Canad. Math. Bull. Vol. 40 (3), 1997 pp. 316-329

ON GEOMETRIC PROPERTIES
OF ORLICZ-LORENTZ SPACES

H. HUDZIK, A. KAMINSKA AND M. MASTY+O

ABSTRACT. Criteriafor local uniform rotundity and midpoint local uniform rotun-
dity in Orlicz-L orentz spaceswith the Luxemburg normaregiven. Strict K-monotonicity
and Kadec-Klee property are also discussed.

Introduction. A function ¢: R, — R. is said to be an Orlicz function if ¢ is
convex, ¢(0) = 0, and ¢(u) > Ofor al u > 0. Let (Q, Z, 1) denote a complete o-finite
measure space and let L° = L°(Q. . 1) denote the space of all (equivalence classes
of) p-measurable real-valued functions, equipped with the topology of convergencein
measure on p-finite sets.

For any f € L° the nonincreasing rearrangement of f is the function f* defined by

fr(t) =inf{\ > 0: pe(N) <t}
(by conventioninf () = +o0), where ¢ is the distribution function defined by
p(t) = ,u({w eQ:|f(w) > t}) t>0.

In the sequel we shall use the following inequalities without further references (see
e.g.[1], p. 41)

F(ur) <A () <oo)i w(F®) <t (7)< +oo).

Afunctionw: [0,7) — R:,0 < v < +o0, iscalledweight functionif itisnonincreasing
and locally integrable with respect to the L ebesgue measure m.

For an Orlicz function ¢ and a weight function w:[0,7) — Ry, 7 = u(Q), the
Orlicz-Lorentz space A, isthe set of all x € L%(u) such that

1L(AX) = ./0°° (X )Wdm < +00

for some \ > 0.
N\, w is aBanach space equipped with the Luxemburg norm defined by

[IX|| =inf{A > 0:1,(x/)\) <1}.
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Note that if w = 1, then A, is the Orlicz function space L. If ¢(t) = t, then A, v is
the Lorentz space Ay,.

In [7], we studied the geometry of some Calderon-L ozanovskii spaces aswell asthe
Orlicz-Lorentz spaces. This paper is a continuation of the previous one, where we study
other geometric properties of the Orlicz-L orentz spaces. Recently Lin and Sun have also
examined several other geometric properties in Orlicz-L orentz spaces (e.g. [12]).

In what follows if X is a Banach space, B(X) and SX) denote its unit ball and
unit sphere, respectively. X is said to be locally uniformly rotund (LUR), whenever
Xn, X € B(X) and ||, + X|| — 2 imply [|x, — X|| — 0. X is said to be midpoint locally
uniformly rotund (MLUR) if for every x € §X) and every sequence (xn) in B(X) if
%o + %] — 1 and ||, — X|| — 1 then ||xq|| — 0. We say that X has the Kadec-Klee
property if the norm and weak convergence of sequences coincide on the unit sphere of
X. Itiswell known that LUR implies the Kadec-Klee property.

Let E be a Banach function space over a measure space (Q, 2, 1). E is said to have
the Kadec-Klee property for convergence in measure, whenever x, — X in measure
(globally) on Q and [[Xa|| — ||x]| imply [[x, — x| — 0.

E issaid to have the Kadec-Klee property for local convergencein measureif x, — X
in L and ||xal| — [|X]| imply ||, — X|| — O.

The Kadec-Klee property for the local convergencein measure was studied in [8] in
some Calderén-L ozanovskii spaces. This property and also the Kadec-Klee property for
convergencein measure were investigated in [3] and [13] for symmetric spaces defined
on any interval [0, ), 0 < o < +oo and oninterval [0, 1), respectively. It is easy to see
(cf. [9]) that every Banach function space E which is LUR hasthe Kadec-K|ee property
for the local convergencein measure. Note also that L* and Orlicz spaces generated by
Orlicz functions satisfying the so-called A,-condition have the Kadec-Klee property for
local convergencein measure (see[8]).

