with the help of (10) it can be shown
that they correspond to two different triads. Since the set of all triads
(B, m, n) is enumerable it follows that E, is at most enumerable. Similarly
we can show that E, is at most enumerable; hence so is the set E,. Since
E is enumerable and contained in S it follows that |E|, = 0.

THEOREM 4.4. Let f(x) belong to the class . If E denotes the set of
points in [a, b] where all the four w-derivatives of f(x) are finite but at
least one of f,,(z) and f_,(x) does not exist, then |E|, = 0.

Proor. Let E’ denote the set of points of E where
D*f,(@)—D. /@) > k(> 0).

From Theorem 4.1. it follows that the set E’ is w-measurable. Write
E,= E'—S,. Then E,CS, and |E,|, = |E'|,. If possible, let |E,|, > 0.
For any positive integer 7 let E, denote the set of points of E, where all
the four w-derivatives of f(z) are numerically less than ». Then E,CE,,
for every r and E, = 32, E,. We can find a positive integer N such that
|Eyl, > 0. From § 2 and theorem 3.7 it follows that there exists a perfect
set BC Ey such that B is w-dense in itself and |B|, > 0. Consider the
function g(z) = f(z)+Nw(x). On B all the four w-derivatives of g(z) are
> 0 and < 2N. By theorem 4.2 there is a closed interval [¢’, d'] in [a, b]
such that B’ = B - [¢’, d'] is a non-void perfect set and

(1) 0 < @) —8)
w(@)—o(y)
for all (x,y)in X = {(x,y);x #y,xe B and y e [¢', d'] - S}. From defini-
tion 3.2 it follows that |B’|, > 0. Choose the positive integer m such that
$k(m—1) < 2N < 1km. Let B, denote the set of points of B’ where
-1k <D, g, (x) < ik (t=12---m).
Then for some integer s(1 <s < m), |B,|, > 0. We can choose a perfect
set P C B, with |P|, > 0. At each point of P

4(s—1)k < D_g,(x) < 3sk and D*g,(x) > }(s+1)k.

= 2N,
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Let [c,d] be the smallest interval containing P. Clearly ¢, d e P. Let
[c,d]—P = 3,(«;, B;), where the intervals (e, f;) are pairwise disjoint.
Choose ¢ > 0 arbitrarily with

k|P|,

(12) < (2s+1)k+8N

We find the positive integer # such that 32 ., |(a;, 8;)l. <& Write
A" =% («i, ;) and 4 = [c,d]—A4". Then P C A. We arrange the first
n intervals («;, 8;) in the order of increasing end points and rename them

s (g, B1), (g, Ba), * = =, (an, Bn). Write ¢ = By, d = «,,,. Since P is per-
fect we have f; <oa,,, (¢=0,1,--+,n). Then 4 = >7 ([B,, «;.,]. Let
P,=P-[B;,,a;44] 1=0,1,2,--- n). If xe P, then there exists a null
sequence {A,} (h; > 0, x+h,; € S) such that

(13) glath)—gla) < jsk{o(@+h)—ol)}

Let & denote the family of all closed intervals [z, +#4;] thus associated
with the set P,. By theorem 1.1 there exists a finite family of pairwise

disjoint closed intervals é,, d,, - - -, 8, of & for which
B
(14) Z |6iP1|w > lP1|m*£/n+1’ z Iai,w < ]P1lw+£/n+l
=] t=1
Write
0, = [x;, z;+k,] t=12"--p).

We may suppose that z; <, <::- <=z, and z;, = 8,, z,+k, = 2,4;.
Then x,—{—k <%y (@E=12"---,u—1). Now let 4, =% 6, and
A7 = Yl (x,+k;, 2,,,). We proceed in this way with each of the sets

P,, P, ---, P,. The interval [c, d] is thus divided into a finite number of
parts consisting of the sets

) 4" =30 A (i) A = 3n_y A" and (iii) A’. We have

7=0

4", < |Pl,+e, |4"|, > |P|,—¢ and |4, < 2e.

