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LOCALIZED MORREY-CAMPANATO SPACES ON
METRIC MEASURE SPACES AND APPLICATIONS TO
SCHRODINGER OPERATORS

DACHUN YANG, DONGYONG YANG, anD YUAN ZHOU

Abstract. Let X be a space of homogeneous type in the sense of Coifman
and Weiss, and let D be a collection of balls in X'. The authors introduce the
localized atomic Hardy space HR%?(X) with p € (0,1] and ¢ € [1,00] N (p, o],
the localized Morrey-Campanato space E57(X), and the localized Morrey-
Campanato-BLO (bounded lower oscillation) space E57(X) with a € R and
p € (0,00), and they establish their basic properties, including HZY(X) =
H%(X) and several equivalent characterizations for £57(X) and E57(X). In
particular, the authors prove that when o >0 and p € [1,00), then gg’p(X) =
EXP(X) =Lipp(a; X), and when p € (0,1], then the dual space of HZ™(X) is
Sgpil’l(é‘(). Let p be an admissible function modeled on the known auxiliary
function determined by the Schrédinger operator. Denote the spaces £57(X)
and EXP(X), respectively, by £,°P(X) and gg"p()(), when D is determined by
p. The authors then obtain the boundedness from £,°7(X) to g;"’p()() of the
radial and the Poisson semigroup maximal functions and the Littlewood-Paley
g-function, which are defined via kernels modeled on the semigroup generated
by the Schrédinger operator. These results apply in a wide range of settings,
for instance, the Schrodinger operator or the degenerate Schrédinger opera-
tor on RY, or the sub-Laplace Schrédinger operator on Heisenberg groups or
connected and simply connected nilpotent Lie groups.

81. Introduction

The theory of Morrey-Campanato spaces plays an important role in har-
monic analysis and partial differential equations (see, e.g., [1], [24], [28], [29],
[26], [17], [22], [23], [5] and their references). It is well known that the dual
space of the Hardy space H? (Rd) with p € (0,1) is the Morrey-Campanato
space EY/ p_l’l(]Rd). Notice that Morrey-Campanato spaces on R¢ are essen-

tially related to the Laplacian A, where A = Z?Zl 59_;2-
i
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On the other hand, there exists an increasing interest in the study of
Schrodinger operators on R? and the sub-Laplace Schrodinger operators
on connected and simply connected nilpotent Lie groups with nonnegative
potentials satisfying the reverse Holder inequality (see, e.g., [10], [34], [25],
(18], [8], [7], [19], [33], [16]). Let £L=—A + V be the Schrodinger opera-
tor on R?, where the potential V is a nonnegative locally integrable func-
tion. Denote by Bq(Rd) the class of functions satisfying the reverse Holder
inequality of order ¢. For V € By /Q(Rd) with d > 3, Dziubaiiski et al. ([8],
[9], [7]) studied the BMO (bounded mean oscillation)-type space BMO(R?)
and the Hardy space Hﬁ(Rd) with p € (d/(d + 1),1] and, especially, proved
that the dual space of H}(R?) is BMO,(R?). Moreover, they obtained the
boundedness on these spaces of the variants of several classical operators,
including the radial maximal function and the Littlewood-Paley g-function
associated to £. Recently, Huang and Liu [16] further proved that the dual
space of Hg(Rd) is certain Morrey-Campanato space. Let X be an RD
(reverse doubling)-space in [12], which means that X is a space of homo-
geneous type in the sense of Coifman and Weiss ([3], [4]) with the addi-
tional property that a reverse doubling condition holds. Let p be a given
admissible function modeled on the known auxiliary function determined
by V € By2(R?) (see [33] or (2.3) below). Then the localized Hardy space
H;(X), the BMO-type space BMO,(&X), and the BLO-type space BLO,(X)
were introduced and studied by the authors of this article in [33] and [32].
Moreover, the boundedness from BMO,(X) to BLO,(X) of several maxi-
mal operators and the Littlewood-Paley g-function, which are defined via
kernels modeled on the semigroup generated by the Schrédinger operator,
was obtained in [32].

The first purpose of this article is to investigate behaviors of these oper-
ators on localized Morrey-Campanato spaces on metric measure spaces. To
be precise, let X be a space of homogeneous type, which is not neces-
sary to be an RD-space, and let D be a collection of balls in X. In Sec-
tion 2, we first introduce the localized atomic Hardy space HZ?(X) with
p € (0,1] and ¢ € [1,00] N (p, 0], the localized Morrey-Campanato space
ERP(X), and the localized Morrey-Campanato-BLO space gg,p (X) with
a€R and p € (0,00), and we establish their basic properties, including
Hp?(X) = Hp™(X) and several equivalent characterizations for &5 (X)
and E5P(X). Especially, we prove that when o >0 and p € [1,00), then
gg’p()() =ERP(X) =Lipp(e; X), and when p € (0,1], then the dual space of
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HE>(X) is 5%/7?_1’1()() (see Theorem 2.1 below). Let p be a given admis-
sible function. Modeled on the semigroup generated by the Schrédinger
operator, in Sections 3 and 4 we introduced the radial maximal operators
Tt and P™ and Littlewood-Paley g-function g(-). Then we establish the
boundedness of TF and Pt from £37(X) to E5P(X) (see Theorems 3.1
and 3.2 below). Here, for the set D determined by p, we denote E5P(X)
and EXP(X), respectively, by £7(X) and E5P(X). Moreover, under the
assumption that g-function g(-) is bounded on LP(X) with p € (1,00), we
prove that for every f € EF(X), [g(f)]? € gga,p/2(X) with norm no more
than CHfH?gyp(X)
orem 4.1 below). As a simple corollary of this, we obtain the boundedness
of g(-) from EFP(X) to EP(X). Notice that £57(X') = BMO,(X) and that
gg,p(X) =BLO,(X) when p € [1,00). Thus, the results in Sections 3 and 4
when a =0 and X is an RD-space were already obtained in [32].

Finally, as the second purpose of this article, in Section 5 we apply results
obtained in Sections 3 and 4, respectively, to the Schrédinger operator or the

, where C' is a positive constant independent of f (see The-

degenerate Schrodinger operator on R? and to the sub-Laplace Schrodinger
operator on Heisenberg groups or on connected and simply connected nilpo-
tent Lie groups (see Propositions 5.1-5.5 below). The nonnegative potentials
of these Schrédinger operators are assumed to satisfy the reverse Holder
inequality.

We now state some conventions. Throughout this article, we always use
C to denote a positive constant that is independent of the main parame-
ters involved but whose value may differ from line to line. Constants with
subscripts, such as C7 and Ap, do not change in different occurrences. If
f <Cg, we then write f Sgor g2 f,and if f <g < f, we then write f ~ g.
For any given “normed” spaces A and B, the symbol A C B means that,
forall fe A, feBand | f|lg<|flla. We also use B to denote a ball of X,
and for A > 0, AB denotes the ball with the same center as B but radius A
times the radius of B. Moreover, set Bl=x \ B. Also, for any set E C X,
xE denotes its characteristic function. For all f € L{ (X) and balls B, we

loc
always st fis = 1/(u(B)) [ £ () dia(y)-

§2. Localized Morrey-Campanato and Hardy spaces

This section is divided into two subsections. In Section 2.1, we introduce
the localized spaces E57(X) and 57 (X) with o € R and p € (0, 00); we then
establish the relations of these localized spaces with their corresponding
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global versions and prove that, for all a € [0,00) and p € (1,00), EP(X) =
EX(X) and EXP(X) = EX(X). In Section 2.2, we introduce the localized
space HR?(X) with p € (0,1] and ¢ € [1,00] N (p,o¢], and we show that
HP9(X) = HE™(X) and that the dual space of HS™(X) is Eé/p_l’l(é’c').

2.1. Localized Morrey-Campanato spaces
We first recall the notion of spaces of homogeneous type in [3] and [4].

DEFINITION 2.1. Let (X,d) be a metric space endowed with a regular
Borel measure p such that all balls defined by d have finite and positive
measure. For any z € & and r € (0,00), set the ball B(z,r) ={y e X':
d(z,y) < r}. The triple (X,d,p) is called a space of homogeneous type if
there exists a constant A € [1,00) such that for all x € X and r € (0, 0),

(2.1) p(B(z,2r)) < Ajpu(B(z,r)) (doubling property).

From (2.1), it is not difficult to see that there exist positive constants Ay
and n such that for all z € X, r € (0,00), and X € [1,00),

p(B(z, Ar)) < AN u(B(z,7)).

In what follows, we always set V;(z) = u(B(z,r)) and V(z,y) = pn(B(z,
d(z,y))) for all z,y € X and r € (0,00).

DEFINITION 2.2. ([33]) A positive function p on X is said to be admissible
if there exist positive constants Cy and kg such that for all z, y € X,

1 1
<C
p(z) ="

d(x,y)\ ko
p(y) <1+ p(y?” '

Obviously, if p is a constant function, then p is admissible. Moreover,
let g € X be fixed. The function p(y) = (1 4 d(xo,y))® for all y € X with
s € (—00,1) also satisfies Definition 2.2 with ky=s/(1 — s) when s € [0,1)
and with kg = —s when s € (—00,0). Another nontrivial class of admissible
functions is given by the well-known reverse Holder class B, (X, d, 1), which
is written as B,(X') for simplicity. Recall that a nonnegative potential V' is
said to be in By(&X') with ¢ € (1, 00] if there exists a positive constant C' such
that for all balls B of X,

(2.2)

(ﬁ/}g[V(y)]qdu(y))l/qS%/BV@) dp(y),
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with the usual modification made when ¢ = co. It is known that, if V €
B, (X) for certain q € (1,00} and V' (y) duu(y) is doubling then, V' is an Ao (X)
weight in the sense of Muckenhoupt, and also V' € By4(X) for some € €
(0,00) (see, e.g., [26], [27]). Thus By(X) =, <, Bg (X). For all V € By (X)
with certain ¢ € (1,00] and for all z € X, set

q1>q

T2
(2.3) pla) = [m(z, V)] = sup{r >0: m/mm) V(y)du(y) < 1}

(see, e.g., [25], [33]). It was also proved in [33] that p in (2.3) is an admissible
function if ¢ > max{1,n/2}, V € By(X) and V(y) du(y) is doubling.