In the sequel we will need the definition of K-functional of Peetrefor theinterpolation
couple (L, L*). For every x € L1 + L andt > 0,

K(t.X) = inf{|xol] s +tl|xa L X = X0 + X4 }.
It iswell known (see[1] or [11]) that
t
K(t, x) :/Ox*(s) ds
and the relation < defined on L! + L*™ by
x < yifandonly if K(t,x) < K(t,y) foralt>0
isapre-order (see[1]).
A Banach function space E over the Lebesgue measure space ([0, V), Z, m) with

7Y € (0, +o0] issaid to be symmetricif for every x € L° andy € E with m, = m,, we have
x € Eand ||x|| = ||y||. For basic properties of symmetric spaceswerefer to [1] and [11].
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A symmetric spaceE is said to be K-monotone if
x<ywithx e L} +L>, ye E implyx € Eand||x|| < ||y]-

By the well known result of Calderon[2] (seealso[11]) it follows that the class of all
K-monotone spacesis exactly the class of all exact interpolation spaces between L* and
L. It iswell known that symmetric spaceswith the Fatou property as well as separable
symmetric spaces are K-monotone (see [1], [11]). Recall that a Banach function space
X has the Fatou property if 0 < X, T, SUPy>1 |[|Xn]] < +o0 imply X = supx, € X and
[%all = [IX]]-

A symmetric spacewith the Fatou property is called rearrangementinvariant (r.i. in
short). Examplesof r.i. spaces are among others Lorentz spaces, Marcinkiewicz spaces
and Orlicz-L orentz spaces.

A symmetric spaceE is said to be strictly K-monotone if

X y€EE x=<y, X Zy  imply [x]| <yl

The following result has been proved in [3].

THEOREM 1. Let E be a separable symmetric space on [0, +00). If E is strictly
K-monotone then the following statements are equivalent:
(i) E hasthe Kadec-Klee property for convergencein measure.
(i) E hasthe Kadec-Klee property for local convergencein measure.

In what follows the A;-condition for the Orlicz function will play an important role.
We say that ¢ satisfies the Ay-condition if there exist positive constants K and ug such
that the inequality ¢(2u) < Ke(u) holds for all u > 0, whenever f; wdm = +oo and it
holds for u > up, whenever J; wdm < +oo. We simply indicate this by ¢ € As.

In the sequel we will need the following result.

THEOREM 2. The Orlicz-Lorentz space A,y has the Kadec-Klee property for con-
vergencein measure whenever ¢ € A,.

PrROOF. The proof presented in [8] works also in the case of infinite measure. This
follows by thefact that if X, — x in measurethen (x, — x)* — 0 and x;, — X* m-a.e. (see

[11]).

We shall now state two results that will be needed later on. The first result of Hardy,
Littlewood and Polya can be found in [1] (p. 88) and second one is a result of Szlenk
[16].

THEOREM 3. Let X,y € LY(i) + L*°(u). Then K(t,x) < K(t.y) for any 0 < t < u(Q)
if and only if 1,,(x) < 1,(y) for any Orlicz function .

THEOREM 4. InL1(0, 1), everyweakly convergent sequencehas a subsequencewhose
arithmetic means are norm convergent.
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REMARK. Szlenk’s theorem holds true for every abstract AL-Banach lattice. In par-
ticular it holds true in weighted L*-spaces.

In what follows L3 = L}(x) denotes the closure of LY(u) in L(1) + L>(u) equipped
with the norm K (1, -). It is easy to show that x € L] if and only if x is locally integrable
and x*(s) — 0 ass— +o0.

Let for eachy € L(u) N L>(), f, bealinear functional defined by f,(x) = Jq xydu
forx € L. Welet T = {f, : y € Ly(u) NL>®(u)}. It is clear that (L}, T) forms a dual
system. In what follows we will consider the weak topology o(L3. I') induced on L} by
r.

Thefollowing result has been proved by Sedaev and for the sake of completenesswe
provide a proof (cf. Theorem 8 in [15]).

THEOREM 5. Assumethat X,, X € L3 and x, — X in the topology (L3, ). If X, /> X
in the normtopology of L(y) + L*°(u) then there exists$ € (0, 1] such that

—_— K(t, xn)
Q) lim sup > 1.
=00 ors 511 K(tX)

ProOOF. We first note that in [14] (cf. [3], Proposition 1.2), it is proved that if A is
any Lorentz spaceand X € Ay, (Yn) C Aw, andif (yn) convergesin measureto 0, then

) 1+ Yallay = [1XI[ A, + IYalla, +0(2)-

Thus, if we assumethat y, = X, — X — 0 in measure, it follows by (2) that

./lef](s) ds = /le*(s) ds+ /Oly;(s) ds+ o(1).

Thisimplies that (1) holdswith 6 = 1.

