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TWISTED GROUP RINGS
WHOSE UNITS FORM AN FC-GROUP

VICTOR BOVDI

ABSTRACT.  Let U(K), G) be the group of units of the infinite twisted group algebra
K )G over a field K. We describe the FC-centre AU of U(K),G) and give a character-
ization of the groups G and fields K for which U(K,G) = AU. In the case of group
algebras we obtain the Cliff-Sehgal-Zassenhaus theorem.

1. Introduction. Let G be a group, K a field and A\: G X G — U(K) a 2-cocycle of
G with respect to the trivial action of G. Then the twisted group algebra K, G of G over
the field K is an associative K-algebra with basis {u, | g € G} and with multiplication
defined for all g,h € G by

Ugllp = )\g,hug;,, (Ag,h € A)

and using distributivity.

Let U(K),G) be the group of units of K, G and let AU be its subgroup consisting of
all elements with finitely many conjugates in U(K), G). This subgroup AU is called the
FC-centre of U(K),G). Clearly, if AU = U(K)G), then U(K, G) is an FC-group (group
with finite conjugacy classes).

The problem to study the group of units of group rings with FC property was posed
by S. K. Sehgal and H. J. Zassenhaus [1]. For a field K of characteristic 0 they described
all groups G without subgroups of type p™ for which the group of units of the group
algebra of G over K is an FC-group. This was spelling for arbitrary groups by H. Cliff
and S. K. Sehgal [2].

In this paper we describe the subgroup AU when K, G is infinite. Let #((AU) be the
group of all elements of finite order of AU. Then AU is a solvable group of length at
most 3 and the subgroup #(AU) is nilpotent of class at most 2. This is new even for group
algebras. We use this result for the characterization of those cases when U(K), G) has FC
property, and obtain a generalization of the Cliff-Sehgal-Zassenhaus theorem for twisted
group algebras.
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2. The FC-centre of U(K)G). By atheorem of B. H. Neumann [3] the elements of
finite order in AU form a normal subgroup which we denote by ¢#(AU), and the factorgroup
AU/ «(AU) is a torsion free abelian group. Evidently, G = {ku, | & € U(K),a € G} isa
subgroup in U(K), G), while U(K) is a normal subgroup in G, with factorgroup G/ U(K)
isomorphic to G.

If x is a nilpotent element of the ring K, G then the element y = 1 +x is a unit in K\ G
and is referred to as a unipotent element of U(K), G).

Let {(G) be the centre of the group G and [g,h] = g~ 'h~'gh (g, h € G).

LEMMA 1. Let K)G be an infinite twisted group algebra. Then all unipotent elements
of the subgroup AU are central in AU.

PROOF. Lety = 1+x be a unipotent element of AU and v € AU. Then for a positive
integer k we have x* = 0 and by induction on k we will prove vx = xv.

The subgroup G = {ku, | & € U(K),a € G} is infinite and by Poincaré’s theorem
the centralizer S of the subset {v,y} of G is a subgroup of finite index in G. Since G is
infinite, S is infinite and fy = yf for all f € S. Then xf is nilpotent and 1 + xf is a unit in
K\G. We can see easily that the set {(1 +x)"'v(1 +xf) | f € S} is finite. Let vy,...,v,
be the elements of this setand W; = {f € S| (1 +xf) 'v(1 +x/) = v;}. Then S = UW;
and there exists an index j such that 1} is infinite. Fix an element f € W;. Any element
q € W,, q # f satisfies

(1 +x)""v(1 +xf) = (1 +xq) ' v(1 +xq)

and
v(1+x)(1+xq)"" = (1 +x)(1 +xq)'v.
Then
v{(1+x9) + (tf — xg)}(1 +xq)"" = {(1 +xq) + (xf — xq)}(1 +xq)""v,
v(1+x(/ — )1 +xg)") = (1+x(f — g)(1 +xq)")v
and
(1) ve(f — q)(1 +xq) " = x(f — q)(1 +xq) V.

Now we use the induction mentioned above. For £ = 1 the statement is trivial; so we
suppose it is true for all 1 < n < k, where k£ > 2 is any given integer.

If m > 2, then by induction hypothesis x™v = vx™ for all v € AU. Clearly, if i > 1
then

xX(f —quig'v=(f —gx''q'v = (f — wx"'q' = vx(f — q)x'q’.

From (1) we have

vx(f-q)(l — xq+ 2 +.,,+(_1)k7|xk71qk71)
zx(f_q)(l _xq+x2q2 + ... +(_])k—lxkflqkfl)v.
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So (f — g)(vx —xv) = 0.
Now suppose xv # vx. The element ¢~ 'f € G can be written as A\u, ()\ € UK),h e
G). By vx —xv = ¥1_, qjug, # 0 we have

s s
ZAaiuhu&‘ - Zaiug,. =0.
i=1 i=1

If h € G satisfies this equation, then g, = hg; for some j, and the number of such elements
h is finite. Since W; = {\u, | A € U(K)} is an infinite set, there exist 4 and different
elements A, \> € K such that Ajuy, Aouy, € W Then (Ajuy, — D(vx —xv) =0, (i = 1,2)
and we obtain (A u, — Auy)(vx — xv) = 0. This condition is satisfied only if vx = xv but
does not hold. ]

LEMMA 2. Let K, G be an infinite twisted group algebra, H a finite subgroup of AU
and Ly the subalgebra of K\ G generated by H. Then the group of units U(Ly) of the
algebra Ly is contained in AU, and the factorgroup U(Ly)/ (1 + J(L,q)) is abelian.

