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ABSTRACT REFLEXIVE SUBLATTICES AND
COMPLETELY DISTRIBUTIVE COLLAPSIBILITY

W.E. LONGSTAFF, J .B. NATION AND ORESTE PANAIA

There is a natural Galois connection between subspace lattices and operator algebras
on a Banach space which arises from the notion of invariance. If a subspace lattice
L is completely distributive, then & is reflexive. In this paper we study the more
general situation of complete lattices for which the least complete congruence A on
L such that .C/A is completely distributive is well-behaved. Our results are purely
lattice theoretic, but the motivation comes from operator theory.

A subspace lattice £ is reflexive if it is the set of invariant subspaces of some collection
of operators, which is equivalent to £ = LatAlgL in the notation given below. In
[7], the first author proved that any completely distributive subspace lattice is reflexive
(generalising Halmos [4]). The crucial lemma in this proof describes, for a given subspace
lattice £, the lattice £ of subspaces invariant under the rank-1 operators leaving every
member of -C invariant. The map £ i-»- £ is a closure operator on subspace lattices, and
can be described in purely lattice theoretic terms. As £ is a reflexive lattice, we can
think of this as an abstract way of constructing reflexive lattices. (Though not every
reflexive subspace lattice is £ , for some subspace lattice £. Since reflexivity is not a
lattice-theoretic invariant [10], it can have no lattice-theoretic characterisation.)

It is interesting then to look for classes of lattices where the map £ i-> £ is well-
behaved, for this will allow us to construct many examples of reflexive subspace lattices.
This in turn leads us to consider the least complete congruence A on £ such that £ / A is
completely distributive. The general description of A is not very enlightening, but under
certain circumstances it simplifies considerably. With these same conditions, the map
£ i-> £ becomes quite tractable. The corresponding class of lattices, called S-lattices,
and its subclass of J-lattices, will be studied in the latter part of the paper.

1. BACKGROUND

In this section we shall assemble the relevant background and terminology for both
lattice theory and operator theory. Throughout, we shall be working with complete
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246 W.E. Longstaff, J.B. Nation and 0 . Panaia [2]

lattices, whose operations are denoted by / \ and V> with a least element 0 and greatest
element 1. We adopt the usual conventions that \/<D = 0 and / \ 0 = 1.

If L and X are complete lattices, a map h. : L —} % is a complete homomorphism if
M V x*) = V h(xi) and h[ f\ xA — /\ h(x{), for any index set / . The kernel of a com-

plete homomorphism is called a complete congruence. Thus every complete congruence
is an equivalence relation 0 on £ such that x,- 5 j/,-, for all i g- / , implies ( \J xA 6 ( V yA

^•6 / ' Me/ '

and ( / \ X,) # ( A J/f )• Conversely, any equivalence relation 0 on -C satisfying these

conditions is a complete congruence. Indeed, for such an equivalence relation 9, the set
of equivalence classes L/9 is a complete lattice with the obvious order and the canonical
map h : L —t L/6 is a complete homomorphism with kernel 0.

The intersection of any collection of complete congruences is again a complete con-
gruence. Hence the set of all complete congruences on L forms a complete lattice, with
its meet operation being set intersection and its joins given by \J #,• = f]{ip '• 9{ C

«/>, for all i € / } .

If H is a complete lattice and x € -C, define

x_ = \f{y e £ : x £ y] and

x* = /\{s- : s £ -C and s j£ x}.

Note that x ^ x*, and that x ^ y implies x* ^ y*. Of course, x* $J (a;*)*, and this
inequality may be strict. Let

3c = {y € £ : y £ 0 and y_ ^ 1}

so that
x* = A { s - : s £ 8c and s ^ x}.

Finally, we observe that * is a complete meet homomorphism: that is, (/\xi)* — /\x*.

A complete lattice is completely distributive if it satisfies the identity

*«= V
where J1 denotes the set of all / : / —» J. This identity is equivalent to its lattice-
theoretic dual (a good exercise). The importance of the * operation is in the following
observation derived by the first author [7] from Raney [13].

LEMMA 1 . A complete lattice L is completely distributive if and only if x* = x,
for all x e £ .

There are three simple classes of examples of completely distributive lattices.