Now assume that for somer > 0, liMy_.o(Qn(7)) > 0, where Qu(r) = {w € Q :
[Vn(w)| > 7}. In[14], Lemma 3, it is proved that formula (1) holds with some € (0, 1]
whenever for some 0 < 2, < 1 the following holds

3) EM(M(H) N Qn(2r1)) >0,

where M(s) = {w € Q : |X(w)| > s} forany s > 0.
In order to finish the proof we only need to consider the case limp_, u(M(rl) N
Qn(271)) = 0. Thisimplies that for some decreasing sequence (m,) with , — 0, we have

&) M(M(Tn) N Qn(ZTn)) — 0.

Consider asequence (Ynxm¢,)), Wherey, = x, — . [t follows by (3) that this sequence
tends to O in measure. Thus if we assume that Ynxm(-,) 7> O in the norm topology of
LY() + L>°(1), then we obtain by (2) that

__n __n
Tim [ty (9ds > Tim [ 6+ Yoxwn)'(9) ds

1, —
= /0 X(S)dS+r1|LTo/c> ynXM(Tn)dS'
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This showsthat (1) holdswith 6 = 1.

Suppose now that Ynx ) — 0 in the norm of L(x) + L>(u). Then, for any t > 0,
wehaveK(t, X +Yyn) = K(t, x+2,) +0(1), where z, = ynxq\m(,)- N consequencethe proof
will be finished if we can show that for some0 < § <1

T sup K{t.x+z,)

> 1.
oo sty K(EX)

Without loss of generality, we may assume that for some 7, we have {w € M(m) :
[Xn(w)| > 310} = B and

u({w € Q:|z(w) > 3To}) >p>0.
Hence by the definition of the set M(r), it follows that for any s > 7, we have
(9 = 1({w € Q1 x(w) +Za(w)| > s}) = p({w € Q: x(w)| > s}) = (9.
and for g < s < 27,
(S > p({w € Q: X(W)| > s} U{w £ M(m) : |z(w)| > 310}) > o) +p.

Theintegration by partsyields

K(atro) +pxa) = [ xi(9 ds = x93 — [*7 save(s)

= (aro) +P)a(ar) +p) + [ cn(9)ds

Xo*(A(70)+P)
= [Taeds
and
K(a(mo) +p.X) = /; P o (s)ds
= (o) +p)x (ar0) +p) + [ a(9ds
= [Ta9ds
where
6 = { q(o) +p. 0 < s < x;(amo) +p),
(). X:(0(r0) +p) <'s< 00,
and

() +p. 0 <s<x(qlr) +p),
a(s)- x*(q(ro) +p) < s < 00.

Since gn(m0) > q(o) + p, it follows by the properties of rearrangement that
X“(a(m0) +p) <70 < %;(an(r0)) < X3(a(T0) + P)-

Finally, combining the above with §,(s) > §(s) for all s > 0 and .(s) > d(s) + p for
70 < 5 < 2719, WE Obtain

K(a(ro) + p. x) < 7op+K(a(ro) +p. %),
which completes the proof.

a(s) = {
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1. Results. We start by proving some general results. Some of them will be applied
in order to prove criteria for LUR and MLUR of Orlicz-Lorentz spaces. Recall that the
fundamental function yg of asymmetric space E on [0, ) isdefined by ve(t) = || x0ylle
fort € (0,7). It iswell known that the Kothe dual E’ of a symmetric space E, defined by

E={yel%Ile= sup [|xyldm< +oo},
[xle<1
isar.i. spaceon [0,7) with the fundamental function ye (t) = t/e(t) for t € (0,7) (see
(1], [11]).

LEMMA 6. Let E be a r.i. space on [0.7) such that g(0+) = 0. Then B(E) is

sequentially compact in the weak topology o(E, ') induced by I" = {f, : y € L1 N L>}.

ProOF. By the Fatou property of E, we have E = E” with equality of norms. Thusit
follows by the order density of A = LY N L* in E and the Beppo-L evi theorem that

E=(aF) =X
with equality of norms, where X = AF isthe closure of Ain E'. Since X is a symmetric
space with Yy = Yg, it follows by g (0+) = 0 that X is separable (see [11]). Thus, we
obtain that X’ is order isometric to the dual space X* of X. In consequenceE isisometric
to X*, which yields in particular that the unit ball of E is a compact for the o(E,I")

topology. Since " contains a countable total subset of functionals, B(E) is metrizable in
the o(E, I') topology and this compl etes the proof.

REMARK. Itiswell knownthat aBanach space X isadual spaceif andonly if B(X) is
compact in somelocally convex Hausdorff topology on X. Note also that the well known
Petczyhski’sresult saysthat separable dual spacesdo not contain copies of cy. Using the
above and taking for example E = L}(R:) we conclude that in general the assumptions
that E hasthe Fatou property and ¢(0+) = 0 are essential in Lemma 6.