PROOF. If H is a finite subgroup of AU and Ly is the subalgebra of K, G generated
by H, then L is an algebra of finite rank over K and its radical J(Ly) is nilpotent. Then
U(Ly) is a subgroup of AU and by Lemma 1 all unipotent elements of U(Ly) are central
in AU. Therefore 1 +J(Ly) is a central subgroup of AU and J(Ly) C (L), where (L)
is the centre of Ly. Then by Theorem 48.3 in [4] (p. 209)

2) Ly=Lyei & - ®Lye, ® N,

where Lye; is a semiprime algebra (i.e. Lye; /J(LHe,-) is a division ring), N is a com-
mutative artinian radical algebra, e,...,e, are pairwise orthogonal idempotents. By
Lemma 13.2 in [4] (p. 57) any idempotent ¢; is central in Ly and U(Lye;) is isomorphic
to the subgroup (1 — e; +ze; | z € U(Ly)) of U(Ly).

Since U(Lye;) is a subgroup of the FC-group AU it is an FC-group, too. As J(Lye;) is
nilpotent (see [5]),

3) ULien)/ (1 +J(Lie)) = U(Ler/J(Lye)).

By Scott’s theorem [7], in the skewfield Lye; /J(Lye;) every nonzero element is either
central or its conjugacy class is infinite. Thus the FC-group U(L,,e,-)/(l + J(L,,e,)) is
abelian.

Decomposition (2) implies

Ly /J(Ly) = Lye, [J(Lye)) @ - - - & Lye, | J(Lyey)
and
U(Li)/ (1 +J(Ly)) = U(Ly [J(Li)) = U(Lyer [ J(Lger)) X -+ x U(Lyen/J(Lyen)).

Therefore U(LH)/(I + J(LH)) is abelian. .
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THEOREM 1.  Let K, G be an infinite twisted group algebra and t(AU) the subgroup of
AU consisting of all elements of finite order in AU. Then all elements of the commutator
subgroup of t(AU) are unipotent and central in AU.

PROOF. Let H be a finite subgroup of #(AU) and L the subalgebra of K, G, generated
by H. Then the elements of the subgroup H, = HN (l + J(LH)) are unipotent and (by
Lemma 1) central in AU. The subgroup H(l +J(LH)) is contained in U(Ly) and

H/H, = H/ (Hm (1 +J(LH))) N (H(l +J(LH)))/(1 +J(Ly))-

By Lemma 2 the factorgroup U(Ly)/ (l +J(LH)) is abelian. So H/ H, is abelian and the
commutator subgroup of H is contained in H; and consists of unipotent elements.

Since the commutator subgroup of #AU) is the union of the commutator subgroups
of the finite subgroups of #(AU), all elements of the commutator subgroup of {(AU) are
unipotent and central in AU. n

THEOREM 2. Let K)\G be an infinite twisted group algebra where char(K) does not
divide the order of any element of the subgroup AG. Then t(AU) is abelian.

PROOF. Let H be a finite subgroup of the commutator subgroup of #(AU). Then (by
Theorem 1) H is contained in the centre of AU. The set {u, ' Hug | g € AG} contains only
a finite number of subgroups Hy, H,, . . ., H,. The subgroup L = H\H, - - - H, is finite and
is invariant under inner automorphism f;(x) = u;‘xug of the ring K)AG, where g € AG.
Let xy,...,x, be all elements of L. Then y; = x; — 1 is a nilpotent element, and in the
commutative ring L the elements y, ..., y, commute. Therefore

J= {Za,»yilaiEK,x,»:y,-+l EL}

i=1

is a nilpotent subring. Let

F= {ZS: qYiZi | o; € K,x,‘ =Y +1€ L,Z,‘ c K)\AG}
i=1
Let us prove that F is a nilpotent right ideal of K)\AG. If z = 3J; Bju,, € K\AG then
yiz = 5 Bjuguy ' yitg, and uy'yiug, equals one of the elements y1,...,ys. This and the
nilpotency of the ring J imply that F is a nilpotent ring. By Passman’s theorem [6], if
char(K) does not divide the order of any element of AG then K\AG does not contain
nilideals. Therefore F' = 0, L = 1 and the commutator subgroup #(AU) is trivial so #AU)
is abelian. [

COROLLARY. Let K)\AG be an infinite twisted group algebra. Then AU is a solvable
group of length at most 3, and the subgroup ((AU) is nilpotent of class at most 2.
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3. The FC property of U(K),G).

LEMMA 3. Let L be a subfield of the twisted group algebra K\ G, where K is a subfield
of L, g € G an element of order n and

>‘g = MZ = Ag,g/\g_g2 e Ag’gn—l .

If o # g for some o € L and aug = ugox then ug — o is a unit in K\ G. Furthermore, if
L is an infinite field then the number of such units is infinite.