We now recall the notion of Morrey-Campanato spaces and introduce the
definitions of Morrey-Campanato-BLO spaces and their localized versions.

DEFINITION 2.3. Let a € R, and let p € (0,00).

(i) A function f € L} (X) is said to be in the Morrey-Campanato space
EXP(X) if

1 1/p
llensn = sup{ ez [ 1700 = o dutw)} ' <o,

where the supremum is taken over all balls B C X and fp =1/(u(B)) x
Jp £(z)dp(2).

(ii) A function f e L¥ (X) is said to be in the Morrey-Campanato-BLO
space E¥P(X) if

1 . 1/p
1/l go (20 = ;gg{{W /B[f(y) — essinf f]7 du(y)} < oo,

where the supremum is taken over all balls B C X.

(iii) Let av € (0,00). A function f on X is said to be in the Lipschitz space
Lip(a; X) if there exists a nonnegative constant C' such that for all z,y € X
and balls B containing x and v,

[f (@) = f(y)| < Clu(B)]*.

The minimal nonnegative constant C' as above is called the norm of f in
Lip(a; X) and is denoted by || f]|Lip(asx)-

REMARK 2.1. (i) The space £*P(X) was first introduced by Campanato
[1] when X is a bounded subset of R% and y is the d-dimensional Lebesgue
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measure. When a = 0, £%P(X) is just the space BMOP(X), and £%P(X)
with p € [1,00) coincides with BMO!(X) (see [4]). For simplicity, we denote
BMO!(X) by BMO(X).

(i) The space E%P(X) is just the space BLOP(X). By (i) of this remark
and the fact that BLO'(X) € BMO(X), it is easy to see that £27(X) with
p € [1,00) coincides with BLO!(X). For simplicity, we denote BLO'(X) by
BLO(X). Recall that BLO(X) and £*?(X) are not linear spaces. The space
BLO(R?) was first introduced by Coifman and Rochberg [2], and £*7(R%)
was introduced in [14].

(iii) When a € R and p € [1,00), E%P(X) C E*P(X). Moreover, when o €
(0,00) and p € [1,00), we have E*P(X) = E*P(X) = Lip(a; X) with equiv-
alent norms. In fact, Macias and Segovia [20] proved that when « € (0,00)
and p € [1,00), EYP(X) = Lip(a; X). On the other hand, for all f € E¥P(X)
and balls B,

/B [/ (y) —essinf f]Pdu(y) < /B esssup| f(y) — f (@) du(y)

z€EB

S I ip sy (B P2,

which frnplies that [ 5. vy S | Fluiptact) ~ [ vy Thus, £27(2)
E%P(X), and the claim holds.

DEFINITION 2.4. Let D be a collection of balls in X, let p € (0,00), and
let « € R. Denote by B any ball of X.

(i) A function f € L} (X) is said to be in the localized Morrey-Campanato
space EP(X) if

1/p
ey = sup {7 1+m [ 1£6) = ol duto}

+ Sup{w/jg|f(y)|pdﬂ(y)}l/p< 00,

BeD

where fp=1/(u(B)) [5 f(
(ii) A function f € LPOC(X) is sald to be in the localized Morrey-Campanato-

BLO space EXP(X) if

/
g = 500 (s 1w -t 1 auw)}
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1 1/p
AT /B )P duty) } " <o

(iii) Let a € (0,00). A function f on X is said to be in the localized
Lipschitz space Lipp(a; X) if there exists a nonnegative constant C' such
that for all z,y € X and balls B containing x and y with B ¢ D,

[f (@) = f(y)| < Clu(B)]7,

and that, for all balls B € D, || f| r~(p) < Clu(B)]*. The minimal nonneg-
ative constant C' as above is called the norm of f in Lipp(a;X) and is

denoted by HfHLipD(oc;X)‘

REMARK 2.2. (i) When o= 0 and p € [1,00), we denote ExF(X) by
BMOP,(X), and we denote BMOL(X) by BMOp(X). We also denote ExP (X)
by BLOZ(X), and we denote £x'(X) by BLOp(X). The localized BLO
space was first introduced in [15] in the setting of R? endowed with a non-
doubling measure.

(ii) If X is the Euclidean space R? and D = {B(z,7) : 7 > 1,z € R}, then
BMOp(&X) is just the localized BMO space of Goldberg [11], and Lipp(a; X))
with o € (0,1) is just the inhomogeneous Lipschitz space (see also [11]).

(iii) For all « € R and p € (0, 00), gg’p(é\,’) CEQP(X) CE¥P(X). For a €
(0,00), Lipp(a; X') C Lip(a; X).

(iv) Let p be an admissible function, and let D, = {B(x,r): v € X,r >
p(x)}. In this case, we denote EpP(X), ERP(X), Lipp, (o; X), BMOp, (&),
and BLOp, (X), respectively, by £,7(X), ESP(X), Lip,(a; &), BMO,(X),
and BLO,(&X). In [32], the spaces BMO,(&X) and BLO,(X) when & is an
RD-space were introduced.

The following results follow from Definitions 2.3 and 2.4.

LEMMA 2.1. Let D be a collection of balls in X, p € [1,00) and a € R.
(i) Then f € EXP(X) if and only if f € EYP(X) and supgep|fB| X
[(B)]™ < 0o; moreover,

1fllegw ey ~ 1 fllger () + sup [fl[u(B)] .
BeD

(ii) Then f € gg’p(/l’) if and only if f € E*P(X) and suppep |fB] %
[(B)]™ < 0o; moreover,

”f||§g4’()() ~ Hnga,p(X) + glé% | fBl[u(B)] .
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(iii) Let a € (0,00). Then f € Lipp(a; X) if and only if f € Lip(a; X') and
suppep [(B)]™" || fllee(B) <00 or suppep |fBl[1(B)]™* < 0o; moreover,
1 Iipp (@st) ~ I1f Lip(asy + sup [l o ) [1(B)] ™
BeD
~ HfHLip(a;X) + sup |fBH:u'(B)}7a
BeD

Proof. We first prove (i). If f € E%P(X) and supgep | fB|[1(B)] ™ < o0,
from Definitions 2.3 and 2.4, it follows that

(2.4) [fllearxy < 21| flleanxy + sup | fB|[n(B)] .
BeD
Conversely, if f € ELP(X), then by the Holder inequality we have
[fllgan ) + sup [fB][1(B)]* < || fllegrxy + 2 sup | fB|[u(B)] ™"
BeD BeD

<3l fllegr ()

which together with (2.4) gives (i).
The proofs of (ii) and (iii) are similar. We omit the details, which com-
pletes the proof of Lemma 2.1. []

LEMMA 2.2. Let D be a collection of balls in X, and let p € [1,00).

(i) Then BMOp(X) =BMO%L(X) and BLOp(X) = BLOL(X) with equiv-
alent norms. ~

(i) When a € (0,00), EXP(X) = ERP(X) = Lipp(a; X) with equivalent
norms.

Proof. To prove (i), we first assume that f € BMOY(X). Then by the
Holder inequality, we have f € BMOp(X) and || f([smop vy < [|fllBmoz (x)-
Conversely, if f € BMOp(X), then from Lemma 2.1(i), with o =0, and
Remarks 2.1(i) and 2.2(iii), it follows that

£ lBmoz, () S 1 IBMor () + sup |fB] SN fllBMOD (1)

which implies that f € BMORL(X) and || f|lgmoz x) < [ fIBMOp(x)- Thus
BMOp(X) = BMOY,(X) with equivalent norms. The proof for BLOp(X) =
BLO%,(X) is similar, and we omit the details.

To prove (ii), by Lemma 2.1 and Remark 2.1(iii), we obtain

[fllegwxy ~ 1f lean(x) + sup [ fBl[u(B)]
BeD
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~ -« ~ Sa
1oy + 50 |l B ~ Iz
~ Hf”Lip(a;X) =+ sup ’fBHM(B)]ia ~ ”f”LipD(a;X)v
BeD

which implies (ii). This finishes the proof of Lemma 2.2. U

The space X is said to have the reverse doubling property if there exist
constants k € (0,n] and A3 € (0, 1] such that, forallz € X', r € (0, diam(X)/2],
and A € [1,diam(X)/(2r)],

(2.5) AsX*u(B(z,r)) < p(B(z, Ar)).

If (X,d,p) satisfies conditions (2.1) and (2.5), then (X,d,u) is called an
RD-space (see [12]).

