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Abstract
The d-process generates a graph at random by starting with an empty graph with n vertices, then adding
edges one at a time uniformly at random among all pairs of vertices which have degrees at most d − 1
and are not mutually joined. We show that, in the evolution of a random graph with n vertices under the
d-process with d fixed, with high probability, for each j ∈ {0, 1, . . . , d − 2}, the minimum degree jumps
from j to j+ 1 when the number of steps left is on the order of ln (n)d−j−1. This answers a question of
Ruciński and Wormald. More specifically, we show that, when the last vertex of degree j disappears, the
number of steps left divided by ln (n)d−j−1 converges in distribution to the exponential random variable of
mean j!

2(d−1)! ; furthermore, these d − 1 distributions are independent.
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1. Introduction
There are numerous models that generate different types of sparse random graphs. Among them
is the d-process, defined in the following way: start with n vertices and 0 edges, and at each time
step, choose a pair {u, v} uniformly at random over all pairs consisting of vertices which have
degree less than d and are not joined to each other by an edge. d could be allowed to change with
n, but for the rest of this paper d is always a fixed constant (this is also assumed in all relevant
citations). Ruciński and Wormald showed that with high probability, abbreviated “w.h.p.” (i.e.
with probability converging to 1 as n→ ∞) the d-process ends with �dn/2� edges [11]. There
is still much that is unknown about the d-process; for example, it is not known whether the d-
process is contiguous with the d-uniform random graph model for any d ≥ 2; i.e. if any event that
happens with high probability in one happens with high probability in the other. A recent paper
by Molloy, Surya, and Warnke [8] disproves this relation if there is enough “non-uniformity” of
the vertex degrees (with an appropriate modification of the d-process for non-regular graphs); it
also contains a good history of the d-process. See ref. [7, Section 9.6] for more on contiguity.

A couple of notable results have been given for the case where d = 2: the expected numbers of
cycles of constant sizes were studied by Ruciński and Wormald in ref. [10], and in ref. [13], Telcs,
Wormald, and Zhou calculated the probability that the 2-process ends with a Hamiltonian cycle.
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In these works, the authors establish estimates on certain graph parameters, such as the number
of vertices of a certain degree, that hold throughout the process. This is done with the so-called
“differential equations method” for random graph processes, which uses martingale inequalities
to give variable bounds; in ref. [14] Wormald gives a thorough description of this method.

More recently, Ruciński and Wormald announced a new analysis of the d-process that hinges
on a coupling with a balls-in-bins process. This simple argument gives a precise estimate of the
probability that the d-process ends with �dn/2� edges (i.e. the probability that the d-process
reaches saturation). This argument includes estimaes for the number of vertices of each degree
near the end of the process. This work was presented by Ruciński at the 2023 Random Structures
and Algorithms conference. Ruciński’s presentation included the following problem (which was
open at the time): when do we expect the last vertex of degree j (for any j from 0 to d − 2) to
disappear? The question was also stated earlier for d = 2 and j= 0 by Ruciński and Wormald [10,
Question 3]. In November of 2023, after the first release of the pre-print of this paper, Ruciński
andWormald released a pre-print of their balls-and-bins argument which also included an answer
to Ruciński’s question [12]. Our main result uses the differential equations method (as described
in the previous paragraph) and gives a slightly stronger answer:

Theorem 1. Consider the d-process on a vertex set of size n, and for each � ∈ {0} ∪ [d − 2], let the
random variable T� be the step at which the number of vertices of degree at most � becomes 0. Then
the sequence (over n) of random d − 1-tuples consisting of the variables

V(�)
n = (d − 1)!(dn− 2T�)

�!( ln (n))d−1−�

converges in distribution to the product of d − 1 independent exponential random variables of
mean 1.

In this paper we use the differential equations method with increasingly precise estimates
of certain random variables; these estimates are known as self-correcting. Previous results that
use self-correcting estimates include [13], [6], [3], [4], [5], and [9]. There have been various
approaches to achieving self-correcting estimates; the approach in this paper uses critical inter-
vals, regions of possible values of a random variable in which we expect subsequent variables to
increase/decrease over time. Critical intervals used in this fashion first appeared in a result of
Bohman and Picollelli [6]. For an introduction to and discussion of the method see Bohman,
Frieze, and Lubetzky [3].

The proof of Theorem 1 is divided into four sections. In Section 2, we introduce random vari-
ables of the form S(j)i which count the number of vertices of degree at most j after i steps, define
approximating functions sj(t) with the eventual goal of showing that S

(j)
i ≈ nsj(i/n) for most of the

process, and derive useful properties of these functions. One such property is that, when there are
at most nc steps left for some constant c< 1,

sj(i/n)
sj−1(i/n)

=�( ln (n))

for each j; this hierarchy of functions helps us to focus on each variable S(j)i independently of the
others when it is near 0, which motivates the form of the limiting exponential random variables in
Theorem 1. At the end of Section 2 we introduce two martingale inequalities used by Bohman [2]
andmake a slight modification to them to use later in the paper. In Section 3, we work with a more
‘standard martingale method’ (without the use of critical intervals) to show that S(j)i ≈ nsj(i/n)
until there are n1−1/(100d) steps left. Here we allow the error bounds to increase over time. In
Section 4, we use amore refinedmartingalemethod (including the use of critical intervals) to show
that S(j)i ≈ nsj(i/n) continues to hold until there are ln (n)d−0.8−j steps left; here the error bounds
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decrease over time, and so are self-correcting. In Section 5, we complete the proof of Theorem 1
by using a pairing argument to show that, in the last steps of the d-process, the behaviour of the
random variable in question can be well-approximated by a certain uniform distribution of time
steps. Sections 4 and 5 are both parts of a proof by induction over a series of intervals of time steps,
though we give each part its own section as the methods used in each are very different.

2. Preliminaries
First, two technical notes: we use the standard notation of symbols o,O,�,ω,�,�,
, and ∼ to
compare functions asymptotically (e.g. see pages 9-10 of [7]). We also note that, throughout the
paper, we assume n to be arbitrarily large.