PROOF. Leta € L,o" # Ay and ugcr = aug. Then A\, — @ is a nonzero element of
L and

(" '+ a"fzug +--+ ozu;’2 + ug’l)()\g —a")!
is the inverse of u, — . We know that the number of solutions of the equationx” —\, = 0

in L does not exceed n. Thus in an infinite field L there are infinitely many elements not
satisfying the equation x” — A\; = 0. =

LEMMA 4. Let G be an infinite locally finite group where char(K) does not divide
the order of any element of G. If U(K),G) is an FC-group then G is abelian and K, G is
commutative.

PROOF. Let ¥ be a finite subgroup of G. Then the subalgebra K /¥ is a semiprime
artinian ring and by the Wedderburn-Artin theorem

K\W = M(n,,Dy)® --- ® M(n,, Dy),
where each Dy is a skewfield and M(n, D) is a full matrix algebra. Let ¢;, ¢;; be matrix
units in M(ny, Dy) and i # j. Then the unipotent elements 1 +¢;;, 1 + ¢;; are central in

K, G (see Theorem 1) which is impossible if i # j. Thus n, = 1 and K, W is a direct sum
of skewfields, KxW =D, P D, & --- @ D, and

UK W) = U(Dy) x UDy) X -+ x UWDy).
By Scott’s theorem [7] any nonzero element of a skewfield is either central or has an

infinite number of conjugates. Therefore K, W is a direct sum of fields and W is abelian.
Since G is a locally finite group, G is abelian and K, G is a commutative algebra. [

LEMMA 5. Let K, G be infinite and char(K) does not divide the order of any element
of the normal torsion subgroup L of G. If UK\ G) is an FC-group then all idempotents
of K)\L are central in K, G.

PROOF. Let the idempotent e € K, L be noncentral in Ky, G. Then there exists g € G
such that eug # ugze. The subgroup H = (g ' supp(e)g’ | i € Z)is finiteand forany a € G
the subalgebra K H of K, L is invariant under the inner automorphism ¢(x) = u, 'xu,. It
is easy to see (by Lemma 4) that K H is a commutative semisimple K-algebra of finite
rank and the idempotent e € K),H is a sum of primitive idempotents. Consequently,
there exists a primitive idempotent f of K, // which does not commute with u,. Then the
idempotents f and u, 'fit are orthogonal and (ugf)* = ugfiref = ul(ug 'fuy)f = 0. By
Theorem 1 the unipotent element 1 +u,f commutes with u, and (1 +ugf)uy = us(1 +ugf)

implies uof = fuy, which is impossible. Thus, all idempotents of K,L are central in
K),G. ]
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LEMMA 6. Let U(K),G) be an FC-group and t(G) the set of all elements of finite order
in G. Then
1. Gis an FC-group;
2. if there exists an infinite subfield L in the centre of K\G such that L O K then
«G) is central in G and gs = Mg (h € (G).g € G).

PROOF. If U(K,G) is an FC-group then G = {Au, | A € UKK),g € G} is an
FC-group. Clearly U(K) is normal in G and G = G/U(K). We conclude that G is an
FC-group as it is a homomorphic image of the FC-group G.

Let L be an infinite field which satisfies condition 2 of the lemma. Then by Lemma 3
for any & € 1(G) there exists a countable set S = {o; € L | i € Z} such thatu, — o; is a
unit for all i € Z. Suppose that ugu, # uyug for some g € G. Next we observe that the
equality

(un — gy — o)™ = (uy — oy)ug(ug — 05)”"

holds only in case o; = ;. Since
(p — ci)up — o)~ = 1+ (o — o)y — )",
we obtain (a; — o) (uguy — uyttg) = 0 and o; = o It follows that the set
{(un — og)uglun — o)™" | i € Z}

is infinite which contradicts the condition that U(K, G) is an FC-group. Then ugu;, =
uytig, therefore [g,h] = 1, (G) C ((G) and Ay, = Mg (h € (G),g € G). .

LEMMA 7. Let G be an abelian torsion group, K) G a commutative semisimple alge-
bra and v an idempotent of K)\G. If K\ Gv contains a finite number of idempotents then
K\Gv is a direct sum of finitely many fields.

PROOF. Ifey,...,e;, are all the idempotents of K) Gv, then
L = (supp(er), ..., supp(e,))
is a finite subgroup in G and K, Lv is a direct sum of finitely many fields,
KLy = (KyLv)i @ --- d (K, Lv)f;,

where fi, ..., f; are orthogonal primitive idempotents of K, Lv. The corresponding direct
sum in K, Gv is
K\Gv = (K\GV)fi @ --- B (K\GV)f,.