LEMMA 2.3. Let X be an RD-space, let p be an admissible function on
X, and let D, be as in Remark 2.2(i). If a € (—00,0) and p € [1,00), then

flleg i~ s { comeas [ 1F@P du(o)}

Proof. An application of the Holder inequality leads to

1 1/
flleg i) < s { oy [ 1@ ()}

Conversely, if B € D,, then by Definition 2.4(i) we have

1/p

1 p 1/p
(e [ F@P @)} < Iflgocry
Now we assume that B = B(zg,7) ¢ D,. Let Jy € N such that 2707 1r <

p(xo) < 2707, From a € (—00,0), (2.1), (2.5), and the Holder inequality, it
follows that

(e [P}
< gl [y [ 1@ = ol dite)

Jo
+ Z | foi-1p — foipl + \fzJoB’}

Jj=1

} 1/p
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Jo
S (1 222" legray S I Flleg vy

j=1
which completes the proof of Lemma 2.3. U

REMARK 2.3. Let X be an RD-space, and let p € [1,00).
(i) Then Lemma 2.3 implies that £,""(X) with « € (—1/p,0) coincides

with the so-called Morrey space (see, e.g., [24], [29] for the case X =RY).

(ii) Let @ <0. For all f>0, f e &XP(X) if and only if f € E5P(X) and,
moreover, ||f||§g,p(X) ~ || fllegr(x)- In fact, by Remark 2.2~(iii), we need to
show only that for all f >0, f € EHP(X) implies that f € E5P(X) and that
||f||g~%,p(X) S fllegr (- By Lemma 2.3, a <0, and f >0, we see that, for
all balls B ¢ D,

/B[f(w) —essinf fPdu(z) < /B[f(fv)]p dp() S BN FGan vy
which implies the claim.

(iii) If X is not an RD-space, it is not clear if Lemma 2.3 still holds.

We also have the following conclusions, which are used in Sections 3 and 4.

LEMMA 2.4. Let « € R, let p € [1,00), and let p be an admissible function

on X and D, as in Remark 2.2(iv). Then there ezists a positive constant C
such that for all f € E5°F(X),

(i) for all balls B = B(xo,r) ¢ D,,

! (%)™
=/ \f(Z)Idu(Z)S{ o1 g

(ii)) for allz € X and 0 <11 <rg,

(BN flleaw () a>0,
P B fllegr ey, <0

()" (B, r )N f ez (xy, a>0,

|fBz,'r *fBr,'r |S T
(@,r1) (@ir2) C(1+1og 22)[u(B(a,r)|* flleg w2y, a<0.

Proof. If (ii) holds, then by the Holder inequality, we see that for all
fe&P(X) and B¢ D,,

ﬁ/' (2)] duu(z /‘f — fldp(@) + |5 = fB@opo))
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1
' H(B(@o, plxo))) /B(xo,p(ﬂﬁo)) f @)l du()

S A (B + [u(B(zo, p(20))]* HI fllegr vy

+ 1B = [B@o,p(z0)) |-

Then (i) follows from this fact together with (2.1), r < p(xg) (because B ¢
D,), and (ii).

To prove (ii), let jo be the smallest integer such that 27%0r; > ry. Another
application of (2.1) leads to

1
Fpaion) = fowen| S Jrp iz 2om)) /B(x,gjom) = Jaeion [412)

< [(B(,2°r)) ]I flleger ) -

Similarly, we see that for all j € NU {0},

B2 — FB@2tim| S (B, 27 ) fllor x):

Then we have
Jo—1

B = P S D 1 B@aim) — f@arim| + [ Fa@20m) = [B@rm)|
=0

jo—1

S [(B@ 2 )N fllear -
i=0

If a € (—00,0], from the choice of jy, we deduce that
Fitam) = Foean| £ (1108 ) [n(B.ri)) Il o
if @ € (0,00), by (2.1), we obtain
|fB@r1) = [B@r)| S (%)an [M(B(l’aTl))]a||f||g,§"*P(X)-

This finishes the proof of Lemma 2.4. 0
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2.2. Localized Hardy spaces
We begin with the notion of atoms.

DEFINITION 2.5. Let D be a collection of balls in X, let p € (0,1], and
let ¢ € [1,00] N (p, 00].

(i) A function a supported in a ball B C X is called a (p,q)-atom if
Jya(@)dp(x) =0 and ||a]| Loy < [u(B)]/97HP (see [4]).

(ii) A function b supported in a ball B € D is called a (p,q)p-atom if
18]l Loy < [u(B)]H/a=1/P.

REMARK 2.4. (i) Every (1,q)-atom or (1,q)p-atom a belongs to L!(X)
with ||a||L1(X) S 1.

(ii) Let p € (0,1). If a is a (p,q)-atom, then a € (Lip(1/p — 1;X))* C
(Lipp(1/p — 1;X))* and ||all(Lipy1/p—1,20))* < llall(Lip(1/p—1;2))+ < 15 if b is a
(p, q¢)p-atom, then b € (Lipp(1/p — 1;X))* and [|b]|(vip,(1/p—1;20)) < 1.

DEFINITION 2.6. ([4]) Let p € (0,1], and let ¢ € [1,00] N (p, o0]. A function
f € L'(X) or alinear functional f € (Lip(1/p—1; X))* when p € (0,1) is said
to be in the Hardy space H“9(X) when p=1 or HP9(X) when p € (0,1) if
there exist (p, q)-atoms {a;}72, and {A;}72; C C such that f =3, yA;a;,
which converges in L'(X) when p=1 or in (Lip(1/p — 1;X))* when p €
(0,1), and >,y |Aj|P < oo. Moreover, the norm of f in HP(X) with p €
(0,1] is defined by

P limace =int{ (S ) "},

jEN
where the infimum is taken over all the above decompositions of f.

REMARK 2.5. Coifman and Weiss [4] proved that HP4(X) and HP*>°(X)
coincide with equivalent norms for all p € (0,1] and ¢ € [1,00) N (p, 00). Thus,
for all p, ¢ in this range, we denote HP4(X) simply by HP(X'). We remark
that Coifman and Weiss [4] also proved that the dual space of HP(X) is
BMO(X) when p=1 or Lip(1/p — 1;X) when p € (0,1).

DEFINITION 2.7. Let D be a collection of balls in X, let p € (0, 1], and
let ¢ € [1,00] N (p,00]. A function f € L'(X) or a linear functional f €
(Lipp(1/p — 1;X))* when p € (0,1) is said to be in H5%(X) when p=1
or HZ(X) when p € (0,1) if there exist {)\;};jen, {vk}ren C C, (p,¢)-atoms
{a;};en, and (p, q)p-atoms {by}ren such that

f = Z )\jaj + Z Vk:bk'y

jEN keN
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which converges in L'(X) when p=1 or in (Lipp(1/p — 1;X))* when p €
(0,1], and 37 [N [P+ 3"72, [vk|P < oo. Moreover, the norm of f in HZ(X)
is defined by

7o =mf{ (S I+ ) )

JEN keN
where the infimum is taken over all the above decompositions of f.

REMARK 2.6. Let p € (0,1], and let g € [1,00] N (p,o0]. It is easy to see
that HP9(X) C HRY(X).

Using Remark 2.6, we have the following conclusion.

LEMMA 2.5. Let D be a collection of balls in X, let p € (0,1], and let
€ [1,00) N (p,00). Then HEI(X) = HE™(X) with equivalent norms.

Proof. Notice that (p,00)-atoms and (p,o00)p-atoms are (p, g)-atoms and
(p,q)p-atoms, respectively. Then from Definition 2.7, it follows that
HE®(X) C HEI(X).

Conversely, let f € HZ?(X). Then by Definition 2.7, there exist {);}jen,
{vktren C C, (p,q)-atoms {a;};cn, and (p, q)p-atoms {by}ren such that

f= Z )\jaj + Z Vb,

jEN keN

which converges in L'(X) when p=1 or in (Lipp(1/p — 1;X))* when p €
(0,1], and

(2.6) DINPHY P S [Feaes

JjEN keN
For k € N, assume that suppby C By, € D, and let ¢, = [by, — (bk) B, XB,]/2-
Then it follows from Definition 2.5 that there exists a positive constant C'

such that {Ccy}ren are (p,q)-atoms, {(br) B, XB,, } ken are (p,00)p-atoms,
and by = 2¢i, + (bx) B, X B,,- Moreover,

f — Z )\]aj —+ Z 27/ka + Z Vk;(bk’)BkXBk’
jeN keN keN

*

which converges in L!'(X) when p=1 or in (Lipp(1/p — 1;X))* when p €
(0,1). By Remark 2.4(ii) and (2.6), we see that » .y Aja; +2 oy VCk also
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converges in L'(X) when p=1 or in (Lip(1/p—1; X))* when p € (0,1). Let
g= ZjeN Aja;+23 o Vkck- Then Definition 2.6 together with Remark 2.5
implies that g € HP9(X) = HP*°(X'). From this, Remark 2.6, and (2.6), we
deduce that g € HP*>°(X) C H5™(X) and that

91l 2o vy S Ngllmvce () S 9l mracaey S 1 mza )

which further implies that f € H%™(X) and, by (2.6), that

1 U=y S gl sy + || D2 v (i)

keN HE™(X)
< AR
SNz + {3 e} S W ey
keN
This finishes the proof of Lemma 2.5. H

REMARK 2.7. (i) Let D be a collection of balls in X, let p € (0,1], and let
q € [1,00] N (p, oc]. In what follows, based on Lemma 2.5, we denote H5(X)
simply by Hp(X).

(ii) Let Ly°(X) be the set of all functions of L>(X’) with bounded sup-
port. Then from Definitions 2.6 and 2.7, it follows that Ly (X) N HR(X) is
dense in HR(X) and that Lp°(X) N HP(X) is dense in HP(X).