1. The lattice of all subsets of any set is completely distributive.
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[3] Abstract reflexive sublattices 247

2. Any complete chain (nest) is completely distributive.

3. Let 7 be any ordered set (poset). A subset / C CP is an order ideal if

x ^ y E I implies x € / . The collection 0(3>) of all order ideals of ?

is closed under arbitrary set unions and intersections, and hence forms a

completely distributive lattice. Indeed, a complete lattice & is completely

distributive if and only if there is a complete surjective homomorphism

h : 0(7) - i £ , for some ordered set 7 [12].

A nice survey of completely distributive lattices and their applications to operator

theory may be found in Hopenwasser [5].

Now let X be a (real or complex) Banach space. Let 'B(X) denote the algebra of

bounded linear operators on X, and let G(X) denote the (complete) lattice of closed

linear subspaces of X. (Throughout, our results apply to any topological vector space

satisfying the Hahn-Banach Theorem: given a closed subspace S and x fi S, there exists
a continuous linear functional f such that S C ker / and f(x) = 1. In this context, 'B(X)
is the algebra of continuous linear operators on X.) For any set R C 15(X), and for any
set S C e(X), define

AlgS = {T G S(X) : T(M) C M, for all M € 5 } ,

Lat R={M e e(X) : T(M) C M, for all T € R}.

Then AlgS is a subalgebra of T>(X) and Lat R is a complete 0-1 sublattice of C(X).

A sublattice £/ C C(X) is reflexive if and only if L — Lat R for some R C "B(X), or
equivalently, £ = LatAlgL (by standard results about Galois connections).

The crucial lemma from [7] (see Bandelt [2]) can be stated as follows.

LEMMA 2 . Let X be a Banach space, and let L be a complete 0-1 sublattice of
G(X). Let Re be the set of rank-1 operators in AlgL. Then, for K 6 G(X), we have
K € Lat RL if and only if there exists N e £ such that N C K C N' (with N* computed
in L).

2. AN ABSTRACT VERSION OF Lat RC

Now let C be a complete lattice, and let L be a complete 0-1 sublattice of C. In view
of Lemma 2, we define L to be the set of all k € C such that n ^ k ^ n*, for some n 6 £
(with n' computed in L). Clearly L C L. The main results in this section are proved in
a more general setting in Bandelt [2]; our objective is to provide straightforward proofs
involving only simple calculations.

LEMMA 3 . The subset L is a complete 0-1 sublattice of G.

PROOF: It is clear that 0, 1 6 i . Let fc,- 6 L, with say n,- ^ fc,- ^ n] and n,- 6 XL
(i <E /)• Then /\m ^J\ki < A < = (An,) ' and V" ; < V** ^ V"? ^ (V".)*> whence
A ki and V fc,- are in £ . D
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We can simplify the computation of £ as follows. For x £ C, define m(x) = \J{j g
3c '• j ^ x}, so that j' $S x if and only if j ^ m(x) holds for j € 3c.

LEMMA 4 . For A: G e, we have fc € £ if and only if k ^ m(k)*.

PROOF: AS m(k) ^ k, if A: < m(&)* then A; € £ .

Conversely, note that for j £ £ w e have

x* — f\{s~ : s € 3c and s ^ x}

= / \ { « - : 5 € 3c and 5 j£ m(x)}

= m(x)*.

So if A; £ £ with say n ^ k ^ n* and n £ £, then A; ^ n* = m(n)* ^ m(k)* as desired. D

REMARK. NOW in general, for k £ L, m(k) need not be the least element n of £ such

that rc ^ k ^ n*. The description of the maximal intervals of the form [x,x*] in -C is

given in Bandelt [1]. (These intervals may overlap.) For the sake of completeness, we

give a quick synopsis of the most important part of Bandelt's analysis.

Define x+ and x, dually to x_ and x", respectively. Thus

x+ = / \ { y e £ : x Jf y} and

: s € £ and s ^ x

Note that x ^ x», and that x $J y implies a;» $J y».

THEOREM 5 . Let Jd be a complete lattice, and let x, y € SL. Then

1. (x').^x,
2. ((*•).)*=*%

3. y* > x* if and only if y ^ (x*)..

Hence (x*), is t ie least element y € -C suci tijat y* = x*.