We show that the element 0 # x € (K)Gv)f; is a unit. R = (L, supp(x)) is a finite
subgroup and K, Rv is a direct sum of finitely many fields,

K\Rv = (KsRV) @ - - @ (K\RV)L,

and each idempotent f; is either equal to an idempotent /; or is a sum of these idempotents.
If fi = I; then xf; € (K\Rv)]; and x is a unit in (K)Lv)f;. If f; = [;, + 1, (I, 1;, € K)\Lv)
then (K)\Lv)f; = (K)\Lv)l;, @ (K, Lv)l;,, but this does not hold. (]
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THEOREM 3.  Let K\ G be an infinite twisted group algebra of char(K, G) = p, such
that t(G) contains a p-element and either the field K is perfect or for any element g € G
of order pF, the element ugA is algebraic over the prime subfield of K. Then UK, G) is an
FC-group if and only if G is an FC-group and satisfies the following conditions:

. p=2and |G| =2;

2. H(G)is centralin G and (G) = G' x H, where H is abelian, and has no 2-elements;
3. K\H is a direct sum of a finite number of fields;'

4. AN M g | € HY is a finite set for all g € G.

PROOF (NECESSITY). By Lemma 6 G is an FC-group. Let g be an element of order
pk. Then ugk = )\, € U(K) and in the perfect field K we can take a p-th root of A,
which we denote by p. If K is the prime subfield of K and A, is algebraic over K, then
Ko(Xg) is a finite field and so it is perfect. Thus u, — p is nilpotent and 1 + ji — u, and
(by Theorem 1) 1 — (ug — p)u, is central in U(K),G). Then for any b € G by

up(1 = (g — pua) = (1 = (g — p)ta )y
implies
“4) UpUgly — [UpUg — Ugliqp + gty = 0.
Each ug, can be written in the form 1+ (ug — 1) and 80~ 'ug = 1+ '(ug — p). Thus

! ug is an unipotent element and it commutes with u; and u,. Then (4) can be written
as

®)] Uglplly — UglqUp — [llplly + ptigitp = 0.

If [a, b] = 1 then, by (5), we have (A, p — A\po) (g — 1) = 0. From this equation we
get that the coefficient of u, must be zero and A,y = A .. Thus, upu, = taup.

Let [a,b] # 1. Then by (5), ugupu, = —puqup and ugtigup = —puptt,. SO
uy = —pfu; b uy ',
©) g = il L
ug - ﬁu[ua > Uy ]

Consequently u; = p? and (ugp')*> = 1. Note that in (6) g may be any p-element,
further @ and b may be any noncommuting elements of G. This is possible only if p = 2.
Then the commutator subgroup G’ of group G = {ku, | & € U(K),a € G} is of order 2
and coincides with the Sylow 2-subgroup of G. Thus G’ C ¢(G) and G is a nilpotent
group of class at most 2. Let

L = (puy | p € UK),h € 1(G)).

Then L/ U(K) is nilpotent torsion group and its 2-Sylow subgroup is of order 2. Here L
is abelian because G is of order 2 and it is a subgroup in L. Therefore #(G) is abelian and

! If K\H is a group ring then H is a finite abelian group.
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(G) = S x H,where S = (g | g> = 1) is the Sylow 2-subgroup of #(G) and all elements
of H are of odd order.

We show that K, H is central in K\G. Let h € H,a € G and [u,,u;] # 1. Then
{ug, uy] = pug and

(7N Alg-1p-14p = Pllg.

It is clear that [a, h] € H and the order of [a, /] is odd because H is normal in G. Since g
is a 2-element, (7) does not hold. Thus K, H is central in K, G and #G) C {(G).

Let us prove that K, H contains only a finite number of idempotents. Suppose K)H
contains an infinite number of idempotents e, e,.... [fd,b € G and [b,d] = g # 1
then g> = 1 and (by Lemma 5) 1 — e; + uge; is a unit. Clearly,

1 — e +uger) 'up(l — e; + uger) = up(1 — e; + puuge;),
g

— 1 -1
where H = /\dadfl)‘b’b*'lAd*',bAd"'b,d)‘d Lbd b -

Ifi # jthen 1 —e;+puge; # 1 —e;+ puge;. Indeed, if 1 — e;+ puge; = 1 — e+ puge;,
then (e; — ¢;)(pug — 1) = 0. Since ¢; — ¢; € K\ H and u, ¢ K, H, the last equality is true
only in case i = j. Therefore if i # j then | — e; + puge; # 1 — ¢; + juuge; and uy, has an
infinite number of conjugates, which does not hold. Thus K, H contains a finite number
of idempotents ey, ey, ..., e, and (by Lemma 7) K, H is a direct sum of a finite number
of fields.

Since {u; 'uyuy | g € G} is a finite set, we obtain condition 4 of the theorem.

SUFFICIENCY. Let the conditions of the theorem be satisfied. We prove that U(K, G)
is an FC-group.

Let G' = (a | @*> = 1) be the commutator subgroup of G and p?> = \,,. Thus the
ideal 3 = K, G(u, — p) is nilpotent.

In K, G we choose a new basis {w, | g € G},

e = | e ifge G\ (a),
87 |\ ptuy, ifge(a).

Let G = Ubj(a) be the decomposition of the group G by the cosets of (a). Any element
x+3 € K,G /S can be written as

x+3 =D awp, + D Biwpwa + 3
i i
= Z awp, + Z Biwp(wa — 1) + }: Biwp, +3I = Z(Oli + 8wy, + 3.
i i i i
We show that K, G/ is commutative. Indeed
(W + I)(wy + J) = wewp + I = wywe[we, wi] + S,
and the commutator [wg, wy] is either 1 or w,. If [w,, w,] = w, then

& _ X =
wewi + S = wuwew, + 3 = wywe(we — D)+ wywe + 3 = wywg + 3.
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We will construct the twisted group algebra K, H of the group H = G /(a) over the
field K with the system of factors .