Now
g —8(5r) = 3 {elocth)—g@)1+ 3 (8l —glotb)
< 3sk(|P,|,+&[n+ 1)+2N1A;."|w. [Using (11), (13), and (14).]
So,
g(d)_g(c) = g {g 1'+1 ﬂ‘r }+ z {g /31 r)}
(15) < sh( 3 1P lte +2NE 4+ Sa,

7=0 7=1

Lsk(|P|,+&)+4Ne+q
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where ¢, = g(8,)—g(x,) and ¢ = >7_;¢9,. Since at each point of
P, D*g,(x) > }(s+1)k proceeding as above we can show that

(16) g(d)—g(c) > }s+1)k(|Pl,—2)+g.

From (15) and (16) we get '

k|P|

1 — 1 4N, — 2 .
(s+1)k(|P|,—&) < 3sk(|P|,+¢)+4Ne, or &£ > @sF1)hT8N

This contradicts (12). Hence [E’|, = 0.
If for a positive integer n, A, denotes the set of points of E where
D+f (x)—D,f,(x) > 1/n, then

EA,L = A, = {x;x e E and D*f,(x)—D_f,(x) > 0}.

Since |4,], = 0 for each #, we have |4_,], = 0. If
A_={x;xe Eand D-f,(x) > D_f,(x)},

then proceeding as in the previous case we can show that |4_|, = 0.
Clearly E = A,+A_. So |E|, = 0.

5. Function of sets

DEeFINITION 5.1. Let 4 be any set contained in S; and the set function
¢(e) be defined forsetse CA. Letx e Aandv = [x, x+4) (h > 0, z+h e S).
The right upper and lower derivatives D*¢(e, ) and D, (e, x) of ¢(e) at
x are defined by

D+¢(e, ) = lim sup $(Av) D, ¢(e, ) = lim inf ¢ (4o)

2
h—0 lvlw h—0 Iv'w

If D+¢(e, ) = D, $(e, «), the common value is called the right derivative
D¢ (e, ) of ¢(e) at . Similarly the left derivatives D—¢(e, z), D_d(e, x)
and D¢_(e, x) of ¢(e) are defined. If D¢, (¢, ) = Dé_(e, ), the common
value is called the derivative Dé(e, ) of ¢(¢) at x.

THEOREM 5.1. Let f(z) be summable (LS) on the w-measurable set
A CS,. For any w-measurable set ¢ C 4 if

$(e) = [, fdw
then D¢ (e, ) = f(x) at almost all points (w) of A.

Proor. Let H denote the set of points of A where Dé(e, z) = f(x).
Choose ¢ > 0 arbitrarily. Then by theorem 3.9* ([4], p. 77) there exists a
closed set F C A with |F|, > |A|,—e such that f(z) is continuous at each
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point of F with respect to F. Let E denote the set of points of F where
the w-density of F is unity. Then by theorem 3.1, |E|, = |F|,. Write
B=A—F.Forxek, letv=1[x,x+h] (h > 0,2+heS). We show that
as B —0 (I) ¢(vF)/lv|], — f(x) for all xe E and (II) ¢é(vB)/v|, — O at
almost all points (o) of E.

Let z € E. Choose 5 > 0 arbitrarily. Then a § > 0 exists such that
if(&')—f(x)| < for all’ € (x—0, £4-6) - F. Then

[f@)—nllvFl, < [  fdo < [f@)+n]oF],
or

17) e)—m Tl < 207)

ol

F
< @)ty e

v]o |9]o

Since the w-density of F at x is unity, letting 2 — 0 in (17) and noting that
7 is arbitrary we get

tim 295 _ 4)

rso [V,

which proves (I).
Let » be a positive integer and E, denote the set of points of E where

(18)  lim supf Ifldw/lv], > 1/n, (v = [z, z+h], h > 0,z+h e S).
h—0 vB

If possible, let w*(E,) = & > 0. Since |f(x)| is summable (LS) on A by
theorem 8* ([6], p. 148) we can find a positive number 5 < 1% such that
for any w-measurable set ¢ C 4 we have

k
(19) f Ifldw < o whenever [e|, < 2 n&.