PROOF: First, note that s+_ $J s, for all s € £. For r jf 5+ implies r ^ 5, and

hence s+_ = \ / { r : r ~t- s+} ^ 5-
To prove (1), since (x*), = V{5+ : s ^ x*}> w e need to know that s ^ x* implies

s+ ^ x. But s+ ^ x implies s+_ ^ x*, and hence by the observation above s ^ x*.

It follows from (1) that ((x*),)* ^ x*, while the dual of (1) applied to x ' yields
((a;*).)* ^ x*. This proves (2), and (3) follows easily from (1) and (2). D

Now let us show that & = L. For this purpose, let xQ and x® be the corresponding
operations to x_ and x*, defined in L.

LEMMA 6 . If x e £, then x e = x_. Thus 3cQ3z-

PROOF: Clearly x_ = \/{y G £ : x ^ y} ^ \/{2/ 6 £ : x ^ y} = x e . For the reverse
inclusion, first note that, by convention 0© = 0_ = 0 and that, if 0 ^ x £ %L then x_ =
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xQ = 1. Thus without loss of generality we may assume that x £ 3c- Then for y £ £ ,

x j£ y implies x ^ m{y), and hence x_ ^ m(j/)* ^ y- Thus x_ ^ \ /{y € £ : x ^ y} = x 0 ,

whence we obtain equality. U

This yields a straightforward proof of a nice theorem from Bandelt [2].

THEOREM 7 . Let £ be a complete 0-1 sublattice of a complete lattice C Then

£ = £.

PROOF: First we note, using Lemma 6, that if k £ £,

k® = /\{se : s £ 3z and s £ k)

< /\{se : s € 3L and s jt k}

= f\ {s- : s £ 3L and s jL m(k)}

= m(k)'.

Now suppose t € e, k € Z and k ^ t < A;®. Then m(fc) < fc ^ t ^ fc® ^ m(fc)*, so that

t £ £. Thus £ C XL, and the reverse inclusion is obvious. U

There is also a simple characterisation of 3%-

THEOREM 8 . Let 0 7̂  k £ Z. Then k £ 3% ifajid only if there exists j £ 3c such

that k ^ j .

PROOF: If k < j £ 3c then kQ ^ j Q = j _ < 1, whence k £ #£.

Conversely, suppose kQ < 1. Let d — /\{x £ £ : k ^ x}, so that fc ^ x if and only if

d < x for x 6 £• Then

d_ = V i ^ e £ : d i x} < \J{x £L:kix}^kQ<l

whence d £ 3c- D

In view of the previous considerations, we would like to find lattices in which the
intervals [m(x),x*] fit together nicely. This leads us indirectly to the next problem.

3. FINDING THE MINIMUM COMPLETELY DISTRIBUTIVE CONGRUENCE

There is a least complete congruence A on a complete lattice £ such that £/A is
completely distributive. Indeed, A is just the intersection of all those complete congru-
ences 0 on £ such that ( A V x>i) ^ ( V A x>f{i)} always holds. In this section we

want to find a description of A in terms of the operation *.
If 6 is any complete congruence on £, then each 0-class has a greatest element and a

least element. The greatest element of the 0-class containing x is denoted by a$(x), and
the least element by (i${x). Our first observation is just the complete lattice version of a
familiar result for finite lattices (see, for example, [3]).
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LEMMA 9 . Let L be a complete lattice, and let f : £ —¥ Ji. Then f = a$ for some
complete congruence 9 if and only if

1. x ^ f(x) = f(f(x)), for allxeC, and

2. f preserves arbitrary meets, that is, f( /\ a:, J = /\ /(a:,).

Indeed, if conditions (1) and (2) of the lemma hold, the range / ( £ ) of / is a com-
plete meet subsemilattice of £ containing 1, and hence a complete lattice with the order
inherited from Ji. Moreover, / is a complete homomorphism onto / ( £ ) . The critical

observation is that, because x ^ /(«/) if and only if f(x) ^ f(y), f( V xA is the least
^ isi '

upper bound in / (£) of {/(a;,) : i € / } .

LEMMA 10 . Let Ji be a complete lattice, and let rj be a complete congruence on
L. Then the following are equivalent.

1. L/T) is completely distributive.

2. x* r) x, for all x € JL.

3. u* — u whenever u = a,(x), for some x € L.