THEOREM 2.1. Let D be a collection of balls in X, and let p € (0,1]. Then
&7 () = (HB (X))

Proof. We first prove Egpfl’l(é\.’) C (HE>=(x))* for p € (0,1]. Let f €
5%/17_1’1()(). For all (p, c0)-atoms a supported in B ¢ D, by Definition 2.5(i)
we have

‘/X f(z)a(z) du(m)‘ = )/X[f(m) — fBlalz) du(z)

< BT, 1)~ 51400) < Ul

For all (p,c0)p-atoms b supported in B € D, we also obtain

[ @b du@)| < o |17 @) < 1o
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Let N € N, and let fy = max{min{f,N},—N}. We claim that fy €
6%/1)_1’1(/1’) and that

9
27) I3 lgagoeta gy < 31 Ngsgos

In fact, if B € D, then

W/BUN(:U)MM(:L’) < W/B|f(az)|du(:z)§ 11 g1/0-11 2

Let B ¢ D. For all f, h € EYP " (X) and g = max{f,h}, we have g =
(f+h+]|f—h|)/2 and

m /B l9(x) — 95| dp(2)
<W/B’f< —feldu(@) + o /h ~ hg| du(x)

1
* W/B’(f —h)(x) = (f = h) | dp(=)

(xX)°

w

_(Hfugl/p L1(X) +HhHgl/p Ly ))

\V]

Similarly, for all B¢ D, f, h € £47 " (X), and § = min{f, h}, we have

i J, )~ Faldutz) <

If h=N or h=—N, then ||h]lg1/p-11(x) = 0. By these facts and the defini-
tion of fx, we have that for all B ¢ D,

(Hngl/p L1(x) + HhHgl/p 1 1(X))

l\DIOJ

9
l/p/ |fN fN B’d/’b( ) ZHng%/P—l,l(X)v

which implies the claim.

For all g€ LyeX)n Hp’oo(é’(), since fg € LY(X), we define {(g) =
Sy f(@)g(z)dp(z) and ly(g) = [, fn(x)g(x) du(x). Moreover, there exist
{NT {l/k}keN C C, (p,o0)- atoms {a]}]eN, and (p,c0)p-atoms {by }ren such

that
g= Z )\jaj + Z kak,

jeN keN
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which converges in L'(X) when p=1 or in (Lipp(1/p — 1;X))* when p €
(0,1), and

(2.8) DI+ Il < 20glGmee

JEN keN

By fy € £ M (X) and g € HE™(X), we have
@0=3 [ t@a@ @)+ [ @b i),
JEN keN

from which, together with (2.7), (2.8), and Remark 2.4(ii), it follows that

3@ S Inllgr1a o { D2 Pl + 22 el S Il gagomn 9l -

jEN keN

By this and the Lebesgue dominated theorem, we have

N—oo

Dl = Jim | [ fv(@)ota) duta)| S 151 o1 Il o

which together with the density of L{°(X) N HE™(X) in HE™(X) (see
Remark 27(ii)) implies that ¢ € (HZ™(X))* and that 10l rmee (xy)- S
HfH L/p-L1 . Thus,

(2.9) PV (x) c (HB (X))

We now prove that (HE*(X))* C Sgp_l’z(?(). Let £ € (H%?(X))*. Since
HP2(X) C HZ?(X), then ¢ € (HP?(X))* = EV/P~12(X) (see Remarks 2.5,
2.1(i), and 2.1(iii)). Hence there exists f € EY/P~12(X) such that, for all
constants C' and g € L*(X) satisfying that [, g(z) du(z) = 0 and supp(g) is
bounded,

(2.10) tg) = /X F@)g(e) du(z) = /X (F(@) + C)g() du(x).

and Hﬂ\gl/pfl,g(x) S a2y S €] (HE2 (X)) We then need to choose a
suitable constant C such that f = f +Ce Sé/p 1’2(/"(').
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Observe that for all constants C, f—i— Ce EY/P=12(X). Then by Lemma
2.1(i), to show f € E7 (X) and Wl grgomr ey S 10 g2
D
to show that for all B € D,

(X)) it suffices

(211) 1l B 7 S 18] e
To this end, for any B €D, let LZ(B) {f € L*(X) : supp(f) C B}, and
let L3(B)={f € L*B): fX dp(x) = 0}. Then for any g € L*(B), the

function g[u(B)]l/Q_l/pHgHEQl( is a (p,2)p-atom supported in B, and

M(g)‘ < WH(H%’Z’(X))*HQHH%?(X) < [M(B)]l/p71/2WH(Hg?()())*HQHL2(B)7

which implies that ¢ € (L?(B))* = L?(B). By this together with the Riesz
representation theorem, there exists a function f? € L?(B) such that for all
96L2( foB (z) dp(z) and

(2.12) ||fBHL2 <l (B)]l/p*1/2||€||(Hg2(x))*~

Moreover, from this fact and (2.10), we deduce that for all g € L3(B),
Jx[fP(z) - f(a)]g(2)dp(z) = 0, which further implies that f8 — f =0 in
[LZ(B)]*. Recall that [L3(B)]* = L?(B)/C (the space of functions f € L?(B)
modulo constant functions) and f =0 in L?(B)/C if and only if f is a con-
stant (see [4, page 633]). Using these facts, we have that % — fvis a constant
Cp.

Now it suffices to verify that, for all balls B,S € D, we have Cp = Cg.
Observe that g = {[4((1/2)B)] (12 — [1((1/2)S)] X125} is a multiple
of certain (p, 2)-atom and that [1((1/2)B)] ™ x 12 and [1((1/2)5)] " 'x (1 /2)s
are multiplies of (p,2)p-atoms. Therefore, from the fact that fZ —Cp = ]?:
f% — Cg and (2.10), it follows that

w =f<{~<;B>1‘M> —eﬂueswms)

X(1/2)B B(®) du( % /f 1/2)5 r) dp(x)

= f(@)g() dp(w) + Cp — Cs = £(g) + Cp — Cs,
BUS

which implies that C'p = Cs. Denote the constant as above by C’ and define
f= f +C. Then by this, (2.12), and the Holder inequality, we have that for
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all BeD,

ol B = () sl B S 1 gy
This implies (2.11), from which and from Lemma 2.1(i) we further deduce
that f € £47 (X and that | Fllgpor2 ) SN0 m - Thus, (Hp(X))* €

511)/p71,2(X)’ which together with Lemma 2.2 and (2.9) then completes the
proof of Theorem 2.1. 0

83. Boundedness of the radial and the Poisson maximal functions

This section is devoted to the boungedness of the radial and the Poisson
maximal functions from &£,"7(X) to £,°P(X). We start with the notion of
the radial maximal function.

DEFINITION 3.1. Let p be an admissible function on X, and let {7} }4~¢ be
a family of linear integral operators on L?(X). Moreover, assume that there
exist positive constants C, v, d1, d2, and [ satisfying that for all ¢ € (0,00)
and z,2’,y € X with d(x,2") <t/2,

(3.1) Ty(a.y)| < C 1 ( txjy)y( p(x) ))51’

Vi(x) + V(z,y) \t+d( t+p(x
/ 1 t vd(x,z")\B
(32) |Tt($’y)_Tt($’y)|SC%(x)+V(x,y)(t+d(:c,y)>( )
(3.3) |1—Tt(1)(1‘)§0(%>62.

Let {7} }+~0 be as in Definition 3.1. For all f € L] _(X), the radial maximal
function T'" is defined by

T*(f) =sup [T,(f)].
t>0

Then we have the following result.

THEOREM 3.1. Let o € (—o0,7/n) N (—oo, min{F/(2n),d1/n,d2/(2n)}],
let p € (1,00), and let p be an admissible function. If {T;}+~o satisfies (3.1)-
(3.3), then there exists a positive constant C' such that for all f € E5°F (X)),
TH(f) €&P(X) and

HT+(f)H§gP(X) < CHfHS,?"p(X)'
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Proof. We consider only the case that a € (0,v/n)N (0, min{3/(2n),d1/n,
d2/(2n)}]; the proof for a € (—o0,0] is similar but easier. By the homo-
geneity of || - [[car(y) and || - ||g;1,p(X), we assume that f € EP(X) and

[ fllegray =1
Let D, be as in Remark 2.2(iv), and let B = B(x¢,r) € D,. Observe that
T (f) SHL(f), where for all x € X and f € LL _(X), HL(f) denotes the

Hardy-Littlewood maximal function of f defined by

HL(f)(x) = sup ——< /If ) du(y)

BSz,U/

Recall that HL is bounded on LP(X) for p € (1, 00]. Therefore T+ is bounded
on LP(X) for all p € (1, 00]. By this fact together with (2.1), we see that

(3.4) /B TH(Fron) (@) dple) S / @ duta) £ [l B

If t € (0,7), then by (3.1), (2.1), the Holder inequality, and v > an, we have

(35) 1T xane) @)
% fon 7 7 () 010
sgzﬂ(ﬁ L e dum)”

SY 2 @B S By 20
S ]u(lB)] -

Let t € [r,00). By (2.2), we see that for all a € (0,00), there exists a constant
Cy € [1,00) such that for all z, y € X with d(x,y) <ap(x),

(3.6) p(y)/Ca < p(x) < Capl(y).