In this section we set up sequences of random variables, describe how the evolution of the
d-process depends on these, and deduce properties of certain approximating functions; such func-
tions are used to estimate the number of vertices of given degrees throughout the process (much
of this is also described in ref. [13] with similar notation; the one major difference is that we use i
instead of t for the number of time steps, and t instead of x for the corresponding time variable).
Consider a sequence of graphs G0,G1, . . . ,G�dn/2�, where G0 is the empty graph of n vertices, and
for i ∈ [n], let Gi be formed by adding an edge uniformly at random to Gi−1 so that the maximum
degree of Gi is at most d (in the unlikely event that there are no valid edges to add after s steps for
some s< �dn/2�, let Gi =Gs for all i> s). Next, we define several sequences of random variables:
For all i, j, j1, j2 such that 0≤ i≤ � dn

2 �, 0≤ j≤ d, and 0≤ j1 ≤ j2 ≤ d − 1, define:
Y(j)
i := the number of vertices in Gi with degree j

S(j)i := the number of vertices in Gi with degree at most j
Z(j1,j2)
i := the number of edges {v1, v2} in Gi for which

min{deg (v1), deg (v2)} = j1 and max{deg (v1), deg (v2)} = j2

Zi :=
∑

0≤j1≤j2≤d−1

Z(j1,j2)
i .

By definition and by edge-counting we have

d∑
j=0

Y(j)
i = n and

d∑
j=1

jY(j)
i = 2i.

Combining the equations above gives us

d−1∑
j=0

S(j)i =
d−1∑
j=0

(d − j)Y(j)
i = dn− 2i. (1)

One can also quickly verify from (1) and by definition of S(d−1)
i , Z(j1,j2)

i , and Zi, that

dS(d−1)
i ≥max{2Zi, dn− 2i} and jY(j)

i ≥
∑
k≤j

Z(k,j)
i +

∑
k≥j

Z(j,k)
i . (2)

Throughout the process we will keep track of the variables S(j) using martingale arguments.
This is sufficient for us, as the Y variables can be derived from the S variables, and because
none of the Z variables will have any significant effect in any of our calculations, as we will see
later.

https://doi.org/10.1017/S0963548324000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000105


Combinatorics, Probability and Computing 567

Our next step is to estimate the expected on-step change of S(j)i , known as the “trend hypothesis”
in ref. [14]. Note that S(j)i − S(j)i+1 equals the number of vertices of degree j that are picked at the
i+ 1 time step; hence, for all j ∈ {0} ∪ [d − 1]:

E

[
S(j)i+1 − S(j)i |Gi

]
=

−Y(j)
i

(
S(d−1)
i − 1

)
+
∑
k≤j

Z(k,j)
i +

∑
k≥j

Z(j,k)
i

(S(d−1)
i
2
)− Zi

= −2Y(j)
i

S(d−1)
i

(
1+O

(
1

dn− 2i

))
by (2) (3)

= −2Y(j)
i

S(d−1)
i

+O
(

1
dn− 2i

)
. (4)

For j ∈ {0} ∪ [d − 1] we define approximating functions yj:[0, d/2)→R and sj:[0, d/2)→R:
let yj(t), sj(t) be functions such that sj =∑j

k=0 yk, y0(0)= 1 and yk(0)= 0 for all k ∈ [d − 1]
(equivalent to sj(0)= 1 for all j), and (assuming the “dummy functions” y−1(t)= s−1(t)= 0):

dsj
dt

= −2yj
sd−1

= 2(sj−1 − sj)
sd−1

dyj
dt

= 2(yj−1 − yj)
sd−1

. (5)

By (5) and the chain rule, for all j ∈ [d − 1]:
dyj
dy0

− yj
y0

= −yj−1

y0
.

Since the above equation is first-order linear, we have, for some constant Cj:

yj = y0

(
−
∫ yj−1

y20
dy0 + Cj

)
.

Using the above recursively with initial conditions, we have, for all j ∈ [d − 1]:

yj = y0(− ln (y0))j

j! . (6)

To solve for an explicit formula relating y0 and t, note that, by (5):

d
dt

⎛
⎝d−1∑

j=0
(d − j)yj

⎞
⎠=

−2
d−1∑
j=0

yj

sd−1
= −2,

hence, using initial conditions (note the resemblance to (1)):
d−1∑
j=0

sj =
d−1∑
j=0

(d − j)yj = d − 2t. (7)

Equations (6) and (7) together give us a complete description of the functions yj and sj. We
will now prove some useful properties of these functions. To start, we can combine (6) and (7)
to get

d−1∑
j=0

y0(− ln (y0))j(d − j)
j! = d − 2t. (8)
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Note that, by continuity of y0 and by (8), y0 > 0 over its domain. Next, by summing up (6) over
j ∈ {0} ∪ [d − 1] ((6) holds for j= 0 also) one can see that sd−1 is positive if y0 ≤ 1. This, combined
with dy0

dt = −2y0
sd−1

, tells us that y0 is decreasing and sd−1 is positive. It follows from y0 ∈ (0, 1] and
(6) that each yj is positive for t �= 0. In turn, this implies that 0≤ yj ≤ sj ≤ sd−1 for each j. From
this it follows that dsd−1 is at least the left expression of (7), so sd−1 ≥ 1− 2t

d . We make a special
note of the last couple of properties mentioned:

0≤ yj ≤ sj ≤ sd−1 for all j and sd−1(i/n)≥ 1− 2i
dn

. (9)

Next, we want to understand the behaviour of each function when t is close to d
2 , as this is the

most critical point of the process. Consider (8) again. As t → d
2 , y0 → 0, so y0(− ln (y0))d−1

(d−1)! will be
the most dominant term on the left; hence,

t → d
2

=⇒ y0 ∼ (d − 1)!(d − 2t)
(− ln (d − 2t))d−1 .

This, combined with (6) gives us, for all j ∈ {0} ∪ [d − 1]:

t → d
2

=⇒ yj(t)∼ sj(t)∼ (d − 1)!(d − 2t)
j!(− ln (d − 2t))d−1−j . (10)

For large enough t (and hence, for a large enough step i), we can approximate the above
expression:

i≥ dn
2

− n1−1/(100d) =⇒ nyj(i/n)∼ nsj(i/n)=�

(
ln (n)−d+1+j

(
dn
2

− i
))

. (11)

One can now see that, near the end of the process, sj/sj−1 =�( ln (n)), as mentioned in the
introduction.

Finally, we introduce two martingale inequalities from a result of Bohman [2] which will be
used in Section 4 in a slightly modified form. The original inequalities are as follows:

Lemma 2 (Lemma 6 from [2]). Suppose a, η, and N are positive, η≤N/2, and a<ηm. If 0=
A0,A1, . . . ,Am is a submartingale such that −η≤Ai+1 −Ai ≤N for all i, then

P[Am ≤ −a]≤ e−
a2

3ηNm .

Lemma 3 (Lemma 7 from [2]). Suppose a, η, and N are positive, η≤N/10, and a<ηm. If 0=
A0,A1, . . . ,Am is a supermartingale such that −η≤Ai+1 −Ai ≤N for all i, then

P[Am ≥ a]≤ e−
a2

3ηNm .