Let R/(G/(a)) be a fixed set of representatives of all left cosets of the subgroup (a) in
Gand H = <h,- = bi{a) | b; € R/(G/(a>)>. Let #, denote element wy, + 3. If hh; = hy,
then b;b; = bya® (s = {0,1}), and

th,th,- = Wp,Wp, +3 = >\b,,bj Whas T S = /\bnbj/\l;‘}(l‘ Wp, Wes T R
— — —1 ~
= AbiybjAbkEawak + /\b,,bj)‘bkla-‘wbk(wax — 1) +3 = /\bhb./Abkﬂ\Wb" + .
Let iy, = Mop Ay and pp = {puap | a,b € H}. Let {t | h € H} be a basis of the
twisted group algebra K H with the system of factors . Clearly 4, = pup, by, -
Let t(H) be the set of elements of finite order of H and H = Uc;#(H) the decomposition

of the group H by the cosets of the subgroup #(H). Then x,x ' € U(K, H) can be written
as

t N
x=>ait, and x'=3 By,
i=1 i=1
where «;, §; are nonzero elements of K,,#(f). The subgroup

L = (supp(ay), ..., supp(cr), supp(B1), . . . , supp(3;))

is finite and K, L is a direct sum of fields

®) K,.L=eK,LD---De,K,L.
Letxe, = >, Vit and x e = >, bity,, where 7;, 6; are nonzero elements of the field
K,LLek.
We know [8], that a torsion free abelian group is orderable. Therefore we can assume
that
Cilt(H) < Cizt(H) << Ci,,t(H)
and

d;, ((H) < di,t(H) < --- < d;, ((H).

Then c¢; d;, t(H) is called the least and ¢;, d;, t(H) is called the greatest among the elements
of the form ¢; d;, «(H). It is easy to see that ¢; d; ((H) < ¢; d;, (H) ifn > 1l orm > 1.
Therefore ’YéltC,I la, # Vnbmte,, ly, - Since x 'erxey = e, wehaven = m = 1, xe, = V1.,
andx 'e, =7 ~'1;!. Thus x and x~' can be written as

! t
x=yt, and x'=3 ",
i=1 i=1
where 7y, ...,7, are orthogonal elements.

Let ¢:K,G /3 +— K, H be an isomorphism of these algebras. If x € U(K,G) then
d(x +3J) = T, Vit,, where V; € K, Le;. It is easy to see that there exists an abelian
subgroup L of G such that L = L/(a). The algebra K, L is commutative and its radical is
a nilpotent ideal equal to I N K, L. Since K,L /(I NK,L) = K, L, the classical method
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of lifting idempotents yields idempotents fi, . .., f; in K, L such that f; +--- + f; = 1 and
fi+3 = ¢. Thenx = xf; +--- +xf; and ¢(xf; + I) = Vit,,, where h; = b;(a), b; € G.
There exists an element v; € K Lf; such that ¢(v; + ) = 7¥; and P(viwg, +3) = Vity,. We
can find an element » € I such that xf; = (v; + rfy)w,,.

Clearly s; = v;+rf; isa unit in Kuljfi and is central in K, G. So 51, . .., s, are orthogonal
and x = i) siwg, X' = Yoy 57wy Since s; € ((KAG), X' wex =TI, wy ' wewy,
forany g € G. By condition 4 our theorem w, has a finite number of conjugates, because
G is an FC-group. Thus U(K), G) is an FC-group. n

LEMMA 8. Let K be a field such that char(K) does not divide the order of any element
of t(G), K\t(G) a commutative algebra that does not contain a minimal idempotent. Then
Jfor any idempotent e € K,t(G) there exists an infinite set of idempotents e; = e, ey,. ..
such that

) eek+1 = €1 (kK €N).

PROOF. Suppose K, #(G) does not contain a minimal idempotent. First we prove that
for any idempotent there exists an infinite set of idempotents e}, ez, . .. in K, #G) satis-
fying condition (9).

Let e; be an idempotent of K,#G) and H; = (supp(e;)). Then the ideal K,#G)e,
is not minimal and so contains a proper ideal J; of K \#(G). Let 0 # x;, € 3, and
H, = (Hj,supp(x1)). Then 1 = 31 NK,\H, is an ideal of K\ H, and 3, is generated by
the idempotent e, because H; is a finite subgroup of #(G) and the commutative algebra
K\ H, is semiprime. It is easy to see thate; = e;+f,f # Oand e;e; = e;. Indeed, iff = 0,
then e; = e; and K\ /(G)e; = K \#(G)e; C Ty, which does not hold. The ideal K, #(G)e
contains a proper ideal 3, of K,#(G). We choose a nonzero element 0 # x; € 33 and
consider the subgroup Hy = (H,, supp(x;)). The ideal 3, = 3, NK,\Hs is generated by
the idempotent e and e;es = e3 # e;. This method enables us to construct an infinite
number of idempotents e, ez, . . ., satisfying condition (9), which completes the proof. m

LEMMA 9. LetK be a field such that char(K) does not divide the order of any element
of (G), and U(K ), G) an FC-group. If the commutative algebra K, t(G) contains an infinite
number of central idempotents f\,f2, ... and g = [a, b] (a,b € G)is an element of order n
then the commutators [u,, up] and [a, b] have the same order and

(10) (i = — [ua,up]) = 0
Sfor some i # J.