Recall that B € D,, which is equivalent to that r > p(x¢). These facts imply
that for all x € B, p(z) <. By this together with (3.1), (2.1), the Holder
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inequality, and the facts that v > an and 01 > an, we have that for all
t€[r,00) and x € B,

‘Tt(fX(zB)C)(x)‘

|f( )| t (:L’) 5
o T () () 0

o=~ ]
; Vai-14(x) /d(wkm |f ()] dp(y)

> 27 [V (20)]°

)

t f(;()x) ) ' 227 <m /d o)< Lfw)IP du(y)) l/p
)
)

DTG BRI

Combining this and (3.5) yields that for all ¢ € (0, 00),
| (P amp) @ dute) S (B,
which together with (3.4) gives us that
[T (D@ dute) £ fuB) e

This also implies that T (f)(z) < oo for p almost every z € X.
It remains to show that for all B = B(zg,7) ¢ D,,

[T () @) — essint TP dita) < (B
B

Let fi = (f = fB)x2B, let fa=(f = [B)X(ap: let Bi={x € B: T;7(f)(x) >
TE(f)(x)}, and let By = B\ By, where T.F(f) = supycica, |T2(f)| and
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TE(f) = by [TL(1)]. We have
[T (D@) = st TP du(o)
S [ 15 (@) ~ esnt T ()1 dute)
+ [ [TL(P)(e) — esnf T di(r)

S/[Tf(fl)(x)]pdﬂ(w)JrM(B) sup sup |Ty(fp)(z) — T (f)(y)|
B z,y€B0<t<4r

+/ [T (f2)(2)]P dpu(z) + p(B) sup sup |Ty(f)(x) — To(f)(y) P
B r,yeBt>4r
=E; +Ex +E3 + Eq.

By the Holder inequality, LP(X)-boundedness of T, and (2.1), we have

B < / 1F(@) = f5l” duta) < (B,

On the other hand, using (3.1), (2.1), the Holder inequality, Lemma 2.4(ii),
and vy > an, we have that for all ¢ € (0,4r) and x € B,

1@ 5 [ e () e~ el duta)

(2B) t+d(z,2)
ST fyg IO~ Fal 10 Fo st
S (B> S 279070 < ()]
j=1

This implies that Eg < [u(B)]1 2.
Similarly, by applying (3.1), (2.1), and v > an, we have that for all = € B,

B.7) (- fB)(=)

< | vorves Gring) e — el duta)

> 1

S22 /B 1£(2) = faldp(z) S [n(B)).
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From Lemma 2.4(i), (3.3), 62 > an, and t < 4r < p(zo), it follows that for
all z € B,

L L e

5 = Tu(fe) (@) =1f5l 11 = T @)| S [u(B)°
This together with (3.7) implies that

Ey Su(B) sup sup {|T(fB)(x) — fBF
z,y€B 0<t<4r

+f5 =T-(fB) WP+ |T:(fB — )W)}
S (B,

To estimate Ey, we first observe that for all z,y € B, p(z) ~ p(zo) ~ p(y)
(see (3.6)). By this and (3.2), we have that for all z, y € B and ¢ € [4r, 00),

m@ -t (3)"

On the other hand, it follows from Lemma 2.4(i) and (2.1) that

aon] S (222) " By

Then by these facts and an < min{(3/2),(d2/2)}, we obtain that for all
t € [4r,00),

T:(1)(z) = L)W f B0
= ) (B)*|Ty(1)(x) — Ty(1)(y)| "/
X HTt(l)( )= 1|+ |1 = T3(1)(y)]]*/?

< (2 e ()™ <

On the other hand, by (3.2), (2.1), the Holder inequality, Lemma 2.4(ii),
~v > an, and > an, we see that for all z, y € B and t € [4r, o),

ITi(f — fB(zo,t) (@) = Te(f — fB(z0,t)) (¥)]
d(z,y)\? 1 " y
§/X< t >W($)+V(w,z)(t+d(gc,z)> £ (2) = FB(ao.n| du(2)
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MBS 277
< (= [ _ .
~ (t) Z Vai—14(2) /d(z,z)<2jt[|f(z) IB(@o2i+10)|

J=0

+ | fB@ost) = [Bzo,27+10)] dpa(2)

< (5) S 2 (B, 1)) £ (B
=0

These inequalities above lead to

Ey S p(B) sup sup [Ty(f = fB(won) (@) = Te(f = fB(20.0) W)IP

z,yeBt>4r
+u(B) sup sup[|T(1)(x) — Tr(1) W) [0 P S [1(B)]FP,
r,yeBt>4r
which completes the proof of Theorem 3.1. [l

Now we consider the boundedness of the Poisson semigroup maximal
operator. Let {T}};~0 be a family of linear integral operators on L?(X). We
always set

1 e

77 o 5 eve s

For all f € L (X), define the Poisson semigroup maximal operator P by

loc

PtE

PT(f) =sup|P(f)].
>0
LEMMA 3.1. Assume that {T}}i~0 satisfies (3.1)—(3.3) with the same con-
stants 01, d2, B, and ~y as there. Then {P;}>o also satisfies (3.1)—(3.3) with
the constants 61, 6%, ', and ~', where 8, € (0,1)N (0,42, B € (0,1)N (0, 5],
and v € (0,1) N (0,7].

Proof. For all a, s, t € (0,00), from the fact that t +a < (1+s)(t/s+ a),
it follows that

t/s 1
. <(1 .
(38) Jsta =0 )
On the other hand, from (2.1), we deduce that for all z, y € X and s,
t € (0,00),
(3.9) Viss(@) + V(@,y) ~ p(B(x,t/s + d(x,y)))
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> (1+s)"u(B(z,t+dx,y)))
~ (1+s)"[Vi(z) + V(z,y)].

By (3.1), (3.8), and (3.9), we see that for all z, y € X,

P, y)] < /0 eI, (@, y) ds

e 1 t/s () \%
5/0 ‘ /4Vt/s(iv)+V($,y)<t/8+d($7y))7(t/8p+p(w)> ’

1 t v () \%
SW(I‘)—FV(SE,]J)(t"’d(:Cay)) (tfp(x)>

X / 6_52/4(1 +8)" (1 + 577 ) ds
0

-
~ Vi(z) + Vi(y) \t+d(z,y)) \t+p(x))
Now we prove that for all ¢ € (0,00) and z, 2/, y € X with d(z,2") <t/2,

: d(w.a)\o 1 t )"
(3.10) !Pt(m,y)—Pt(xayﬂrS( r ) %($)+V(x’y)<t+d($,y)) '

Observe that in this case, ¢t + d(z,y) ~t + d(2',y) and d(z,z") <t/(2s) if
and only if s <t/[2d(x,2’)]. Then (3.1) and (3.2) together with (3.8) and
(3.9) yield

’Pt(xvy) - Pt(xlay)|

< / T (2,y) — Ty (o y)| ds
0

t/[2d(z,2")] ! >
S [/0 (d(z: ))ﬁ * /t/[Qd(w@')J

e’/ t/s ¥
- Viys(@) +V(z,y) (t/S—i-d(x,y)) ds

t/[2d(x.2")] S : /
< [/ (1+5)” +/ " }6_32/4(1 +5)"(1+s77)ds
0 t/[2d(z,2")]

d(x,xz")\8 Y
X( t ) Vt(m)+1V(a:,y) (t+dt(x,y)>
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d(x,x")\ 8 !
S ( t ) Vi(x) +1V(;1:,y) (t—i—dt;:v,y))7 ’

which implies (3.10).
On the other hand, by (3.3) and (3.8), we see that for all z € X and
t € (0,00),

IR T et Ty, (1) (2)] ds

© _aur s B
Sf T )

S <t+,t0(33))6é /ooo ) ds 5 (HZ(@)%'

This finishes the proof of Lemma 3.1. [l

THEOREM 3.2. Let p be an admissible function, let {1} }+>0 satisfy (3.1)-
(3.3) with the same constants (3, 7y, 01, and d2 as there, and let 8%, 3, and
v be positive constants such that 0, € (0,1) N (0,4d2], B' € (0,1) N (0, 5], and
v €(0,1) N (0,7]. Let a € (—00,7'/n) N (—oo,min{3'/(2n),d1/n,d5/(2n)}],
and let p € (1,00). Then there exists a positive constant C such that for all
[ e EEP(X), PH(f) € EXP(X) and

”PJr(f)Hgg,P(X) < CHf”Eg"p(X)‘

Proof. Notice that our assumption on {7} }¢~o and Lemma 3.1 imply that
{P;}+>0 satisfies (3.1)—(3.3) with constants d1, 05, 7/, and . By this and an
argument similar to the proof of Theorem 3.1, we can prove Theorem 3.2. We
omit the details by the similarity. This finishes the proof of Theorem 3.2. []

REMARK 3.1. (i) If @ > 0, then by Lemma 2.2(ii), the spaces £5"(X) in
Theorems 3.1 and 3.2 are exactly the spaces £, (X). If a <0 and X is an
RD-space, then by Remark 2.3(ii) and the fact that the maximal operators
are nonnegative, we know that if the space gg‘ P(X) in Theorems 3.1 and 3.2
is replaced by the space £,°P(X), we obtain the same results.

(ii) Let X be an RD-space, and let p be an admissible function. Assume
that there exist constants C' € (0,00), €1 € (0,1], e2 € (0,00), 0 € (0,1], and
v € (0,00) and an (e1,e3)-AOTI (approximation of the identity) {Z}}i>0
(see, e.g., [12], [32] for the definition of AOTI) with kernels {T(z,y)}i>0
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such that for all ¢ € (0,00) and z,y € X,

~ t 1 t gl
3.11) |T, — T <C .
If a =0 and (3.1)—(3.3) were replaced by (3.11), Theorems 3.1 and 3.2 were
obtained in [32]. We remark that since for all x € X, T3(1)(z) =1 (see [32]),
(3.11) implies (3.3) with do = 9.