PROOF: Given a complete congruence r\ on Ji, let h : Ji —>• Ji/rj be the canonical
homomorphism with r\ = ker h. For x E. Ji, let xi = p^{x) and let xu = an(x). Note that

h(x) ^ h(y) if and only if x^ ^ y if and only if x ^ yu if and only if XL ^ yu-

Thus we calculate

= \ / {h(s) : h(zL) £ h(s)}

Likewise,

h{x)' = [\{h{z)-:h{z)ih{x)}

= / \ {h(zL). : zL £ xu}

= / \ {h{zL-) : zL £ xu}

where for the fifth equality we have used z £ xu if and only if ZL £ xu and .?£,_
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So, if L/rj is completely distributive, then

h(x) = h{x)* = h({Xuy) > h(xm) ^ h(x),

for all x <E L. Thus (1) implies (2). Clearly (2) implies (3). Finally, if (3) holds, then

h(xY = h((Xuy) = h(xv) = h(x),

for all x € £ , whence •C/f? is completely distributive. D

COROLLARY 1 1 . If £ is a complete lattice, the least complete congruence A on £
such that L/A is completely distributive is the smallest complete congruence containing
(x,x*), for all x £ L.

Note that if 9 and y> are complete congruences with 6 C (p, then ag(x) ^ av(x),
for all x 6 £ . Combining this observation with the previous two lemmas, we obtain
our first description of a A (and hence implicitly of A, since A is the kernel of the map
x i

THEOREM 12 . Let H be a complete lattice, and let A be the least complete con-
gruence on L such that £ / A is completely distributive. Then C*A is the least (pointwise)
map f : L -> & satisfying

1. x^ f(x) = / ( / ( x ) ) , for all x € L,

2. f preserves arbitrary meets, that is, f( f\ xA = /\ / (x , ) ,

3. f(x)* = f(x), for every x € £ .

Now we can actually construct the map / = Q ^ of the preceding theorem as follows.
Let 1 — {u 6 £ : u* — u}. Then J is a complete meet subsemilattice of L containing 1.
This makes 7 a complete lattice also, with its meet operation f\ inherited from -C and
joins given by £ X = f\{u € 7 : u > V X}. Note that (3) gives /(£,) C 3".

For i £ t , define x = f\{u € 9* : u ^ x} . Thus x" is the least element y £ L such
that y ^ x and y" = y. In particular, the map /o : i i-t i satisfies properties (1) and (3)
of Theorem 12. However, it may not preserve infinite meets (see below).

The element x can be described inductively as follows. Let x° = x. For successor
ordinals define x'y+1 = (x7)*; for limit ordinals, xA = V l ^ '• 7 < ^ } - This sequence
eventually stabilises at some value x with x* = x. If u 6 7 and u ^ x, then inductively
u ^ x7 for all 7, and hence u ^ x. Thus x = x.

Now we proceed to construct the smallest meet-preserving map / greater than or
equal to /o in the traditional manner. Starting with fo{x) = x, for successor ordinals
define / ,+ , (*) = E { A Mv) '• /\Y ^x\, and for limit ordinals /A(x) = £ f0(x).

This eventually stabilises in a map / which satisfies ( l )-(3) . Moreover, it is the least
possible such map, so / = QA, as desired.
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REMARK. Interestingly, the map f0 with fo(x) = x preserves finite meets and infinite
joins. The argument that f0 preserves finite meets uses a straightforward induction to
show that, for all 7, r

Thus if L satisfies the descending chain condition, then there are no proper infinite
meets in £ , and /o preserves meets. So when £ satisfies the DCC, we have / 0 = Q 4 .

The example in Figure l(a) shows that, even with the ACC, /o need not preserve
infinite meets. In the example, 0* = 0, 1* = 1 and z*+1 = a;,-, for all i. Hence 0 = 0 but
x = 1, for all x > 0, so that / 0 ( / \ x{) - 0 while /\ /0(x,) = 1.

x0 = 1

(a)
Figure 1

(b)

4. S-LATTICES

In this section we shall investigate a class of complete lattices for which the map
L i-¥ Jl and the congruence A are well-behaved.

Recall that an element p € £• is completely join prime if p ^ p_. Let ?c denote the
set of completely join prime elements of L. Note that, by convention, 0_ = V 0 = 0 so
0 ^ 7 c- Clearly 7 c Q3c, and this inclusion may be proper.