PROOF. Letg = [a,b] # | where a,b € G. By B. H. Neumann’s theorem G /#(G)
is abelian, thus g € #(G) and 1 — f; + uf; is a unit in K, G. The element u, has a finite
number of conjugates in U(K),G) and

(1= fi+uy foua(l = fi + upfi) = ua(l — f; + [ua, ws1f})-
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Consequently there exist i andj (i <), such that

D= fit [uayup Vi = 1 —fj + [a, wplf

and

(1H (fi =L = [ug, up]) = 0.

If n is the order of g = [a, b] then
[as tp] = A5 A p A et 1 At 1 g At 1aplly

and [ug, up]" = 7 € U(K). Then by (11) we have ¥(f; — f)) = fi —f;. So¥ = I and
[ulb ub]n =1. ]

THEOREM 4. Let K\ G be an infinite twisted group algebra, and char(K) does not
divide the order of any element of (G). If K, ((G) contains only a finite number of idem-
potents then U(K)G) is an FC-group if and only if G is an FC-group and the following
conditions are satisfied:

1. all idempotents of K \t(G) are central in K, G;

2. {)\;J‘l, D VR YRy | h € H} is a finite set for every g € G;
3. K \«(G) is a direct sum of a finite number of fields;

4. if Ky«(G) is infinite then it is central in K, G.

PROOF (NECESSITY). By Lemmas 4, 6 and 7 K,#(G) is commutative, G is an FC-
group and all idempotents of K,«(G) are central in K)G. Since {u, 'uyug | g € G}isa
finite set, condition 2 of the theorem is satisfied.

Since K, #(G) contains only a finite number of idempotents (by Lemma 7) K, #(G) is
a direct sum of a finite number of fields. Let K, #(G) be infinite and K,#(G)e; a field in
this direct decomposition of K, #(G). Lemma 5 implies that K, #G)e; is invariant under
the inner automorphism (x) = uglxug for any g € G. Since (ug, Kyt(G)e; \ {0}) is an
FC-group there exists a infinite subfield L, of K\#(G)e; such that yu, = u,y for every
y € L. Let H = (g, #(G)). Then K, H is subalgebra of K, G and (by Lemma 6) K, #G) is
central in Ky H.

SUFFICIENCY. Let K,#(G) be a direct sum of fields,
KGO =FIdF®---DF.

Then F; = K \#{(G)e;, where ¢; is a central idempotent in K, G. It is easy to sce that K, G
1s a direct sum of ideals

(12) K\G = K\Ge, & - - - ® K, Ge,.

Let us prove that K, Ge, is isomorphic to a crossed product F, * H of the group /7 =
G /(G) and the field F,.
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Let R,(G / t(G)) be a fixed set of representatives of all left cosets of the subgroup #G)
in G. Any element x € K, Ge, can be written as

X = eque, Y1+ Fegue Vs,
where vy € K\((G), ¢, € Ri(G/UG)). 1f cic; = ¢,k (h € (G)) then
Ue e, = U, Nerey = UeghAery = Uo Ay hec;-
We will construct the crossed product F, x H, where

H = {hi = ci(G) | c: € R(G/«G))}.
Leta € F,; and o be a map from H to the group of automorphism Aut(F,) of the field F,
such that o(h;)(ax) = uglauci and let pup, 4, = “h/\c_k,lh/\c.,c,'
Clearly, the set 1 = {pqp € U(F,) | a,b € H} of nonzero elements of the field F,
satisfies
Habelb,ec = Hub,c/‘Zf[g)
and
aa(a)d(b) — .u;,il) aa(ab) Lab,

where @ € F,and a,b,c € H.
Then Fy x H = {Cpey whoy | a € Fy} is a crossed product of the group H and the
field F, and we have wywy = Wy, jtq,q and awg, = wy,a®@.
Clearly, F, x H and K, Ge, are isomorphic because
e, 0y, = uc,ucj(u;j"auc/) = Uy e, ;7.
We know [5] that the group of units of the crossed product K x H of the torsion free

abelian group H and the field K consists of the elements wy,«, where o € U(K), h € H.
By (12), for every y € U(K),G),

y=u,Y1+---tu,

and
B R P 11
yoo=u, v e tu 0,
where 71, ...,7, are orthogonal elements.
Letx = éjuy, +--- +buy € UK)\G). Then

-1 1 el
yxy = ucl%&udlucl Yyt +uc,’Yl§,ud,uQ Y-

If K, #(G) is infinite then K)\#(G) C {(K)\G) and

t t
g 1 Nmg gl
yxy == Zélucludiuci - Z‘S')\c,,ci“/\Cudi/\c,d,,C,"uC,dICF"
i=1 i=1

Since G is an FC-group, by condition 2 of the theorem, x has a finite number of conju-
gates, so U(K ), G) is an FC-group.
If K, #(G) is finite then F, is a finite field and