84. Boundedness of the Littlewood-Paley g-function

In this section, we consider the boundedness of certain variants of the
Littlewood-Paley g-function from £57(X) to £5P(X). The boundedness
from BMO,(X) to BLO,(X) where X is an RD-space of this operator was
obtained in [32].

Let p be an admissible function on X, and let {Q;};>0 be a family of
operators bounded on L?(X) with integral kernels {Q;(z,y)}¢>0 satisfying
that there exist constants C € (0,00), 61 € (0,00), d2 € (0,1), B € (0,1], and
v € (0,00) such that for all ¢t € (0,00) and z,2’,y € X with d(z,2’) < (t/2),

| 1 t v _plx) N\
(Q); ’Qt(m’y)’SCVt(gU)—}-V(I,y)(t-f—d(%?/)) (t—i—p(:b)) ’

d(z, ") >5 1
t+d(z,y)/) Vi(z)+V(z,y)

Qi |Qi(w.y) - Qe y)| < C(

(o)
@ | [ @uedut| <0(;52)"

For all f € L{ (X) and x € X, define the Littlewood-Paley g-function by

loc

(4.) o= ([ lenrg)”

LEMMA 4.1. Let o € (—oo,min{~y/n,d2/n}), let p € (1,00), and let p be
an admissible function on X. Then there exists a positive constant C such
that for all f € EP(X),

(i) forallz € X and t >0,

|Q:()(=)] < O(tf(;”gx))él (B, )] flleer
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(ii) forallz, ye€ X and t>2d(z,y),

1Q:(f) (@) = Q:(f) ()]

<{C<‘t 2)P (142 f)a”me,t NoUf ey, >0,
C(22)? (1 4 1og Z2) (B, )1 f gy, @ <0,

Proof. By the homogeneity of || - ||5§’P(X)» we may assume that f € £;°P(X)
and that [|f|caryy =1. By (Q)i, (4.2), (2.1), v > an, and the Hélder
inequality, we have that for all x € X and t > p(x),

(4.2) |Qu(f |</V(x TV (z )(t+dt( )>7

< ()l duty
< ()" 5032%() fipe 10100
< () S i)
()" [u(B@,t»]‘*ﬁmax{wan%zm
< (29 (B )"

Let z € X, and let ¢t < p(zx). In this case, t + p(x) ~ p(x). Using v > an,
(Q)i, (2.1), Lemma 2.4(ii), and the Holder inequality, we have

Q:(f — fB (x t))($)|

S 2_”7/ f(W) = Byl du(y
Z Vai—14(2) d(x,y)<2jt‘ @) B ’t)‘ )

Z { Vasi (2) i) <29t |f(y) fB( ,21t)| w(y)

}

+ | fB(z,2it) = [Bay)
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< (Bl 0)]" Y. 277 max{2 ™m0y 1) < [u(B(r, 1)),
j=0

On the other hand, from (Q);i, Lemma 2.4(i), t < p(x), and dy > an, we
deduce that

Q) @) S [0(BG 1)) (

t+p x))
p(z)

max{an,0}
X max{l + log " ) }
51

< [H(B(x’t))]a<t4p—(j()$)>

This gives (i).
To show (ii), by (Q)ii, we see that for all z, y € X and t > 2d(z,y),

(43) 1Qu(f)() — Qu(£)(v)]
d(z,y) \B 1
S/X(Hd(m,z)) WHV(%Z)(M( 5) 7@ dn(z)

d(z,y)\ B = . _; 1
S( t );2 ﬂVza‘1t(f'3)/d(x,z)<2ft’f(z)‘dﬂ<z)'

Now we consider the following two cases.
Case (i). a € (0,00). In this case, if ¢t > p(z), by 7 > an, the Holder
inequality, (4.3), and (2.1), we have

@1 1@ - NI (TD) S0 (B 2n))°
=0

< (52) B0

Assume that ¢ < p(z). Let Ny € N such that 2V171¢ < p(x) < 2M¢. From the
Holder inequality and (2.1), it follows that

(4.5) e L0

J=N1 d(z,z)<27t

< Z 277 [1(B(2,27))]" S [n(B(x,1)]"

Jj=N1
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By the Holder inequality, (2.1), and Lemma 2.4(i), we see that for all j €
{0,1,...,Ny — 1},

1 / P an o
—_— f2)]du(z) S —= w(B(x,t))] .
L 0190 (52t
This together with v > an gives us

Ni—1

> Qﬁﬂ SWUCLIOE ()™ ()]

j=0
Combining this and (4.3)—(4.5) leads to that for all z, y € X and ¢ > 2d(z, y),

Q@) - NI S (142 " (Bl )]

Tt
Case (ii). a € (—00,0]. If t > p(z), then (4.3) yields that
Q)@ - NI < (MY (B

Let ¢t < p(x), and let N be the integer as in Case (i). Then by (4.3), (2.1),
Lemma 2.4(i), and the Holder inequality, we have

Q:(f) (@) = Q:(f) ()]

dz,y)\ o (= 1 >
< (B2 d) o P
N( t ) {; ? Vai-14() /d(z,z)<2jt‘f(2)|du(Z)+j§1 }
d(z,y)\A = PT)\ | = o o
g( , ) {Z 2 ]7<1+10gT> + Z 2 ”}[M(B(ac,t))]
Jj=0 Jj=N1
d B8 o
< () (1106 ") In(m )]
which implies (ii) and then completes the proof of Lemma 4.1. 0

THEOREM 4.1. Let p € (1,00), let p be an admissible function on X, let g
be as in (4.1), and let

a € (=00, 8/(3n)] N (—oco,min{v/n,d1/n,62/(3n)}).

If g(-) is bounded on LP(X), then there exists a positive constant C such
that for all f € E57(X), [g(P)? € &) and g )P gann y, <

) (x) =
Ol 1
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Proof. By similarity, we prove only the case when a > 0. Let f € £;P(X).
By the homogeneity of || - [|gow(x) and || - ||§a,p(X), we may assume that
P
[fllgr(ay =1. For all balls B = B(zo,r) € Dy, we need to prove that

(4.6) / () @) du(z) S [u(B)]I*eP.
B
For all x € X, write
8r [e%)
sN@E = [ 1eN@PT+ [ 1en@iRT

= [g1(f)(@)]* + [g2(f) (2))*.

By the LP(X)-boundedness of g and (2.1), we have
(4.7) /B[gl(szB)(x)]p dp(z) S /23 |f (@) du(z) S [u(B)] TP

By (@), v > an, (2.1), and the Holder inequality, we have that for all z € B
and t < 87,

Q)@ S [ !

t v

< (;)7]22‘”@ /sz f W)l du(y)
< (;)MB)Pf;wM”) <() B
<
From this, it follows that
(45) [ 153 @ duto)

8ty 2vde\ P/
< v bl B 1+ap < B 1+oap_
([ wwre s
Combining (4.7) and (4.8) leads to

(4.9) /B[gl(f)(ﬂf)]p du(z) < [n(B)]Fer.
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Applying [33, Lemma 2.1(ii) and 2.1(iii)], we have that for all z, y € X,

9

1 1 d(x,y)\ o/ (1+ko)
20 )

where kg is as in Definition 2.2. By this fact, we obtain that for all x € B
and t > 8r,

~

1 1 r —ko/(1+ko) 1 r —ko/(1+ko)
2 % e (U ) Feniven), |

From this, Lemma 4.1(i), and (2.1), we deduce that for all x € B,

Q@1 < (D) [u(B.0))°

t
p(zo)\01 /1 \91(ko/(1+ko)) st an
< _ (e
~ < t ) <p(m0)> <r> (BT
which together with the assumption that d; > an implies that
[ (Nt dua)

01 (ko/(1+ko)) Oo 2(51 2an dt\ p/2
< 14+ap r p / _ _
S [1(B)) (p(:zo)> 8 T‘) t }

d1(ko/(1+ko)) 7 p(x0)\PO1
< B 1+ap r p p
<l (os) ( r)

S (B,

This together with (4.9) gives (4.6). Moreover, it follows from (4.6) that
9(f)(x) < oo for almost every = € X.
Now we assume that B = B(z,7) ¢ D,. We need to prove that

@) [ {la(@F = esiutlo(OFY du(e) S (B,

To this end, write

8r 8p(wo) 0
[g(f)(a:)]2=/0 |Qt(f)(m),2%+/8 g +/

T 8p(z0)

= [.%‘(f)(m)]z + [gr,p(xo)(f)(x)]Q + [gp(xo),oo(f)<m)]2'
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/ {l9(5) @) — essinflg()]*}""* du(x)

+ /B{[gr,p(zo) (f)(x)]Z - eSSBinf[gr,p(:po)(f)]2}p/2 d,u(a:)
+ /B{[gp(xo),oo(f)(w - eSSIHf[gp(xo }p/? )

5/9[gr(f)($)]pdu(ﬁ)+u(3) Sp (91, p(a0) (1) (@)1 = (9. p(a) () ()27

z,yeB

+ M(B)wS;lepB 19pz0).00 () (@) = [Gpao).oe (N @PFPP =Th + Tz + 1.