We present the following modification, which removes the requirement a<ηm and modifies one
of the inequalities slightly:

Corollary 4. Suppose a, η, and N are positive, and η≤N/2. If 0=A0,A1, . . . ,Am is a submartin-
gale such that −η≤Ai+1 −Ai ≤N for all i, then

P[Am ≤ −a]≤ e−
a2

3ηNm .

Corollary 5. Suppose a, η, and N are positive, and η≤N/10. If 0=A0,A1, . . . ,Am is a super-
martingale such that −η≤Ai+1 −Ai ≤N for all i, then

P[Am ≥ a]≤ e−
a2

3ηNm + e−
a
6N .
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Corollary 4 is nearly immediate from Lemma 2: first, one can extend the result to include a=
ηm by using left-continuity (with respect to a) of both sides of the inequality; we hence assume
a>ηm. Since Ai+1 −Ai ≥ −η >−a/m, then Am =Am −A0 >−a. We now derive Corollary 5
from Lemma 3: assume a≥ ηm, and let m′ ∈Z

+ such that a<ηm′ ≤ 2a. Extend the martingale
by adding variables Am+1, . . . ,Am′ which are all equal to Am. Apply Lemma 3 with m replaced
withm′, and use ηm′ ≤ 2a to get

P[Am ≥ a]= P[Am′ ≥ a]≤ e−
a
6N .

Combining the case a<ηm from Lemma 3 and the case a≥ ηm above gives Corollary 5.

3. First phase
Let itrans = � dn

2 − n1−1/(100d)�. The objective of this section is to prove the following Theorem:

Theorem 6. Define Efirst(i) := n0.6
(

dn
dn−2i

)4d
. With high probability, for all i≤ itrans and all j ∈

{0} ∪ [d − 1]: ∣∣∣∣S(j)i − nsj
(
i
n

)∣∣∣∣≤ Efirst(i). (12)

Now we define two new random variables for each j:

S(j)+i := S(j)i − nsj(i/n)− Efirst(i)

S(j)−i := S(j)i − nsj(i/n)+ Efirst(i).

Next, we introduce a stopping time T, defined as the first step i≤ itrans for which (12) is not
satisfied for some j; if (12) always holds, then let T = ∞. Although this stopping time is not neces-
sarily needed to prove Theorem 6, it does make some calculations easier, and moreover, a similar
stopping time will be necessary for the following section; hence, this serves as a good warm-up.
Let variable nameW be introduced to equip this stopping time to variable S, i.e.

W(j)+
i :=

⎧⎨
⎩
S(j)+i , i< T

S(j)+T , i≥ T
W(j)−

i :=
⎧⎨
⎩
S(j)−i , i< T

S(j)−T , i≥ T.

Note that W(j)+
i corresponds to the upper boundary and W(j)−

i to the lower one in the sense
that crossing the corresponding boundary will make the corresponding variable change signs;
furthermore, the inequality of Theorem 6 holds if and only ifW(j)+

itrans ≤ 0 andW(j)−
itrans ≥ 0 for each j.

We now state our martingale Lemma:

Lemma 7. Restricted to i≤ itrans, for all j,
(
W(j)−

i
)
i is a submartingale and

(
W(j)+

i
)
i is a super-

martingale.

Proof. Here we just prove the first part of the Lemma; the second part follows from nearly
identical calculations. Fix some arbitrary i≤ itrans; we need to show that

E

[
W(j)−

i+1 −W(j)−
i |Gi

]
≥ 0.

Also assume that T ≥ i+ 1, else W(j)−
i+1 −W(j)−

i = 0 and we are done; it follows that W(j)−
i =

S(j)−i ,W(j)−
i+1 = S(j)−i+1 , and (12) holds for the fixed i. By (4) and (5) and using Taylor’s Theorem,

we have, for some ψ ∈ [i, i+ 1]:
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E

[
S(j)−i+1 − S(j)−i |Gi

]
= −2Y(j)

i

S(d−1)
i

+O
(

1
dn− 2i

)
+ 2yj(i/n)

sd−1(i/n)
− d2

dμ2

(nsj(μ/n)
2

) ∣∣∣
μ=ψ

+ (Efirst(i+ 1)− Efirst(i)
)
.

We split the above expression
(
excluding O

(
1

dn−2i

) )
into three summands.

1. Here we make use of the fact that Y(j)
i = S(j)i − S(j−1)

i and yj(t)= sj(t)− sj−1(t). We have
(putting sj−1 and S(−1)

i = 0):

−2Y(j)
i

S(d−1)
i

+ 2yj(i/n)
sd−1(i/n)

= −2S(j)i + 2nsj(i/n)+ 2S(j−1)
i − 2nsj−1(i/n)

nsd−1(i/n)

+ 2Y(j)
i

(
1

nsd−1(i/n)
− 1

S(d−1)
i

)

≥ −4Efirst(i)
nsd−1(i/n)

+ 2Y(j)
i

(
1

nsd−1(i/n)
− 1

S(d−1)
i

)
by (12) and i< T

≥ −4Efirst(i)
nsd−1(i/n)

− 2Y(j)
i Efirst(i)

S(d−1)
i (nsd−1(i/n))

by (12) and i< T

≥ −6Efirst(i)
nsd−1(i/n)

.

2.

− d2

dμ2

(nsj(μ/n)
2

) ∣∣∣
μ=ψ = 2

n

( sd−1(ψ/n)(yj−1(ψ/n)− yj(ψ/n))+ yj(ψ/n)yd−1(ψ/n)
(sd−1(ψ/n))3

)

=O
(

1
dn− 2i

)
by (9).

3. For some φ ∈ [i, i+ 1]:

Efirst(i+ 1)− Efirst(i)=
dEfirst(μ)

dμ

∣∣∣
μ=φ

= 8d4d+1n4d+0.6 (dn− 2φ
)−4d−1

= (1+ o(1))
8dEfirst(i)
dn− 2i

. (13)

Now we put the three bounds together:

E
[
Y−
i+1 − Y−

i |Gi
]≥ 7dEfirst(i)

dn− 2i
− 6Efirst(i)

nsd−1(i/n)
+O

(
1

dn− 2i

)

≥ dEfirst(i)+O(1)
dn− 2i

by (9)

≥ 0. �
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Next, we need a Lipschitz condition on each of our variables. Note that S(j)i+1 − S(j)i is either
−2,−1, or 0; also, one can quickly verify that |sj((i+ 1)/n)− sj(i/n)| ≤ 2

n by (5) and (9), and∣∣Efirst(i+ 1)− Efirst(i)
∣∣= o(1) by (13). Hence, we have, for all i≤ itrans and all j:

max
{∣∣∣W(j)+

i+1 −W(j)+
i

∣∣∣ , ∣∣∣W(j)−
i+1 −W(j)−

i

∣∣∣}≤ 5. (14)

We conclude the proof of Theorem 6 by noting that, by Lemma 7 and (14), we can use the
standard Hoeffding-Azuma inequality for martingales (e.g. Theorem 7.2.1 in [1]) to show that
P

[
W(j)+

itrans > 0
]
and P

[
W(j)−

itrans < 0
]
are both o(1). For example, for the variable W(j)+

i one would
get

P

[
W(j)+

itrans > 0
]
≤ exp

{
− n1.2

50itrans

}
= o(1).