_ Lo L ) eo(e! “ld-lg
y ]xy = Zvi luc,l(siudiut'i’yi = Z )‘c,,lc?"/\c.",d,/\cf‘d,,c,q! 15:‘ ((I )’YT(CI e )uc"d,c,'
i=1 i=1 c ' !
Since G is an FC-group and F is a finite field, x has a finite number of conjugates, so
U(K,G) is an FC-group. n
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THEOREMS. LetK) G beinfinite and char(K) does not divide the order of any element
of (G). If K\t(G) contains an infinite number of idempotents then U(K ), G) is an FC-group
if and only if G is an FC-group and the following conditions are satisfied:

1. K \K(G) is central in K)\G and contains a minimal idempotent;

2. {/\hi}l,,lAh—l,gAh—lg’h | h € H} is a finite set for any g € G;

3. the commutator subgroups of G and of G = {ku, | £ € UK),a € G} are
isomorphic and G' is either a finite group or isomorphic to the group Z(¢*) (¢ #
p), and there exists an n € N, such that the field K does not contain the primitive
q"-th root of 1;

4. for every finite subgroup H of the commutator subgroup of G the element ¢;; =
ﬁ Shen b is a idempotent of K\HG), and K\((G)(1 — eyy) is a direct sum of a
finite number of fields;?

PROOF (NECESSITY). By Lemmas 4, 6 and 7 K,#/(G) is commutative, G is an FC-
group and all idempotents of K /(G) are central in K, G.

Let us prove that K, #(G) contains a minimal idempotent. Suppose the contrary. Let
a,b € Gand 1 # [a,b] = g. Since g is an element of finite order »n, by Lemma 9,
[ta, up]” = 1 and

|
f = ;(l + [um ub] + [uu, ub]2 +--+ [ua’uh]nil)

is an idempotent. By Lemma 11, for 1 — f one can construct an infinite sequence of
idempotents ¢y = 1 — f, ez, . .., satisfying (9). By Lemma 9,

(1 = [ua, us])e; — ¢) = 0,

where i < j. Consequently ([u,, up])(e; — ej) = (e;—e¢j) forallkand f(e; —¢) = ¢; —e¢;.
This implies (1 —f)(e; — ¢;) = 0. Since e; = 1 — f, ei(e; — ¢;) = 0. If we multiply this
equality from the right by the elements e, . .., e;_1, by (9) we obtain ¢;_; —e; = 0. Now
we arrived at a contradiction, which proves that K, #(G) contains a minimal idempotent.

It is easy to see that #(G) is infinite, otherwise K #(G) would contain a finite number
of idempotents. K, #(G) contains a minimal idempotent e, and so there exist only a finite
number of elements g € #(G), such that eu, = e. Consequently K,#(G)e is an infinitc
field and contains K as a subfield. Then as in the proof of Theorem 4, K,#(G) is central
in K,\ G.

Since {u, 'uyug | g € G} is a finite set, we obtain condition 2 of the theorem.

Suppose ¢ € G’ and

Cc = [al,bl][az,bz] ce [a,,,b,,].

Since K, /(G) is central in K\G and | — ¢; + ejup, € U(KAt(G)) we have

n n

—1
[T — e+ ey Y, (1 — e+ equp) = [T (uq, (1 — e+ eilutg, up, 1))
k=1 k=1

= ﬁ(uak)(ﬁ(l — e +ei[uuk’ubk])>
Py =1

2 If K\G is a group ring, then 1 and 3 imply 4 (see [6] p. 690, Lemma 4.3, also [10]).
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for all i € N. Since each u,,, 4, ..., u, has a finite number of conjugates, there are
only a finite number of different elements of the form [T;_,(1 — e; + e;[uy,, up, ). These
elements will be denoted by wy, ..., w,. Let

W) = |

1 — ei+ei[uap”bk]) = Wr}-

It is easy to see that the set of natural numbers N is the union of the subsets W;(c) (i =
., 1), of which at least one is infinite. If W;(c) is infinite and i,j € W|(c) then

(13) (@ _q@—[n%wh):a

This implies that if

I [ua,, up,] =7 € UKK)
k=1
theny = 1.
Now we prove that the commutator subgroups of G and of G = {ku, | & € U(K),a €
G} are isomorphic. It is easy to see that the map 7(\u,) = g ()\ € UKK),g € G) isa
homomorphism from G to G. Every element # € G’ can be written as

h = [uul’uhl][uazaubz] e [ua,,7uh,,]‘

As we have shown above, if h = A € U(K) then A = 1. Thus, 7 is an isomorphism from

G'to G'.
Let H be a finite subgroup of G'. Then ey = IIWI Y hen b 1s an idempotent of K #(G).
Suppose that K,#(G)(1 — ey) contains an infinite number of idempotents ey, ey, .... If

H = {hy,hy,..., hs}, then, as it is shown above, for every 4; € H,
N = Wih)U---U Wy (h),

wherej = 1,2,...,s, and for every k # I, W;(h;) and W(h;) have empty intersection.
It is clear that there exists an infinite subset M = W; ()N --- N W, (hy). If i,j € M,
then by (13), we have (e; — ¢;)(1 — A,) = 0 for any r. Then

(14) e —e = |H| Z( e — ) = ep(e; — ej)'
Since ¢; — ¢; € K\t(G)(1 — ep), by (14),
ei—e = (1 —ey)ei —¢) = (e —¢) —eyle; —¢) = 0.