We say that & is a ^-lattice if every element of 3c is a join of completely join prime
elements, that is, if s 6 3c then s — \/{p € 7c '• P < s}.

LEMMA 13 . Let L be a S-la.ttice. Ifs € 3c and x € L, then s ^ x* if and only if

s ^ x.

PROOF: If p € 7c and p ^ i , then s* ^ p_ and hence p ^ x ' . Thus p ^ x* if and
only if p < x. For s 6 #£, s < z if and only if p ^ z, for all p £ ^ with p ^ s, whence
the statement follows. U

In the following, m(x) is defined as before, namely m(x) = \/{j € 3c '• j ^ *}•
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THEOREM 14 . If £ is a 5-lattice, then for all x € £ ,

j . x* =x" = m(x)',

2. m(x) = a;, = (z*).-

Hence ct&(x) = x" and f3&(x) = m(x), and £ / A is isomorphic to the lattice of order
ideals of 7c-

PROOF: Lemma 13 and the definition of * give x* — x " , while x* = m(x)' follows
as in the proof of Lemma 4. Clearly x* ^ (z*)«.j and (x*)m ^ m{x) by Theorem 5. It
remains to show that m{x) ^ xm. Now m(x) in a S-lattice is the join of the completely
join prime elements less than or equal to x. If p € 7c and p ^ x, then p_ ~£ x, whence
p = p_+ ^ V{s+ : s ~t- x} ~ x*i as desired.

Since the map x H-> X* preserves arbitrary meets and x** = x*, it follows from
Theorem 12 that x* = ct&(x), for all x. Then PA(X) is the least element y with y* = x*.
By Theorem 5, this is (x*)«, which equals m(x) by (2).

Finally, £ / A is order-isomorphic to {P&(x) : x € £ } = {m(x) : x 6 £} • This latter
is easily seen to be isomorphic to the lattice of order ideals of "?&. U

Thus the blocks [m(x),x*] which are "filled in" in going from £ to £ are disjoint
for S'lattices (since they correspond to A-classes). Likewise, the description of A is
particularly simple for S-lattices: x A y if and only if x* = y* if and only if m(x) = rn(y).

The following observation allows us to find many examples of S-lattices, two of which
are given in Figure 2.

LEMMA 15 . Let L be a complete lattice with V ?£, = 1. The following are equiv-
alent.

1. L is a S-i&ttice.

2. Ifx^p£ 7c, then x is a join of completely join prime elements.
If, additionally, L is finite, these conditions are equivalent to

3. If x is join irreducible and 0 / x < p € 7c, then x € 7&.

PROOF: Since 7C C 3c and 0 ^ x ^ y € 3c implies x £ 3C, (1) implies (2). On the
other hand, suppose that (2) holds and let x £ 3c- Then x_ < 1 implies that x ^ p, for
some p G 7c, whence x is a join of elements in 7c- Thus £ is a S-lattice. Condition (3)
is clearly equivalent to (2) for finite lattices, but easier to check. D

The following observations hold in any lattice, but are particularly relevant in S-
lattices.

LEMMA 16 . Let £ be a complete lattice. Then

1. x < 1 implies x' < 1 if and only if \J3c — ^-,

2. 0* = 0 if and only if f\{s- : s e 3c} = 0.

PROOF: (1) follows from the fact that x* < 1 if and only if j •£. x, for some j (E.3c-
(2) is immediate because 0* = /\{s_ : s € 3c}- D
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Figure 2

This brings us to an interesting notion. If L and % are complete lattices, let us
say that L collapses to % if there is a complete surjective homomorphism h : L —¥ X
such that /i~'(0) = {0} and / i - 1 ( l ) = {1}. Thus -C collapses to a completely distributive
lattice if and only if x A 0 implies a; = 0 and y A 1 implies y = 1, equivalently, QA(0) = 0
and /3A(1) = 1- As an immediate consequence of the preceding lemma, and the fact that
x* = 0^(1) in a S-lattice, we have the following result.

THEOREM 17 . The following are equivalent for a Q-lattice.

1. L collapses to a completely distributive lattice.

2. \Jdc = l and/\{s_:se3L} = 0.
3. \J7C = 1 and A{p- : P e 7c.} = 0.