4. Second phase
The second phase is where the more sophisticated tools will be used, including the use of critical
intervals, self-correcting estimates, and a more general martingale inequality. Furthermore, this
phase is broken up into d − 1 sub-phases, in relation to when each of the d − 1 sequences S(j) (for
j≤ d − 2) terminate at 0. First, a few definitions: for all k ∈ {0} ∪ [d − 2], define

iafter(k) :=
⌊
dn
2

− ln (n)d−1.01−k
⌋
.

These step values will govern the endpoints of the sub-phases: define for all k ∈ {0} ∪ [d − 2]:

Ik :=
⎧⎨
⎩
[
itrans + 1, iafter(0)

]
, k= 0[

iafter(k− 1)+ 1, iafter(k)
]
, k> 0.

Next, for all i, j, k such that 0≤ j< d, 0≤ k< d − 1, and i ∈ Ik, define error functions

Ej,k(i)= Ej(i) := 2k ln (n)0.05(nsj(i/n))0.7.

Note that, by (11), we have

Ej(i)=�

(
ln (n)−0.7d+0.75+0.7j

(
dn
2

− i
)0.7

)
. (15)

Finally, for any r ∈R+ and � ∈ [d − 2], define

i(r, �)= dn
2

−
(

�!
2(d − 1)!

)
r( ln n)d−1−�.

The following Theorem will be proved by induction over the d − 1 sub-phases governed by the
index k:

Theorem 8. For each k ∈ {0} ∪ [d − 2]:

1. With high probability, for all integers j ∈ [0, d − 1] and i ∈ Ik:∣∣∣∣S(j)i − nsj
(
i
n

)∣∣∣∣≤ 4Ej(i). (16)
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2. S(k)iafter(k)
= 0 with high probability. Furthermore, for any k+ 1-tuple {r0, r1, . . . , rk} ∈

(R+ ∪ {0})k+1:

P

⎛
⎝ k⋂
�=0

(
S(�)�i(r�,�)� = 0

)⎞⎠→ exp

⎧⎨
⎩−

k∑
�=0

r�

⎫⎬
⎭ .

In the end, it is only the second statement with k= d − 2 that matters for proving Theorem 1.
We make the connection here:

Proof of Theorem 1 from Theorem 8. First, note that S(�)�i(r�,�)� = 0 is the same as T� ≤ i(r�, �),
hence by Theorem 8:

P

⎛
⎝d−2⋂
�=0

(T� ≤ i(r�, �))

⎞
⎠→ exp

⎧⎨
⎩−

d−2∑
�=0

r�

⎫⎬
⎭ .

Using the Principle of Inclusion-Exclusion plus a simple limiting argument, one can derive

P

⎛
⎝d−2⋂
�=0

(
(d − 1)!(dn− 2T�)
�!( ln (n))d−1−� ≤ r�

)⎞⎠= P

⎛
⎝d−2⋂
�=0

(T� ≥ i(r�, �))

⎞
⎠→

d−2∏
�=0

(
1− e−r�) ,

hence the d − 1-dimensional random vector with entries V(�)
n = (d−1)!(dn−2T�)

�!( ln (n))d−1−� converges in
distribution to the product of d − 1 independent exponential variables of mean 1. �

The rest of this section is for proving the first statement of Theorem 8 (for some fixed k using
induction), and Section 5 will be for proving the second statement (again, for some fixed k using
induction, assuming the first statement holds for the same k). Hence, for the rest of the paper we
will fix some k ∈ {0} ∪ [d − 2].

First, we note that (16) holds w.h.p. for all j< k by a simple argument: by induction on the
second statement of Theorem 8, w.h.p. if i ∈ Ik then S(j)i = 0. By (11) and by definition of Ej(i), if
i ∈ Ik then nsj(i/n)� Ej(i), completing the argument.

Next, we prove that (16) holds for j= d − 1 if it holds for all other values of j: by combining (1)
and (7), we have ∣∣∣∣S(d−1)

i − nsd−1

(
i
n

)∣∣∣∣=
∣∣∣∣∣∣
d−2∑
j=0

(
S(j)i − nsj

(
i
n

))∣∣∣∣∣∣
≤

d−2∑
j=0

4Ej(i) by (16) for j≤ d − 2

< 4Ed−1(i) by (15).
Hence, for the rest of this section, we need to show the first statement of Theorem 8 for j ∈

[k, d − 2]. From now on we always assume j to be in this range. We will also assume that, for all
λ< k, S(λ)i = 0 if i ∈ Ik (which holds w.h.p. from above).

In this section we will make use of so-called critical intervals, ranges of possible values for S(j)i
in which we apply a martingale argument. The lower critical interval will be

[nsj(i/n)− 4Ej(i), nsj(i/n)− 3Ej(i)],
and the upper critical interval will be

[nsj(i/n)+ 3Ej(i), nsj(i/n)+ 4Ej(i)].
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Our goal is to show that w.h.p. S(j)i does not cross either critical interval; however, we first need
to show that S(j)i sits between the critical intervals at the beginning of the phase (this is the reason
why Ej(i) has the 2k factor; it makes a sudden jump in size between phases to accommodate a new
martingale process), which is the statement of our first Lemma of this section:

Lemma 9. W.h.p., for all j ∈ [k, d − 2] (putting iafter(−1)= itrans for convenience of notation):

∣∣∣∣S(j)iafter(k−1)+1 − nsj
( iafter(k− 1)+ 1

n

)∣∣∣∣< 3Ej(iafter(k− 1)+ 1).