PROPOSITION 7. Let E be a r.i. space with 1g(0+) = 0 and let E C LJ. Then
B*(E) := {x* : x € B(E)} is a compact subset of L + L>.

PrOOF. Let(x;) C B*(E). By Lemma6 wemay assume, by passing to asubsequence
that x; — x in the topology o(E. ") with x € B(E). Assume that X /4 x in L + L™,
Then, by Theorem 5, it easily follows by concavity of the K-functional of Peetre and a
compactness argument that there are § € (0,1), t € [6,6~1] and a subsequence (y,) of
(%) such that

r!Ln;O K(t, yn) > K(t. X).
Thisyields
. t t t
nILr?o /0 Yn(s) ds > /O X“(s) ds > /O X(s) ds.
Sincex;; — xino(E, I'), we obtain acontradiction. Thuswe havethat ||, —X|| 1, .~ — O.
Thisimplies by the inequality
156 = X [Laee < G — X[z

that X, — x* in L1 + L> and thus x € B*(E).
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PROPOSITION 8. Let X be a Banach function space over a measure space (Q, 2, i)
with suppX = Q. If x, — xweakly in X and x, — yin L theny = x.

PrROOF. By the o-finiteness of 1, we have suppX’ = supp X. Thusthere is a strictly
positive function h on Q with ||h||x = 1. Since X C X" and ||x||y» < ||x||x for each
X € X, we obtain that X — L*(hdu) with continuous inclusion. Assume that x, — X
weakly in X. Then by the Szlenk’stheorem we can suppose, by passing to a subsegquence,
that
5) lIsh = XllL1gnauy — O
where s, = £ Y0, X It follows, by (5) that s, — x in L% Since X, — y in L, we get
sy — yinL% andthusx =y.

By a modification of the proof of Proposition I.1 in [4] in the case of a probability
measure space, we obtain the following result.

PROPOSITION 9. Let (Q. %, 11) beanonatomic measurespace. If x € Ly and (x,) C L3
are such that K(t, x,) — K(t, x) and K(t, X, + X) — 2K(t, x) for everyt > 0 then x, — x
in L.

Before the proof of the next result we introduce the nation of (LUR*)-property for
symmetric spaces. A symmetric space E is said to have (LUR*)-property if x* € B*(E)
and (x;;) C B*(E) with ||} + x*|| — 2imply ||x;; — X*|| — O.

ProPOSITION 10. If ar.i. spaceE C L} has (LUR*)-property then x € B(E), (x,) C
B(E), and ||Xn + X|| — 2imply X, — xin Lt +L>.

PrROOF. Let x € B(E), (Xn) C B(E) and ||X, + X|| — 2. We have (X, +X) < (X + X*).
Sincer.i. spaces are K-monotone, it follows that

1% + x| < [+ < [l + X7 < 2

Hence ||x;+x*|| — 2 andthus, by theassumption that E has(L UR*)-property, || —x*|| —
0. Thisimplies
r!Lm K(t, %) = K(t,x) foreveryt> 0.

Moreover, we have

106 +3)" /24X < [+ X1 /2% ] < 2
1im [|+)°/2+ 06, +X) /2] = lim [[ 660+ %)" 2+
and
(n+X) < (X +X)*/2+ (X, +X7) /2.

Hence ||(X, + X)* /2 + x*|| — 2. Thus ||(%, + X)* /2 — X*|| — 0O, by (LUR*)-property.
Consequently
JLm K(t, Xy +X) = 2K(t,x) for everyt > 0.
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From Proposition 9, it follows that x, — x in L°. Since || — x*|| — 0, we have
X: — X* in the topology o(E.E’ N L}). It follows from [6], Corollary 29, that there
exists a subsequence (y,) of (x,) such that (y,) convergesto somey € E in the topology
o(E. E' NL}) and thusy, — y weakly in L + L>. Now, by Proposition 8

Xn— X weaklyin L + L.

Since K(t, x,) — K(t,x) for any t > 0, it then easily follows by Theorem 5 (cf. the proof
of the Proposition 7) that x, — xin L + L>°.

Now we are in a position to prove criteria for LUR and MLUR of Orlicz-Lorentz
spaces. Recall that a Banach space X isrotund if every x € §X) is an extreme point. In
what follows we will need the following simple technical lemma.

LEMMA 11. Everysymmetricrotund and K-monotonespaceE isstrictly K-monotone.