Write f = (f — fB)x2B + (f — fB)X(@2p) + /B = f1 + f2 + fB. By the
LP(X)-boundedness of g(-) and (2.1), we have

@) [ @P @ < [ 17~ ol duo) S @),

Using (Q)i, (2.1), the Holder inequality, Lemma 2.4(ii), and v > an, we
obtain that for all x € B,

|Q+(f2) ()]
1 ¢ ~
S /(QB)E Vi(x) + V(z,y) (t + d(:my)) |f(y) — fBldu(y)

£\ Sl £\
< (2 « —j(y—an) <« [~ «
< (5) ) > 2 <(5) ),
]:
from which it follows that

412 [ ()P < ey ([ ST(E)Q”%)’)/2 < (B,

r
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Recall that for all x € B, p(z) ~ p(zo) (see (3.6)). By this, (Q)i, and
Lemma 2.4(i), we have that for all x € B,

r

Q@IS () 1015 ()™ (0) i,

This together with d2 > 3an and r < p(z¢) implies that

/ (00 (f5) @) dia(z)
B

< [u(B)]”ap(@)wn </08 (péo))%%)p/z

S (B,

Combining this, (4.11), and (4.12) yields I; < [u(B)]*+eP.
Since v > an, by Lemma 4.1, (2.1), and p(zg) ~ p(x) for all x € B, we
have that for all z, y € B and ¢ € [8p(x¢), 00),

D@ - w1 £ (M) BEn) < (5) we)

and

Q@) S (22N (o) < (A2 (D sy

t t r

By these inequalities and 3 > 3an, we see that for all z, y € B,

[gp(xo),oo(f)(x)]2 - [gp(xo),oo(f)(y)]Q
< [* @@+ anwlien® - anwiT

p(zo)

< [ ()T e S

p(xo)

which implies that I3 < [u(B)]+eP.
By Lemma 4.1(i), (2.1), and the fact that for all x € B, p(x¢) ~ p(z), we
have that for all ¢ € [8r,8p(z¢)) and x € B,

Q@ £ (B )] < (1) B

r
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Thus the fact that 3 > 3an implies that for all x, y € B,

[gr,p(mo) (f)($)]2 - [gr,p(a:o)(f)(y)]z
8p(z0) dt
S/ |Qe(F)(@) + Qe(N) W Qe(f)(2) = Qe(f)(y)l

8r

8p(zo) an
s [ (5@ - ol

r

Let t € [8r,8p(xp)), and let x, y € B. We write

Q:(f)(z) — Qe(f)(y)]
<| [ 1@, - Qun2IF ) - sl duce)

+1fal] [ [Qu2) = @ity 2Naut:)
=H; + Hs.

By (Q)ii, t € [8r,8p(x0)), (2.1), and Lemma 2.4(ii), we see that for all z € B,

/ (t —Ckl(cglv(’x?{)z))ﬁ‘/}(x) —I—lV(:L‘, z) (t + diw, z)>7|f(z) ~ fldn(2)
<

i rBy 1
~ :0 (t +20-1r)B+7 u(20+1 B)

Hy

A

/2JJrl {|f f2j+1B‘+|f2j+13—f3’}d/1,(z)

Bty
(t+2ir)8+y

o0

2" [u(B)]*.
=0

.

From this, we deduce that

8p(zo) /¢ dt
/ (_) anHl dt
8r r t
szn [ Ty
t (t + 207)B+y

S [M(B)]O‘-
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By Lemma 2.4(i), (Q)iii, 8 > 3an, d2 > 3an, and the fact that for all
z € B, p(xg) ~ p(z), we have that for p almost every z, y € B,

IO

< [ () pmriQune - @i

. r r
/
- (p(fco))62 3%

[ e ) )

T

pl0) o/t \G/3-angt N
5/& [1(B)] (p(wo)) - S B

This finishes the proof of Theorem 4.1. 0

As a consequence of Theorem 4.1, we have the following conclusion.

COROLLARY 4.1. With the same assumptions as in Theorem 4.1, there
exists a positive constant C such for all f € E;P(X), g(f) € E,P(X) and

||g(f)||gg>1’(x) < Cllfllggr(axy-

Proof. Since
0 <g(f) —essinf g(f) < {[g(/)]* — essinflg(f)]*}2,

applying (4.10), we have that for all balls B ¢ D,,,

413)  { gy [ 90)@) ~ essnt a1 duta)} "

& {W /B{[g<f><w>12 ~essint[g(/)? Y du(x) } "

S lleaw -
On the other hand, by (4.6), we obtain that for all balls B € D,,,

{W /BW @ P (@)} < e

which together with (4.13) completes the proof of Corollary 4.1. 0
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REMARK 4.1. (i) If « =0 and X is an RD-space, Theorem 4.1 and Corol-
lary 4.1 were already obtained in [32].

(ii) We point out that Remark 3.1(i) is also suitable to Theorem 4.1 and
Corollary 4.1.

85. Several applications

This section is divided into Sections 5.1-5.4. We apply the results obtained
in Sections 3 and 4, respectively, to the Schrédinger operator or the degen-
erate Schrodinger operator on R%, and to the sub-Laplace Schrédinger oper-
ator on Heisenberg groups or on connected and simply connected nilpotent
Lie groups.

5.1. Schrédinger operators on R¢

Let d > 3, and let R? be the d-dimensional Euclidean space endowed with
the Euclidean norm |- | and the Lebesgue measure dz. Denote the Lapla-
cian Z?:l 572? on R? by A and the corresponding heat (Gauss) semigroup

{e!®} 40 by {ft}t>0- Let V be a nonnegative locally integrable function on
R? let £L=—A+V be the Schrédinger operator, and let {T}};~o be the
corresponding semigroup with kernels {7;(x,y)}+>0. Moreover, for all ¢t > 0
and z,y € RY, set

Qulz,y) = t2—dTSC(l§’ v)

Let g € (d/2,d], let V € By(R%,|-|,dz), and let p be as in (2.3). Then we
have the following estimates (see [6], [9], [7]).

s=t2

PROPOSITION 5.1. Let g € (d/2,d], let 8 € (0,2 —d/q), and let N € N.
Then there exist positive constants C' and C, where C' is independent of N,
such that for all t € (0,00) and z,2',y € X with d(z,z") < V/t/2,

(i) ITt(x y)l < CtPexp{—|e—y2/Ctlp(x)/ (VT + p(x))N]p(y)/

(VE+p)IY,

(i) ITt(fv y)—Ty(a, y)\<CHw | /NP2 exp{—|x — y|?/Ct}[p(x)/
(VE+ p@)N )/ (VE+ py)]Y,

}(’m) Ti(z,y) — Ty(z,y)| < C[\//(\f+p( )21t exp{—|z — y|*/
Ct);

and for all t € (0,00) and z,2’',y € X with d(z,2") <t/2,

(iv) [Qi(a,y)] < Ct~dexp{—|z—y[2/Ct}p(x)/(t + p(x)) N p(y)/(t +
p)I",
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(V) 1Qu(w,y) — Qu(a,y)| < Cllz — '|/1Pt~ exp{—|z — y|*/C*}[p(x)/
(t+ p(@)]Vp(y)/(t + p(y))]™,

(vi) | Jg Qel,y) duy)] < Clt/ ()P~ 9[p() /(¢ + plar))] ™.

Let q1, g2 € (d/2,00] with q1 < ga. Observe that By, (R?) C By, (R?). There-
fore, Proposition 5.1 holds for all g € (d/2,00]. On the other hand, recall that
{T2}150 satisfies that for all t € (0,00), Tj2(1) = 1 (see [6], [9]). Thus {T}2 }=0
satisfies assumptions (3.1)-(3.3). Moreover, the L?(R%)-boundedness of
g-function g¢(-) was obtained in [6]. Using this, Proposition 5.1(iv) and
5.1(v), and the vector-valued Calderén-Zygmund theory (see, e.g., [26]),
we obtain the LP(R?)-boundedness of g(-) for p € (1,00). Then by applying
this fact and Proposition 5.1, Theorems 3.1, 3.2, and 4.1, and Corollary 4.1,
we have the following result.

PROPOSITION 5.2. Let q € (d/2,00], let p € (1,00), let V € B,(R%, ||, dz),
and let p be as in (2.8).

(i) If o € (—o0,1/d — 1/(2q)), then there exists a positive constant C
such that for all f € EyP(RY), TT(f), PT(f) € ESP(RY) and

17+ (D zg gy + 1P+ () gzn gty < Ol e

(i) If a € (—00,2/(3d) — 1/(3q)), then there exists a positive constant C
such that for all f € E;P(RY), [g(f)]? € gh’p/Q(Rd) with || [g(f)]2||£:2a,p/2
P
)

CHfH?g,P(Rd); and g(f) € é,Vp P(R RY) with lg(f )Hggfvp(ugd) < C”f”s,‘,“’(Rd)~

(Rd) S

5.2. Degenerate Schrédinger operators on R?

Let d >3, and let R? be the d-dimensional Euclidean space endowed
with the Euclidean norm |- | and the Lebesgue measure dz. Recall that a
nonnegative locally integrable function w is said to be an As(R?) weight in
the sense of Muckenhoupt if

s ) (o [ )

Where the supremum is taken over all the balls in RY. Observe that if we
set w(E) = [Lw pw(x)dr for any measurable set F, then there exist positive
constants C,Q, and x such that for all z € R, A> 1, and 7 > 0,

C'Nw(B(z,r)) <w(B(z,Ar)) < C)\Qw(B(x,r));
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namely, the measure w(z) dz satisfies (2.1). Thus (R, ||, w(z) dz) is a space
of homogeneous type.