Proof. First, recall that S(j)i+1 − S(j)i ∈ {−2,−1, 0} and |nsj((i+ 1)/n)− nsj(i/n)| ≤ 2 for any i and j
(see paragraph above (14)). Second, consider the change in the bound itself between iafter(k− 1)
and iafter(k− 1)+ 1: by definitions of itrans, Efirst , Ej, and by (15), we have 1� Efirst(itrans)=
�
(
n0.64

)
, Ej(itrans + 1)=ω

(
n0.69

)
, and 1� Ej(iafter(k− 1))≈ 1

2 (Ej(iafter(k− 1)+ 1) for k> 0.
Hence, by induction on the first statement of Theorem 8 and by Theorem 6, the statement of
the Lemma follows. �

Next, like in Section 3, we define two new random variables for each j and i ∈ Ik:

S(j)+i := S(j)i − nsj(i/n)− 4Ej(i)

S(j)−i := S(j)i − nsj(i/n)+ 4Ej(i).

We also re-introduce the stopping time T, now defined as the first step i ∈ Ik for which (16) is
not satisfied for some j; if (16) always holds, then let T = ∞. Let variable name W be introduced
to equip this stopping time to variable S, i.e.

W(j)+
i :=

⎧⎨
⎩
S(j)+i , i< T

S(j)+T , i≥ T
W(j)−

i :=
⎧⎨
⎩
S(j)−i , i< T

S(j)−T , i≥ T.

Note that W(j)+
i corresponds to the upper critical interval, and W(j)−

i to the lower one.
Furthermore, the inequality of Theorem 8 holds if and only if W(j)+

iafter(k)
≤ 0 and W(j)−

iafter(k)
≥ 0 for

each j (here we must make use of our assumption that S(λ)i = 0 for all λ< k). The next Lemma
states that, within their respective critical intervals, they are a supermartingale and submartingale
respectively:

Lemma 10. For all i ∈ Ik and for all j ∈ [k, d − 2], E
[
W(j)−

i+1 −W(j)−
i |Gi

]
≥ 0 whenever W(j)−

i ≤
Ej(i), and E

[
W(j)+

i+1 −W(j)+
i |Gi

]
≤ 0 whenever W(j)+

i ≥ −Ej(i).

Proof. Here we just prove the first part of the Lemma; the second part follows from nearly identi-
cal calculations. By the same logic as in the proof of Lemma 7 we work with S(j)− instead ofW(j)−
and assume that (16) holds for all j. We also have the same expected change as in Lemma 7, except
with Efirst(i) replaced with 4Ej(i):

E

[
S(j)−i+1 − S(j)−i |Gi

]
= −2Y(j)

i

S(d−1)
i

+O
(

1
dn− 2i

)
+ 2yj(i/n)

sd−1(i/n)
− d2

dμ2

(nsj(μ/n)
2

) ∣∣∣
μ=ψ

+ 4(Ej(i+ 1)− Ej(i)).
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We split the above expression
(
excluding O

(
1

dn−2i

) )
into three summands, assuming S(j)−i ≤

Ej(i) ⇐⇒ S(j)i − nsj(i/n)≤ −3Ej(i)
(
for convenience, for the case j= 0, we put S(j−1)

i , sj−1, and
Ej−1 all equal to 0

)
:

1.

−2Y(j)
i

S(d−1)
i

+ 2yj(i/n)
sd−1(i/n)

= −2S(j)i + 2nsj(i/n)+ 2S(j−1)
i − 2nsj−1(i/n)

nsd−1(i/n)

+ 2Y(j)
i

(
1

nsd−1(i/n)
− 1

S(d−1)
i

)

≥ 6Ej(i)− 8Ej−1(i)
nsd−1(i/n)

− 8S(j)i Ed−1(i)
S(d−1)
i (nsd−1(i/n))

by (16)

≥ 5.9Ej(i)
nsd−1(i/n)

− 9S(j)i Ed−1(i)
(nsd−1(i/n))2

by (15), (16), (11), and i≤ iafter(k)

≥ 5.9Ej(i)
nsd−1(i/n)

− 9(nsj(i/n))Ed−1(i)
(nsd−1(i/n))2

− 36Ej(i)Ed−1(i)
(nsd−1(i/n))2

by (16)

=
( Ej(i)
nsd−1(i/n)

)(
5.9− 9

( sj(i/n)
sd−1(i/n)

)0.3
− 36 ∗ 2k ln (n)0.05

(nsd−1(i/n))0.3

)

≥ 5.8Ej(i)
nsd−1(i/n)

by i≤ iafter(k) and (11).

2. Just as in the proof of Lemma 7:

− d2

dμ2

(nsj(μ/n)
2

) ∣∣∣
μ=ψ =O

(
1

dn− 2i

)
.

3.

4(Ej(i+ 1)− Ej(i))= 4
dEj(μ)
dμ

∣∣∣
μ=φ for some φ ∈ [i, i+ 1]

= (4)(2k) ln (n)0.05
(

0.7
(nsj(φ/n))0.3

)(−2yj(φ/n)
sd−1(φ/n)

)
by (5)

= (4+ o(1))(2k) ln (n)0.05
(

0.7
(nsj(φ/n))0.3

)(−2sj(φ/n)
sd−1(φ/n)

)
by (10)

= −(5.6+ o(1))Ej(φ)
nsd−1(φ/n)

= −(5.6+ o(1))Ej(i)
nsd−1(i/n)

. (17)

Now we put the above bounds together (using (11), (15), and i≤ iafter(k)≤ iafter(j)):

E

[
S(j)−i+1 − S(j)−i |Gi

]
≥ 0.01Ej(i)

nsd−1(i/n)
+O

(
1

dn− 2i

)
≥ 0.

�
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Figure 1. Visual representation of event E (j)+� .

We introduce the next Lemma to get sufficiently small bounds on the one-step changes in each
time step (this is known as the “bounded hypothesis” from [14]):

Lemma 11. For all i ∈ Ik and all j ∈ [k, d − 2],

−3<W(j)ξ
i+1 −W(j)ξ

i < ln (n)−d+1.06+j

where “ξ” can be either “+” or “−”.

Proof. Like in the proofs of Lemma 7 and 10, we assume that Wξ = S(j)ξ (ξ is + or −), else
Wξ

i+1 −Wξ
i = 0. Again, we have −2≤ S(j)i+1 − S(j)i ≤ 0. Secondly, we have

| − nsj((i+ 1)/n)+ nsj(i/n)− CEj(i+ 1)+ CEj(i)|
≤ | − nsj((i+ 1)/n)+ nsj(i/n)| + | − CEj(i+ 1)+ CEj(i)|

=O
( yj(i/n)
sd−1(i/n)

+ Ej(i)
nsd−1(i/n)

)
by (5), (11), and (17)

= o
(
ln (n)−d+1.06+j

)
by (11), (15), and i≤ iafter(k)≤ iafter(j).