For example, the lattice in Figure 2(a) collapses to a distributive lattice, while that
in Figure 2(b) does not. The example of Figure l(b) shows that, in general, (2) is not
sufficient to imply (1). (Clearly (1) implies (2).)

The three equivalences of Theorem 17 also hold for finite lattices, but for slightly
different reasons. Recall that x° = x and xn+1 = (xn)*. In a finite lattice £, there
is an integer n such that xn+l — xn, for all x G <C. The mapping / : & -t XL given by
f(x) = xn preserves meets (by induction because x <-> x* does), and hence by Theorem 12,
f(x) = aA(x). Applying Lemma 16, we see that conditions (1) and (2) of Theorem 17
are equivalent for finite lattices.

On the other hand, if £ is finite then /?A(Z) = V{P € 7c • P < z}, for all x € £. It
follows that /?A(1) = 1 if and only if V^c = 1- Since the completely meet prime elements
of /C are precisely those of the form p_, for some p G 7n, dually we have a&(0) = 0 if and
only if /\{p- : p G 7c) = 0. Thus conditions (1) and (3) are equivalent for finite lattices.

Note that a complete lattice L collapses to a finite chain (nest) if and only if 1 is
completely join irreducible and 0 is completely meet irreducible. It would be interesting
to find necessary and sufficient conditions for a complete lattice to collapse to a chain.

Recall that a lattice is (upper) semimodular if, whenever a and c are incomparable,
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o > b > a A c implies that there exists d such that o A c < d ^ c and a A (6 V d) = 6. (This
is the definition used for general lattices; there are other equivalent versions for lattices
containing no infinite chain. If a semimodular lattice XL has a finite maximal chain, then
every maximal chain of XL has the same length, which is called the length of XL. Recall
that x >- y if x > y and there is no element z such that x > z > y. The notation x >zy
means x >- y or x — y. In the next theorem, we use the fact that a lattice with no infinite
chain is semimodular if and only if x >- y implies i V z ^ y V z . )

THEOREM 18 . If XL is a finite-length semimodular S-iattice with \f?c = l, then
XL is Unite and (completely) distributive.

PROOF: It is not hard to see that a lattice with no infinite chain can only have
finitely many completely join prime elements. With this observation, it suffices to show
that every element of £ is a join of completely join prime elements. For p (E "?&, let pj
denote the unique element covered by p, that is, pj — V{* £ £ : ' < p}-

Let x be a nonzero element of XL. As x $J V ?c — 1) we can find a minimal order ideal
/ of Tc such that \J I ^ x. By Lemma 15, each pj is a (possibly empty) join of elements
of CP.c, and hence a; ^ Pt V V ( / \ {p}), for all p € / . Let p 6 / . Then by semimodularity,
V / >- P\ V V (I \ M ) £ x• B u t t n i s implies that x V pt V V (/ \ M ) = V 1 > V- Since p
is join prime, this implies p $J x. Thus p ^ x, for all p € / , whence \/ / ^ x. So \/ / = x,
and we have shown that every element of XL is a join of completely join prime elements,
whence XL is isomorphic to the lattice of order ideals of IPc- D

Figure 3 gives an example of an infinite distributive S-lattice with \J ?& — 1 and
/\{p_ : p € ?*£,} = 0, and satisfying the DCC, but which is still not completely distribu-
tive.

Figure 3

5. 3-LATTICES

In this section we turn our attention to a particularly nice class of complete lattices,
those which collapse to a complete atomic Boolean algebra.
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To simplify notation, for a complete lattice £ , let 3 — 3L and

3- = {a-:a€ 3}-

Following [11], we say that £ is a 3-lattice if

1. V 3 = i,-
2. A0- = o,
3. aVa_ = 1, for all a e 3,

4. a A a_ = 0, for all a € 3-

As observed in [9], there are redundancies in the above four conditions. For example,
conditions (1) and (2) together with either (3) or (4) implies all four. We note that
lattices satisfying condition (2) are called "nice" lattices in [6]. For some other results
related to these conditions see [8], [11].

Every complete atomic Boolean algebra is a 0-lattice. Indeed, for such lattices 3 is
the set of atoms and, for every atom a, a_ is the Boolean complement of a [7]. Figure 4
gives two other examples of 3-lattices, where the one on the right is called the pentagon,
and the structural characterisation of Theorem 22 below indicates how we can construct
many more.