Thus, K \#(G)(1 — ey) contains a finite number of idempotents, and by Lemma 7, it
can be given as a direct sum of a finite number of fields.

Let us prove that there exists only finitely many elements of prime order in G'.

Suppose the contrary. If a,b € G then | # [a,b] = g € #(G). As we have seen above,
if h € G, then there exists u € U(K) such that the order of the element pu;, equals the
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order of 4. Then there exists a countably infinite subgroup S, generated by elements of
prime order, such that (g) NS = 1. By Priifer’s theorem [9] S is a direct product of cyclic
subgroups S = [I;(;). If ¢, is the order of the element g;, then

1 —
€ = q—<1 + [,Ll/la/ + (/J’uaj)z +ooot (:u’ua/)q/ l)
]

is a central idempotentandx; = 1—e;+eju, € U(K)G). By Lemma9, (¢;—e¢;)(1 —pu,) =
0.Since g ¢ S, we have i = j, which does not hold. Consequently G’ contains only a finite
number of elements of prime order and satisfies the minimum condition for subgroups
(see [8]). Then

G XP xPyx---xP,xH,

where P; = Z(¢*) and |H| < o0. Let us prove that either G' = Z(¢>) or |G’| is finite.
Leta,b € Gand | # [a,b] = g € (G). Suppose there exists / such that g ¢ P, =
(ar,ay,...|al = l,aj‘.’+l = g;). Then
1 e
€k = a(l + Uy, +(N”m)2 +.-- +(.u“a,\)l‘ l)

is an idempotent, and (e; — ;)(1 — pug) = 0. This is true only for i =, if g ¢ P;, which
is impossible. Thus, G’ = Z(¢*™) or G is a finite subgroup.
Let K be a field which contains a primitive ¢”-th root €, of 1 for all » and

P[ = <a|,(12,... I a‘l’ B l,aj-’_'_] = aj).

Put

l J .
e = a(1 + € g, +(€j/“4a,)2 +.. 4 (ejuua,)‘f l).

If i # j then the element (e; — ¢;)(1 — pug) # 0 and by Lemma 9 this is impossible. Thus
there exists n € N such that K does not contain a primitive ¢"-th root ¢, of 1.

SUFFICIENCY. Let us prove that any element ug(g € G) has a finite number of con-
jugates in U(K, G).

Let G = {ku, | k € UK),a € G}.We prove that H = ([ug, G]) is a finite subgroup
in G'. If G is finite, it is obvious. If G’ is infinite then it is isomorphic to a subgroup of
the group Z(¢™). Any element of G is of the form puy, (u € UK),h € G) and

_ ! —1
[ug, uuh] = /\g,g"/\h,h" /\g—l,h—l /\gr—lhAI‘g/\gﬁlhﬂg,hugf—lhflgh.

Since G is an FC-group, and for a fixed element g the set {)\;,,’1,, At gAnign | h € HY
is finite, the number of commutators [ug, p111] is finite. These commutators generate a
finite cyclic subgroup H of Z(¢*). The element ey = ﬁ e b is a idempotent in
K, #(G) and by condition 4 of the theorem, K)#(G)(1 — ey) is a direct sum of a finite
number of fields K\((G)Y(1 —en); (i =1,...,5).

In K, #(G) we have the decomposition

K\(G) = K\t(G)eyy & Krt(GY @ -+ - & K\t(G)f;.
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Then
KAG = KAGeH @KAGf[ (SRR @K,\Gﬁ

If x € U(K,G) then
x=xeg+xfi+- - txf

and
xt=xTley+xT i+ X7

Consequently

1

X Ugx = x_leHuger +x A UgXfi + -+ +x“'_ﬁugxf,.

We show that the element xey is central in U(K), G). If x = oy, + - - - + auyy,,, then
Ugxey = gy, ey + -+ + oqugp ey = oy Uglug, up ey + - - - + oguy uglug, up ey
and [ug, u,] € H. Clearly, [ug,u;, Jey = ey and
UgXey = X Up Ugly +...+ Xp ey = Xeylg.

K, Gf; is a crossed product F x H of the group H = G/#(G) and the field F = K, G)f;.
We know (see [5]) that the group of units of the crossed product F x H of a torsion free
abelian group H and a field F consists of the elements oy, (a c UF),h € H). The unit
xf; can be given as a;uy, (h; € G), where «; is central in U(K), Gf;). Thus

-1 _ 11 _ 1 _ -l
X fitlgXfi = up O ugQyuy, = Uy, uglty, = /\hi_.’hl/\,,l_l,g)\,,‘qg,h,u,,;lg,,,.

Therefore
t
—1 _ ~1
X ugx = ug ) Ah[f‘,h,’\h;’,g)‘h,*‘g,h,-uh,"gh,'
i=1

Since G is an FC-group, by condition 2 of the theorem, u, has a finite number of conju-
gates in U(K), G). n
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