Combining the inequalities completes the proof. �
To put this all together to prove the first part of Theorem 8, we introduce a series of events: first,

let E (j)+ denote the event that W(j)+
iafter(k)

> 0 and E (j)− denote the event that W(j)−
iafter(k)

< 0. Let E =(⋃
j≥k E (j)+

)
∪
(⋃

j≥k E (j)−
)
; we seek to boundP[E], since E is the event that (16) doesn’t hold for

some i ∈ Ik. Next, for all � ∈ Ik, letH(j)+
� be the event thatW(j)+

�−1 <−Ej(�− 1) andW(j)+
� ≥ −Ej(�),

and let

E (j)+
� := H(j)+

� ∩
{
W(j)+

i ≥ −Ej(i) for all i≥ �
}

∩
{
W(j)+

iafter(k) > 0
}
.(

see Fig. 1 for a visual representation of event E (j)+
�

)
Similarly, for all � ∈ Ik, letH(j)−

� be the event thatW(j)−
�−1 > Ej(�− 1) andW(j)−

� ≤ Ej(�), and let

E (j)−
� := H(j)−

� ∩
{
W(j)−

i ≤ Ej(i) for all i≥ �
}

∩
{
W(j)−

iafter(k)
< 0
}
.

Finally, note that, by Lemma 9, with high probability we must have

W(j)+
iafter(k−1)+1 <−Ej(iafter(k− 1)+ 1) and W(j)−

iafter(k−1)+1 > Ej(iafter(k− 1)+ 1).
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Furthermore, assuming these two inequalities hold (and, once again, assuming that Sλi = 0 if λ<
k), then if W(j)+

iafter(k)
> 0 for some j, one of the events E (j)+

� must happen; likewise, if W(j)−
iafter(k)

< 0

for some j, one of the events E (j)−
� must happen; hence, E (j)+ =

⋃
�

E (j)+
� and E (j)− =

⋃
�

E (j)−
� .

We are now ready to prove the first statement of Theorem 8 in full.

Proof of the first part of Theorem 8 with fixed k. First, we fix an arbitrary j (in [k, d − 2]). We
prove that P

[E (j)−]= exp
{−�

(
ln (n)0.036

)}
; the proof for bounding P

[E (j)+] is nearly identical.
We will use Corollary 5 to bound P

[E (j)−
�

]
for each fixed �. Given a fixed �, we define a modified

stopping time

Tmod := min
i∈[�,iafter(k)]

{
W(j)−

i > Ej(i) or i= T
}

(letting Tmod = ∞ if the condition doesn’t hold for any i in the range). Let variable W�
i be the

variableW(j)−
i defined just on i ∈ [�, iafter(k)] equipped with this stopping time (we drop the “(j)−”

here for convenience); i.e.

W�
i :=

⎧⎨
⎩
W(j)−

i , i< Tmod

W(j)−
Tmod

, i≥ Tmod.

Note that
(
W�

i
)
i (over i ∈ [�, iafter(k)]) is a submartingale by Lemma 10, since our new stopping

time negates the need for the condition W(j)−
i ≤ Ej(i); also,

(
W�

i
)
i satisfies Lemma 11. Since we

want an upper bound for P
[E (j)−
�

]
, we can condition on eventH(j)−

� , asH(j)−
� ⊇ E (j)−

� . Now let

Ai = −W�
�+i +W�

� ,
η= ln (n)−d+1.06+j,
N = 3,
m= iafter(k)− �,
a= 0.9Ej(�).

Note that the conditions of Corollary 5 are satisfied: 0=A0 and η <N/10 are obvious,
Lemma 11 gives us −η≤Ai+1 −Ai ≤N, and (Ai)i is a supermartingale since

(
W�

i
)
i is a sub-

martingale. We therefore implement Corollary 5, using m≤ dn
2 − �≤ dnsd−1(�/n) (by (9)), (11),

and (15):

P[Am ≥ a]≤ e−
a2

3ηNm + e−
a
6N = e−�

(
ln (n)0.04(nsj(�/n))0.4

)
+ e−�

(
ln (n)0.05(nsj(�/n))0.7

)
. (18)

To bound P
[E (j)−
�

]
, we show that E (j)−

� ⊆ {Am ≥ a} and apply (18) while conditioning onH(j)−
� .

Given H(j)−
� happens, we have W�

� =W(j)−
� > 0.9Ej(�)= a by (15), Lemma 11, and i≤ iafter(j).

Therefore E (j)−
� =H(j)−

� ∩
{
W�

iafter(k)
< 0
}

⊆ {Am ≥ a}, hence

P

[
E (j)−
�

]
= e−�

(
ln (n)0.04(nsj(�/n))0.4

)
+ e−�

(
ln (n)0.05(nsj(�/n))0.7

)
.
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We now take a union bound to bound P
[E (j)−] (using (11) where appropriate):

P
[E (j)−]≤ iafter(k)∑

�=iafter(k−1)+1

P

[
E (j)−
�

]

=
iafter(k)∑
�=itrans

(
exp

{−� (ln (n)0.04(nsj(�/n))0.4)}+ exp
{−� (ln (n)0.05(nsj(�/n))0.7)})

=
iafter(j)∑
�=itrans

(
exp

{
−�

(
(dn− 2�)0.4

ln (n)0.4d−0.44−0.4j

)}
+ exp

{
−�

(
(dn− 2�)0.7

ln (n)0.7d−0.75−0.7j

)})

=
�n1−1/(100d)�∑

p=�ln (n)d−1.01−j�

(
exp

{
−�

(
p0.4

ln (n)0.4d−0.44−0.4j

)}
+ exp

{
−�

(
p0.7

ln (n)0.7d−0.75−0.7j

)})

= ln (n)d−1.01−j
∞∑
q=1

(
exp

{−� (q0.4 ln (n)0.036)}+ exp
{−� (q0.7 ln (n)0.043)})

= exp
{−� (ln (n)0.036)} .

We give a note for the aspects of the proof of bounding P[E (j)+] that are different from the
above: use the variable W(j)+

i instead of W(j)−
i , events E (j)+

� instead of E (j)−
� , and H(j)+

� instead of
H(j)−
� . Define Tmod instead as

Tmod := min
i∈[�,iafter(k)]

{
W(j)+

i <−Ej(i) or i= T
}
.