Figure 4

Let us begin by proving some elementary facts about 3-lattices.

LEMMA 19 . Let £ be a 3-lattice. Then

1. 3 = ^c, and thus £ is a S-lattice,

2. every a £ 3 is an atom,

3. every nonzero element ofL is greater than or equal to some element of 3-

PROOF: If a € 3, then a ^ 0 and a A a_ = 0, whence a ^ a_. Thus a € Tc- If
0 ^ x < a and a G 3, then x ^ a A a_ = 0, so a is an atom. Likewise, if x > 0 = f\3-,
then x j£ a_, for some a £ 3, whence a ^ x. D

The lattices in Figures 2 and 3 are S-lattices which are not J-lattices. The three-
element chain is an even easier example.
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Now in any complete lattice an element x is completely meet prime if x ^ x+ =
A{y £ & : V ^ x}- Since / \ 0 = 1, the element 1 is not completely meet prime.
Completely join prime elements and completely meet prime elements occur in pairs: x is
completely meet prime if and only if x — a_, for some a 6 7c- Thus in a 0-lattice, 3 - is
the set of completely meet prime elements of £ .

LEMMA 2 0 . The complete lattice £ is a 3-l&ttice if and only if

1. 3 is an antichain,

2. \J3 = \,
3. A3-=0.

PROOF: Suppose £ is a 3-lattice. By Lemma 19(2), every element of 3 is an atom
of £. Thus 3 is an antichain, and £ satisfies (l)-(3).

Conversely, assume that £ satisfies (l)-(3). If o and b are distinct elements of 3, then
b < a_, whence a V a_ ^ \J 3 - 1 and b A 6_ < f\3- = 0. Therefore £ is a 3-lattice. D

THEOREM 2 1 . If C is a 3-lattice, then so is £ .

PROOF: Let £ be a 3-lattice. Then 0* = /\3- = 0, and hence the atoms of XL are
also atoms of £. By Theorem 8, we conclude that #£ = 3- Thus £ satisfies conditions
(1) and (2) of Lemma 20. By Lemma 6, a© = a_, for each o £ 3, so £ also satisfies (3).
Thus £ is a ^-lattice. •

Now we can give a characterisation of 3-lattices.

THEOREM 22 . A complete lattice £ is a 3-lattice if and only if it collapses to a
complete atomic Boolean algebra, that is, if and only if there exists a complete atomic
Boolean algebra 1} and a complete surjective homomorphism h : £ —> 3 such that

PROOF: Given a ^-lattice £, we can apply Theorem 14 and Lemma 16 to see that
£ / A = «P(#), where ^3(3) denotes the lattice of subsets of 3, or just directly check that
h : £ —> ^3(3) given by h(x) = {a € 3 '• a ^ x} is a collapsing homomorphism.

Conversely, assume that there exist such an h and !B. Let % denote the set of least
preimages of atoms of S, which exist because h is complete and onto. Let us show that
DC = 3 in £. If a € DC, then a ^ 0 and a_ is the largest preimage of the complementary
coatom to h{a) in 25 (since h(x) Js h(a) if and only if x ^ a by the minimality of a).
Thus a_ ^ 1 and % C 3. Moreover, V ^ = 1 because h{\/X) = 1, so if b £ 3 then 6 ^ it,
for some k 6 DC (else b- ^ \J % — Y). But 6 is nonzero and the elements of DC are atoms,
so this implies b — k. Thus 3 C DC, and they are equal.

As f\ h(a-) is the meet of the coatoms of 25, it is zero, and hence f\3- = 0 in £.

By Lemma 20, £ is a 3-lattice. U

COROLLARY 2 3 . Every 3-lattice is complemented.
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Indeed, if h : £ —> 23 is a collapsing homomorphism onto a complete atomic Boolean
algebra, and u € 23, then every element of /i~'(u) is a complement of every element of
/ i " 1 ^ ' ) , where u' denotes the Boolean complement of u.

Recall that an element c of a complete lattice is compact if c ^ \J X implies c ^ \/ F,
for some finite subset F C X. A complete lattice £ is algebraic if every element of £ is a
join of compact elements. For example, every finite lattice is algebraic. The ideal lattice
of any lattice is algebraic.