Since the w-density of B is zero at each point of E, if € E, we can choose
a sequence of closed intervals v, = [z, z+4;] (b, > 0, h, = 0,2-+h,€S)
such that for all ¢

1
(20) | 11> — 1o, and 10,Bl, < alvi-
v;B

Let & denote the family of all intervals », thus associated to the set E,.
Then by theorem 1.1 there exists a finite family of pairwise disjoint closed
intervals 4, 4,, - - +, Ay of & for which

N N
(21) gl o*(4;E,) > o*(E,)—n, _zllAilw < o*(Eq)+.

Write e = Y¥ ,4,B. Then from (20) and (21) we get le|, < 27k and
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lflde > L 4, > L k k
B W ;E ilw ;[_77]>§;L

i=1

[ 1 = 5

i~1J 4,

which contradicts (19). Hence w*(E,) = 0. Let E, denotes the set of points
of E where the left hand member of (18) is positive. Then Eq = 32 E,
which gives that w*(E,) = 0. This proves (II).
Letze E' = E—Ejandv = [z, z+hk) (h > 0, z+k € S). We have

o) $4) _ $F) | $(0B)

2, lvl,, 0],
Letting # — 0 and using (I) and (II) we get Dé, (e, ) = f(x) from (22).
Similarly we can show that D¢_(e, ) = f(z) for all x belonging to a set
E" CE with |E”|, = |E|,. If C = E'E”, then Dé¢(e, z) = f(zx) at each
point of C and |C|, = |E|, = |F|,. So H D C which gives that A-HCA—-C
and w*(4—H) < & Since ¢ > 0 is arbitrary we get w*(4—H) = 0. This
proves the theorem.

6. Results on BV— functions

THEOREM 6.1. Let f(x) be BV —w on [a, b]. If E denotes the set of
points in [a, b] where at least one of the four w-derivatives of f(z) is infinite,
then |E|, = 0.

PRrOOF. Since f(z) is BV —w on [a, b] it follows that f{x) e %,. Let

E'=FE-S,. Then E'CS; and |E’|, = |E|,. Write

E,= {x;xe E' and D*f,(x) = + o0},

E,={z;ze E and D, f,(x) = —o0},

E,={z;ze E' and D-f,(x) = + 0},

E,={&;ze E' and D~ f,(x) = —o0}.
Then E' = E,+E,+E,+E,. Let N be any positive number. If z e E,
there is a null sequence {4,} (, > 0, x4, € S) such that for all ¢
f+h)—1(z)
w(@+h;)—o(x)

Let # denote the family of all intervals [z, z+h,] thus associated with
the set E;. Choose ¢ > 0 arbitrarily. Then by theorem 1.1 there exists
a finite family of pairwise disjoint closed intervals 4,,4,,- -, 4,
(4; = [z,, z,+k,]) of F for which

(23)

n

(24) |4 Eqly > |Eqly—s, 3 14ilo < |Eqly+e.
' i=1

i=1
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Now
n

SI4E), = z (0@EAk)—o @)}

So from (23) and (24) we get

n

(25) Zl @, +k)—F )] > N(|Ey|,—e).
We may assume that
Ty <Xy < v < X
Then
;bR < Xy (f=1,2+--,n—1).
Since z; € S; the points

a =2, 8,1k, Ty, Xyt Ry, 2, X, +R, =D
form a w-subdivision of [, b]. So from (25) we get
(26) Vo(f; @, b) > N(IE4,—e).
Since N and ¢ are arbitrary the relation (26) cannot hold unless |E,], = 0.

Similarly we can show that |E,[, =0 (s = 2, 3, 4). So |E|, = 0. This
proves the theorem.

THEOREM 6.2. If f(z) is BV —w on [a, b] then f, () exists and is finite
except on a set of w-measure zero.