Finally, use Corollary 4 instead of Corollary 5 (which will be slightly easier to implement). �

5. Final phase
We continue our proof by induction of Theorem 8 with our fixed index k; now we prove the
second part. We assume the first part of Theorem 8 to hold, as well as the second part of
the Theorem for lesser k; for example, we have S(k−1)

iafter(k−1) = 0 w.h.p. In this section we focus on
the d-process for a narrow domain of i. Let

ibefore(k) :=
⌊
dn
2

− ln (n)d−0.8−k
⌋
.

We will consider the d-process starting at step ibefore(k) assuming that (16) holds at i= ibefore(k);
we do not need the first part of Theorem 8 in this section otherwise. We do not use martingale
arguments here, but rather we show that the distribution of the sequence of time steps at which a
vertex of degree k is chosen from the d-process is similar to a uniform distribution over all pos-
sible such sequences. Theorem 8, (10), and (15) tell us that w.h.p. we will have ∼ 2(d−1)!

k! ln (n)0.2
vertices of degree at most k (or degree equal to k; they are the same here) left when there are
�ln (n)d−0.8−k� steps left; hence, the average distance between steps at which we remove vertices
of degree k is k!

2(d−1)! ln (n)
d−1−k. When there are this many steps left times r, we expect r such
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vertices to remain, and for the probability that there are no vertices of degree k to be e−r . Most of
this section will build towards proving the following Theorem:

Theorem 12. Let L(n) be an integer-valued function so that L(n)=�( ln (n)0.2) and let J(n)=
� dn

2 � − ibefore(k)∼ ln (n)d−0.8−k. Let H be any graph with ibefore(k) edges which satisfies (16) at i=
ibefore(k), has no vertices of degree at most k− 1, and has L(n) vertices of degree k. Also, let r ∈R

+
be arbitrary. Then

P

[
S(k)� dn

2 − rJ(n)
L(n) �

= 0
∣∣∣∣ Gibefore(k) =H

]
→ e−r .

First, we note that, given that (16) holds for i= ibefore(k) and by (1), that
w.h.p. dn− 2ibefore(k)− S(d−1)

ibefore(k)
=O

( dn−2ibefore
ln (n)

) (
consider S(d−2)

ibefore(k)

)
; hence, for all

i ∈ [ibefore(k), iafter(k)]:
S(d−1)
i = dn− 2i+O

(dn− 2ibefore
ln (n)

)
= (dn− 2i)

(
1+O

(
1

ln (n)0.79

))
. (19)

Let tstart = ibefore(k) and tend = �dn/2− rJ(n)/L(n)�. Consider the d-process between tstart and
tend, given that Gtstart =H. At each step two vertices are chosen; now assume that the pair at each
step is ordered uniformly at random, so that a sequence of 2(tend − tstart) vertices is generated.
We also generate a binary sequence simultaneously, each digit corresponding to a vertex: after a
pair of vertices is picked for the vertex sequence, for each of the two vertices (in the order that
they are randomly shuffled) append a “1” to the binary sequence if the corresponding vertex had
degree k just before it was picked, and append a “0” otherwise. Let P :{0, 1}2(tend−tstart) → [0, 1] be
the corresponding probability function that arises from this process (note that, if γ is a string with
more than L(n) “1”’s, then P(γ ) = 0). Note that P depends on the graph H. We compare this
to a second probability function Q:{0, 1}2(tend−tstart) → [0, 1], which is defined by picking a binary
string with L(n) 1’s and 2J(n)− L(n) 0’s uniformly at random, then taking the first 2(tend − tstart)
digits.

For any binary sequence γ with � digits, and I ⊂ [�], let γI be the subsequence with indices
from I; for example, γ[a] would be the first a digits of γ , and γ{a} would just be the a-th digit (for
notation’s sake, let “γ[0]” be the empty string). Also let ‖γ ‖ denote the number of 1’s in γ . We
now present the following Lemma:

Lemma 13. Let α be an arbitrary 2(tend − tstart) length binary sequence with at most L(n) 1’s, and let
γ be the random binary sequence according to either P or Q. Let i ∈ [2(tend − tstart)]. Then (letting
a{0} = 1 for sake of notation):

PP [γ[i] = α[i] | γ[i−1] = α[i−1]]
PQ[γ[i] = α[i] | γ[i−1] = α[i−1]]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 1+O
(

1
J(n) ln (n)0.39

)
if α{i} = 0 and α{i−1} = 0

= 1+O
(
ln (n)0.4
J(n)

)
if α{i} = 0 and α{i−1} = 1

= 1+O
(

1
ln (n)0.79

)
if α{i} = 1 and α{i−1} = 0

≤ 1+O
(

1
ln (n)0.79

)
if α{i} = 1 and α{i−1} = 1.

Proof. First, we consider the cases where α{i} = 1. We have

PQ[γ{i} = 1 | γ[i−1] = α[i−1]]= L(n)− ‖α[i−1]‖
2J(n)− (i− 1)

. (20)

For the probability space P , we need to consider three subcases: we need to consider whether i
is even or odd, and if it is even, whether α{i−1} is 0 or 1, since each step of the d-process outputs
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two digits of the binary string. Let’s say that τ corresponds to the last step in the d-process before
the i-th binary digit is generated (recall that pairs of digits are generated together). Then if i
is odd:

PP [γ{i} = 1 | γ[i−1] = α[i−1]]= −1
2
E

[
S(k)τ+1 − S(k)τ |Gτ

]

= S(k)τ
S(d−1)
τ

(
1+O

(
1

dn− 2τ

))
by (3)

= S(k)τ
2�dn/2− τ�

(
1+O

(
1

ln (n)0.79

))
by (19)

= L(n)− ‖α[i−1]‖
2J(n)− (i− 1)

(
1+O

(
1

ln (n)0.79

))
. (21)

If i is even and α{i−1} = 1, then S(k)τ = L(n)− ‖α[i−1]‖ + 1. At step τ there are
S(k)τ

(
S(d−1)
τ +O(1)

)
ordered pairs of vertices whose first vertex has degree k, and at most 2

(S(k)τ
2
)

ordered pairs of vertices both with degree k; hence:

PP [γ{i} = 1 | γ[i−1] = α[i−1]]≤ S(k)τ − 1
S(d−1)
τ +O(1)

= S(k)τ − 1
2�dn/2− τ�

(
1+O

(
1

ln (n)0.79

))
by (19)

= L(n)− ‖α[i−1]‖
2J(n)− (i− 1)

(
1+O

(
1

ln (n)0.79

))
. (22)

Hence the final inequality of the Lemma holds by (21) and (22).
Next, consider the case where i is even and α{i−1} = 0; here, S(k)τ = L(n)− ‖α[i−1]‖ once again.