Let w € A3(R%), and let {ai;}1<ij<a be areal symmetric matrix function
satisfying that for all z,¢ € R?,

CTHEP < Y aii(@)&E; < ClEP

1<i,j<d

Then the degenerate elliptic operator Ly is defined by

Lof@)=——7= 3 Bilas()3,f) (@)

(@), 574

where z € R Denote by {ﬁ}t>0 = {e " 0};-0 the semigroup generated
by ,C(].

Let V' be a nonnegative locally integrable function on w(x)dz. Define
the degenerate Schrédinger operator by £ = Ly + V. Then L generates a
semigroup {7} }t>0 = {€7**}4~0 with kernels {T}(z,y) }+>0. Moreover, for all
t € (0,00) and z,y € R?, set

- ds s=t2

Qt(z,y)

Let ¢ € (Q/2,Q], let V € B,(R%,|-|,w(x) dz), and let p be as in (2.3). Then
{T3(-,) }+>0 and {Q:(-,-)}s>0 satisfy Proposition 5.1 with t~%?2 replaced by
[V\/z(x)]_l, t=4 by [Vi(x)]~! and d by Q. In fact, the corresponding Proposi-
tion 5.1(i) and 5.1(iii) here were given in [6]. The proof of the corresponding
Proposition 5.1(ii) here is similar to that of Proposition 5.1 (see [9]). The
proofs of the corresponding Proposition 5.1(iv), 5.1(v), and 5.1(vi) here are
similar to that of [7, Proposition 4]. We omit the details here.

Recall that {T}2}1~0 satisfies that for all t € (0,00), Tj2(1) =1 (see, e.g.,
[13]). Thus {T}2 }s>0 satisfies assumptions (3.1)-(3.3). Moreover, the L?(R)-
boundedness of ¢(-) can be obtained by the same argument as in [6,
Lemma 3]. Using this, Proposition 5.1(iv) and 5.1(v), and the vector-valued
Calderén-Zygmund theory, we obtain the LP(R%)-boundedness of g(-) for
p € (1,00). Then by applying these facts, Theorems 3.1, 3.2, and 4.1, and
Corollary 4.1, we have the following result.

PROPOSITION 5.3. Let w € Ao(R?), let q € (Q/2,0], let p € (1,00), let
V € B,(RY,| - |,w(z)dx), and let p be as in (2.3) with du(z) = w(x)dz.
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(i) If a € (—00,1/Q — 1/(2q)), then there exists a positive constant C
such that for all f € E;P(w(x)dz), TT(f), PT(f) € &P (w(x)dx) and

||T+(f)||§gvp(w(x)dm) + ||P+(f)||§§"”(w(x)dx) < CHngﬁ”’(w(a:)dx)-

(i) Ifa € (—00,2/(3Q)—1/(3q)), then there exists a positive constant C
such that for all f € EYP(w(x)dx), [g9(f)]? € ggafﬂ(w(x) dx) with
1Dl 202y ay < Oy 0 (1) € B2 a0() da) with
19CH 27 (o) dzy < ClF g o day-

5.3. Schrodinger operators on Heisenberg groups

The (2n+ 1)-dimensional Heisenberg group H" is a connected and simply

connected nilpotent Lie group with the underlying manifold R?" x R and
the multiplication

n
(2 8) () = (0 9ot + 5+ 2D w555 — 239m5)).
j=1

The homogeneous norm on H” is defined by |(z,t)| = (|z|* + [¢t|>)'/* for all
(z,t) € H", which induces a left-invariant metric d((x,t),(y,s)) =
|(—z,—t)(y,s)|. Moreover, there exists a positive constant C' such that
|B((z,t),7)| = Cr?, where Q = 2n + 2 is the homogeneous dimension of
H™ and |B((x,t),r)| is the Lebesgue measure of the ball B((x,t),r). The
triplet (H",d,dz) is a space of homogeneous type.

A basis for the Lie algebra of left invariant vector fields on H™ is given

by
0 0 0
Xopi1 = =,  Xj= — +20ps;—
2+l = 3 j 8:L‘j+ Tntj gy
0 0
Xpyj= 0 — 222 j=1,...,n.
n+j) aanrj Z; atv J 3 y TV
All nontrivial commutators are [X;, Xy4;] = —4Xon11, j=1,...,n. The

sub-Laplacian has the form Agn = Z?Zl XJZ.

Let V' be a nonnegative locally integrable function on H"™. Define the sub-
Laplacian Schrodinger operator by £ = —Apgn + V. Denote by {T}}i~0 =
{e £} w0 with kernels {T}(z,y)}is0 and by {Ti}is0 = {25 },og. More-
over, for all ¢ € (0,00) and z,y € RY, set

— t2 dTS (‘Ta y)
- ds s=t2

Qt(x7y)
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Let V € B,(H",d,dx) with ¢ € (n+1,2n + 2], and let p be as in (2.3).
Then {Ti(-,-) }+>0 and {Q:(-,-)}+>0 satisfy Proposition 5.1 with d replaced
by 2(n + 2) and |z — y| replaced by d(z,y) (see [19]).

Observe that {T}2}¢~0 satisfies that for all ¢ € (0,00), Tj2(1) =1 (see also
[32]). Thus {7}z }4>0 satisfies assumptions (3.1)—(3.3). Moreover, the L?(H")-
boundedness of g(-) was obtained in [19]. Using this, Proposition 5.1(iv)
and 5.1(v), and the vector-valued Calderén-Zygmund theory, we obtain the
LP(H")-boundedness of g(-) for p € (1,00). Then by applying these facts,
Theorems 3.1, 3.2, and 4.1, and Corollary 4.1, we have the following con-
clusions.

PROPOSITION 5.4. Let g € (n+1,00], let p € (1,00), let V € By(H",d, dx),
and let p be as in (2.3).
(i) Ifa€(—o00,1/(2n+2)—1/(2q)), then there exists a positive constant
C such that for all f € E;P(H™), TT(f), PT(f) € gg’p(H”) and

1T ()l g sy + 1P ()l g gmy < O e iany-

(i) Ifa€ (—o00,1/(3n+3)—1/(3q)), then there exists a positive constant C
such that for all f € EXP(HM), [g(£)]? € E2*P*(HM) with ||[g(£))?]| £200/2 ()

< sop gnys and g ~g’ ™) with ||g goop(pny < £2P (Hn) -
< Clf e ny- and g(f) € EZP(E) with [9(f) | g gy < CI]

5.4. Schrodinger operators on connected and simply connected
nilpotent Lie groups

Let G be a connected and simply connected nilpotent Lie group, and
let X ={Xj,...,X;} be left-invariant vector fields on G satisfying the
Hormander condition that {X;,..., X} together with their commutators of
order < m generates the tangent space of G at each point of G. Let d be the
Carnot-Carathéodory (control) distance on G associated to {X1,..., X}.
Fix a left-invariant Haar measure p on G. Then for all z € G, V,.(z) = V,.(e);
moreover, there exist k, D € (0,00) with x < D such that for all z € G,
C~lr® < Vi(z) < Cr® when r € (0,1], and C~'P <V, (z) < OrP when
r e (1,00) (see [21], [30], [31]). Thus (G,d,u) is a space of homogeneous
type.

The sub-Laplacian is given by Ag = Z?:l X?. Denote by {fft}t>0 =
{etAe),¢ the semigroup generated by —Ag.

Let V be a nonnegative locally integrable function on G. Then the sub-
Laplace Schrodinger operator £ is defined by £ = —Ag + V. The operator
L generates a semigroup of operators {T}}i~0 = {e **}+~0, whose kernels
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are denoted by {Tt(:zz y) }+>0. Define the radial maximal operator T by
T*(f)(x) =sup,~g le 4 (f)(x)] for all 2 € G.

Let ¢ > D/2,1et V € B4(G,d, 1), and let p be as in (2.3). For all z,y € G
and t € (0,00), define

Then {T}(-,) }+>0 and {Q¢(,-) }+>0 satisfy Proposition 5.1 with ¢~¢ replaced
by [Vi(z)] !, t=42 by [V ()] 7!, and d by D (see [33], [32]). Observe that
{T}2}1>0 satisfies that for all ¢ € (0,00), Tj2(1) = 1 (sce, e.g., [30]). Thus
{T}2 }4>0 satisfies assumptions (3.1)—(3.3). Moreover, the L?(G)-boundedness
of g(+) can be obtained by the same argument as in [6, Lemma 3]. Using this,
Proposition 5.4(iv) and 5.4(v), and the vector-valued Calderén-Zygmund
theory, we obtain the LP(G)-boundedness of g(-) for p € (1,00). Then by
applying these facts, Theorems 3.1, 3.2, and 4.1, and Corollary 4.1, we have
the following conclusions.

PROPOSITION 5.5. Let q € (D/2,00], let p € (1,00), let V € By(G,d,p),
and let p be as in (2.8).

(i) If a € (—00,1/D —1/(2q)), then there exists a positive constant C
such that for all f € E;F(G), TT(f), PT(f) € P (G) and

1T (Nlgory + 1P (Pllgorc) < Cllflegre)

(i) If v € (—0,2/(3D)—1/(3q)), then there exists a positive constant C
such that for all f € £57(G), [g(F)? € E*Y(G) with |[g(f)?l| e g <
P

v © =
Clliflzorn(): and g(f) € EF(G) with |lg(f)lgor(g) < Cllfllegr )
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