THEOREM 24 . If a ^-lattice £ satisfies any one of the following conditions, then
it is a complete atomic Boolean algebra.

1. H is uniquely complemented.

2. £ is atomic, that is, every element is a join of atoms.

3. £ is modular.

4. £ is semimodular and algebraic.

PROOF: The first two are easy to prove (using Theorem 22).

For (3), let £ b e a 3-lattice and suppose that the map h : £ —> 23 as in Theorem 22
is not an isomorphism. Then there exists an element u € 23 such that |/i~'(u)| > 1. Let
a be the greatest element of h~l(u) and let b be the least element. Note that b < a.
Let c 6 h~x{u'). Then a and b are complements of c, and hence {O,a,b,c, 1} forms a
pentagon. Thus & is nonmodular.

For (4), let £ be a 3-lattice which is semimodular and algebraic. By a simple
modification of the proof of Theorem 18, we can show that every compact element of L is
a join of atoms, so that £ is atomic, and hence Boolean by (2). The crucial observation
is that because the join of the atoms of £ is 1, every compact element is less than or
equal to the join of finitely many atoms. • D

We finish by constructing an example of a semimodular 3-lattice which is not
Boolean. By Theorem 24(4), such a lattice must be infinite.

Let X, Y be disjoint infinite sets not containing z, and let W = XUYU{z}. Define

S to be the collection of all subsets A C W which satisfy the following conditions,

(i) If A n Y is infinite, then z £ A.

(ii) If A fl Y is finite and X \ A is infinite, then z £ A.

Note that if A C\ Y and X \ A are both finite, then z is allowed to be in A or not. Order
§ by set inclusion.

THEOREM 25 . The ordered set S is a semimodular ^-lattice, but is not an atomic
Boolean algebra.

PROOF: § is not a sublattice of ^J(W), so we need to proceed carefully.

CLAIM 1. {A € S : z e A} is an order filter of ?P(W). For if z 6 A, then by the

contrapositive of (ii) either A C\ Y is infinite or X \ A is finite. Thus B D A G S implies
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that B fl Y is infinite or X \ B is finite, and of course z £ B. Thus B satisfies (ii), and
(i) vacuously, so B £ $.

CLAIM 2. {A £ S : z £ A} is an idea/ o/ qj(W). For if z £ A, then by the contrapositive
of (i), A n Y is finite. Thus 5 C .4 6 § implies B € §, similarly to Claim 1. Likewise, if
z i Au A2, both in S, then AiC\Y and A2P\Y are both finite. Thus (Ai UA2)nY is
finite, and of course z £ Ai U A.2, whence Ai U A2 £ S.

CLAIM 3. § is a complete lattice. Indeed, it is not hard to see that the operations are
given as follows.

V I I) Ai U {z}, if M Ai n Y is infinite,
Ai = <

I (JA;, otherwise.

. . _ / D ̂ i \ {*}. i f D A,: D Y is finite and X \ f| A, is infinite,

||")A,-, otherwise.

Note that by Claims 1 and 2, for any pair of sets A V B = A U B, and A A B = A PI B
except when z £ A D B £ §.

CLAIM 4. § is a 3-lattice. The atoms of § are the singletons {x} with x £ X UY. The
join of all the atoms is W, and the join of all the atoms except {x} is {x}_ = W \ {x}.
From these observations it follows that 3 = {{z} : x £ X U Y}. Now check properties
(l)-(4) for a 3-lattice (using the definitions of meet and join above).

CLAIM 5. § is semimodular. Let A and C be incomparable, and let A > B > A A C. If
perchance z £ B, put D = C. Then A A (B V C) - A D (B U C) = B, as desired. So we
may assume that z £ B, and hence z £ A AC.

If C = (AnC)U{z},then z £ A. In this case again take D = C, and AA(BVC) =
Af1(BuC) = B.

Otherwise, there is an element x £ X U Y in C - (A H C). Let £> = (A D C) U {z}.
Then z £ B U D, so the operations are again setwise and A A (B V D) = B.

C L A I M 6 . § is not a n a t o m i c Boolean algebra. I n f a c t , t h e s e t s X , X U { z } , Y, W a n d
0 form a pentagon.

D
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