At step τ there are
(
S(d−1)
τ − S(k)τ

) (
S(d−1)
τ +O(1)

)
ordered pairs of vertices whose first vertex has

degree greater than k, and S(k)τ
(
S(d−1)
τ − S(k)τ +O(1)

)
ordered pairs of vertices for which the first

vertex has degree greater k and the second vertex has degree k (one can “pick the second vertex
first” to see this). Hence:

PP [γ{i} = 1 | γ[i−1] = α[i−1]]= S(k)τ
S(d−1)
τ

(
1+O

(
1

S(d−1)
τ

))
since S(d−1)

τ 
 S(k)τ there

= S(k)τ
2�dn/2− τ�

(
1+O

(
1

ln (n)0.79

))
by (19)

= L(n)− ‖α[i−1]‖
2J(n)− (i− 1)

(
1+O

(
1

ln (n)0.79

))
, (23)

hence the third equality of the Lemma holds by (21) and (23).
Now consider α{i} = 0. By modifying (20) to accommodate γ{i} = 0, we have

PQ[γ{i} = 0 | γ[i−1] = α[i−1]]= 1− L(n)− ‖α[i−1]‖
2J(n)− (i− 1)

. (24)

Similarly, by modifying (21) and (23), if a{i−1} = 0 then

PP [γ{i} = 0 | γ[i−1] = α[i−1]]= 1− L(n)− ‖α[i−1]‖
2J(n)− (i− 1)

(
1+O

(
1

ln (n)0.79

))
. (25)
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By modifying (21) and (22), if a{i−1} = 1, then

PP [γ{i} = 0 | γ[i−1] = α[i−1]]≥ 1− L(n)− ‖α[i−1]‖
2J(n)− (i− 1)

(
1+O

(
1

ln (n)0.79

))

= 1+O
(
L(n)− ‖α[i−1]‖
2J(n)− (i− 1)

)
. (26)

Since L(n)=�( ln (n)0.2) and

2J(n)− (i− 1)= 2�dn/2− τ� =�(dn/2− tend)=�(J(n)/ ln (n)0.2),

then L(n)−‖α[i−1]‖
2J(n)−(i−1) =O

(
ln (n)0.4
J(n)

)
. Therefore the ratio of (25) and (24) is 1+O

(
1

J(n) ln (n)0.39

)
, veri-

fying the first inequality of the Lemma, and the ratio of (26) and (24) is 1+O
(
ln (n)0.4
J(n)

)
, verifying

the second inequality of the Lemma. �
Proof of Theorem 12. First, let α be an arbitrary string which satisfies the criteria in Lemma 13.
By using the Lemma 13 recursively:

PP [γ = α]
PQ[γ = α]

≤ exp
{
O
(
J(n)

1
J(n) ln (n)0.39

+ L(n)
(

1
ln (n)0.79

+ ln (n)0.4

J(n)

))}

= 1+ o(1), (27)

and if α is an arbitrary string with no two consecutive 1’s which satisfies the criteria in Lemma 13,
then by similar logic,

PP [γ = α]
PQ[γ = α]

= 1+ o(1). (28)

Let C be the event that γ has two consecutive 1’s; we consider P[ C |Gtstart =H]. We consider
probability spaceQ first. Recall that α is a string that has ∼ 2J(n)=�( ln (n)1.2) characters and at
most L(n)=�( ln (n)0.2) 1’s. Because Q is a truncation of a uniform distribution, the probability
of having two consecutive 1’s will be O

(
(L(n))2
J(n)

)
=O( ln (n)−0.8). Hence, by (27) we must have

PP [ C |Gtstart =H]= o(1) and PQ[ C |Gtstart =H]= o(1). (29)

We now combine (28) and (29) to prove Theorem 12 (for ease of notation, assume we are given
Gtstart =H):

P

[
S(k)� dn

2 − rJ(n)
L(n) �

= 0
]

= PP [‖γ ‖ = L(n)]

= PP [‖γ ‖ = L(n) | C]PP [C]+ PP [‖γ ‖ = L(n) | C]PP [C]
= PQ[||γ || = L(n)]+ o(1) by (28) and (29)

=
(2(tend−tstart)

L(n)
)

(2J(n)
L(n)
) + o(1)

=
(2J(n)−2(�rJ(n)/L(n)�)

L(n)
)

(2J(n)
L(n)
) + o(1)

=
(
1− r(1+ o(1))

L(n)

)L(n)
+ o(1)

= e−r + o(1). �
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We can now complete the proof of the second statement of Theorem 8 at value k. Roughly
speaking, we will use Theorem 12 with L(n)≈ 2(d−1)! ln (n)0.2

k! , so dn
2 − i(rk, k)≈ rkJ(n)

L(n) . First, note
that S(k)iafter(k)

= 0 (w.h.p.) comes automatically when the rest of the statement is proved (by putting

r� = 0 for � < k and having rk → 0). Let G� be the event that S(�)�i(r�,�)� = 0 and G =⋂�≤k G�, let F
be the event that (16) holds for i= ibefore(k) and S(j)ibefore(k) = 0 for j< k, and let A=F ∩⋂�<k G�.
Also, let

I = [nsk(ibefore(k)/n)− 4Ek(ibefore(k)), nsk(ibefore(k)/n)+ 4Ek(ibefore(k))].
Note that, by part 1 of Theorem 8, by induction on the second part Theorem 8, and since
ibefore(k)> iafter(k− 1), F happens with probability 1− o(1). Therefore:

P[G]= P [Gk ∩A]+ o(1)

=
∑
p∈I

P

[
G
∣∣∣∣A∩

(
S(k)ibefore(k)

= p
)]

P

[
A∩

(
S(k)ibefore(k)

= p
)]

+ o(1).

We can now apply (10), (15), and Theorem 12 to get

P

[
G
∣∣∣∣A∩

(
S(k)ibefore(k)

= p
)]

= e−r� + o(1)

for p ∈ I . We note that all o(1) functions in the sum can be made to be the same by carefully
reviewing the proof of Theorem 12. Therefore:

P[G]=
∑
p∈I

(e−r� + o(1))P
[
A∩

(
S(k)ibefore(k)

= p
)]

+ o(1)

= e−r�
∑
p∈I

P

[
A∩

(
S(k)ibefore(k)

= p
)]

+ o(1)

= e−r�P

[⋂
�<k

G�
]

+ o(1) by Theorem 8

= exp

⎧⎨
⎩

k∑
�=0

e−r�

⎫⎬
⎭+ o(1) by induction on Theorem 8,

proving Theorem 8.
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