Proor. Let E, denote the set of points of [, b] where at least one of
the four w-derivatives of f(z) is infinite, E, denote the set of points of
{a, b] where all four w-derivatives of f(x) are finite but at least of one of
fio(@) and f_,(x) does not exist, E, denote the set of points of [a, b] where
fio(®) and f* (z) exist finitely but are different. Then from theorems 4.3,
44and6.1. |E], =0 (i =1,2,3). Write E = E,4-E,+E;. Then |E|, =0
and at each point of the set [a, b]—E, f, () exists and is finite. This proves
the theorem.

THEOREM 6.3. If f(x) is BV —w on [a, b], then f,(z) is summable (LS)
on [a, b).

Proor. We have [a, b] = Sy+S,+S;-+D where the sets Sg, S,, S;,
D are pairwise disjoint and w-measurable. Since |Sgyl, =0, [Ssl. =0,
f.,(x) is summable (LS) on the sets Sy, S,. The set D is at most enumerable.
So we can take its elements as a,, «,, o, * - -. Write D; = {«;}. Clearly

[, ke = £ (@] 1Dy = 1f(irt) —F =)
Since f(x) is BV —w on [a, b] the series > |f(ox;+)—f(x;—)| is convergent.

https://doi.org/10.1017/51446788700007278 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700007278

[15] w-derivatives and BV-w functions 359

Hence by theorem 5* ([6], p. 146) f (x) is summable (LS) on D. From
theorem 3* ([6], p. 145) it follows that the theorem will be proved if we
can show that f, () is summable (LS) on S;.

Assume that f, () is not summable (LS) on S;. Let E denote the set
of points of S; where f, (r) exists and is finite. Then by theorem 6.2,
|El, = |Sql,- Writeg(z) = |f (@)l and E, = E (0 <g <n) (n = 1,2,3,--).
Then [g gdw — o0 as n — 0. Let N be any positive number. We fix # such
that [p gdw > N+1. Let k be a positive number with £ > max {|S,,, 1}.
By theorem 8* ([6], p. 148) we can find a positive number ¢ < 1/4% such
that for any w-measurable set ¢ C E, with |e[, <& we have [,gdo < 1
For any w-measurable set ¢ C E, we define ¢(¢) = [,gdw. Let

Ey={x;xec E, and Dé(e, x) = g(x)}.

By theorem 5.1, |Ey|, = |E,|,. fre Eqandv = [z, x+4] (A > 0,x+h e S),
then
gde - flet+h)—f(=)]

lim =gy =lim ——— "~ .
=0 JuE, |'U|w =8) rso ©@+h)—o(x)

So we can choose a sequence of intervals
{v;} (v; = [, 2+h], b, > 0,h, > 0,24+h;€S)

such that for all ¢

< &.

[ gdo  |f(@+h)—1(@)]
v:E, |Vilo o@+h;) —o(x)
Let # denote the family of all intervals v, thus associated with the set E,.

By theorem 1.1 we can select a finite family of pairwise disjoint closed inter-
vals 4,, 4,, -+ -, 4,, (4, = [%;, z;-+k;]) of F for which

(27)

(28) z IEOAin > [E0|w £, z |Az|w < ]Eolw+8

i=1 i=1
Write A Sri4;Ey and B= E,—A. Then from (28) |B|, <& Now
from (27) and (28) we have

| [ gdo— S k)~

m

=3

i=1

f gdor—|f(@-k)—F ()]
4,E,

<314, < e(Eolate) < b

So .
(29) 3 l(wtk)—f)] > ngdw—— f gdo— f gdo—} >

i=]
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We may suppose that
Ty <Xy < *°* <2y,

Then z;,+k; <,y =1 2 ---, m—1). Since z, € S,, the points
a =2y, xRy, Xy, Xyt Ry, 02,2, 1R, =D

form a w-subdivision of [a, b]. So from (29) we have V,(f; 4, b) > N.
Since N is arbitrary, it follows that V,(f; @, b) = + oo which contradicts
the hypothesis. Hence £, (z) is summable (LS) on S,.

I am grateful to Dr. P. C. Bhakta for his kind help and suggestions in
the preparation of the paper.
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