PROOF. Let x,y € E satisfy x < y and x* # y*. We need to prove that ||x|| < ||y|-
Assumefor the contrary that ||x|| = ||y||. We have for every t € (0, 7),

f2x@ds< [ x(©ds+ [ y(g9ds= [[(< +y)(9ds
Thus 2x < x* + y* and by the K-monotonicity of E we obtain
124 < [+ y [l < [+l = 21

Thisimplies by rotundity of E that x* = y*, a contradiction.

Inall further results we assumethat the Orlicz-L orentz space A\, , is defined over the
L ebesgue measure space ([0, V), =, m), where 0 < v < +o0.

THEOREM 12. For the Orlicz-Lorentzspace A\, , the following conditions are equiv-
alent:

(i) ¢ isstrictly convexon R:, ¢ € Ay, Jg wdm = +oo whenever ¥ = +oo and w is

positive on (0, 7).
(i) A, wislocally uniformly rotund.
(iit) A\, w is midpoint locally uniformly rotund.
(iv) A, wisrotund.

ProoF. Theimplications (ii) = (iii) = (iv) areobviousand (iv) = (i) wasprovedin
[10Q]. In order to finish the proof we need to show (i) = (ii). Assumethat (i) is satisfied
and let x = x* € B(A,w) and (xn) = (X)) C B(A,w) satisfy ||xn + x| — 2.

We first show that x, — X locally in measure. Take any L ebesgue measurable subset
A C [0,7) of finite measure. Fix positive numbers ¢ and 6 and define for al n € N
measurable sets

Ar={te A |xa(t) — x(t)| =6},
Br={teA:p(x(t) >2/d(c/}U{t € At p(x(t) >2/d(c/2)}.
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where ¢(t) := [fwdmfor t € (0,7). Thenwe have

221,00 +1,00 > [ (2/0(e/2)w0)ct = (2/0(c/2))o(M(By)).
Hence ¢(m(Bn)) < ¢(¢/2), i.e. m(By) < ¢/2 for every n € N. Definefor k € N
Cv={te A:w()>1/k}.

We have Cy 1 and (Jg2, Cx = A. Thusm(A \ Cy) — 0 as k — oo and in consequence
m((An \ Bn) \ Ci) < €/4 for some k not depending on n. Now we shall estimate

m((An \ B)) NCy).
By the strict convexity of ¢ it followsthat there existsp € (0, 1) such that

o(*3Y) < 250 (o) + o)

whenever |u —v| > § and max(¢(u). gD(V)) < 2/¢(e/2), u, v > 0. Thus we conclude

that
( Xn(t) + X(t)) 1-p
2 <
2 2
for every t € A, \ By, and by convexity of

(«P(Xn(t)) + w(X(t)))

(7

on [0, 7). Thisimpliesthat for D = (A, \ Bp) N Cy, we have

) < 5(000) + 200) = B(o00) + £ xager

Xp + X
1L

X) = 5060 +109) = 5 [ (o00)+ o) wm

<1- p/D ¢(% —X)/2)wdm
1— E/D o(6/2)dm=1— E<p(5/2)m(D).

IN

Since p € Ay and ||y + X|| — 2, we have

lim |¢(X”2+X) =1

n—oo

Consequently, we obtain that for nlarge enough, m((An\Bn) N Ck) < ¢/4.1tnow follows
that

M(An) < M(Bn) +M((An \ Bn) \ Ck) + M((An \ Bn) N Ci) < e
for n large enough, which finishes the proof that x, — x locally in measure.
Since (i) is satisfied, A, w is a separable r.i. rotund space (see [10]) and thus it is
strictly K-monotone by Lemma 11. Now it follows from Theorems 1 and 2 that X, — x
in A, w. Thus we proved that the Orlicz-L orentz space A\, has (LUR*)-property. This
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completes the proof by using Proposition 10, an obvious fact that the convergence in
L* + L> implies the convergence in measure, and Theorem 2.

Now, wewill study the strict K-monotonicity of A, w. Wewill present some sufficient
conditions and some necessary conditions separately. Unfortunately, criteriafor strict K-
monotonicity of Orlicz-Lorentz spaces are still unknown. In what follows we will need
the following technical lemma which is an easy consequence of the Hardy, Littlewood
and Poylaresult (see Theorem 3).

LEMMA 13. Letx.y € L' + L™ be such that K(t,x) < K(t.y) for every 0 <t < 7.
ThenK(t. ¢(x*)) < K(t. ¢(y")) for every 0 <t <y and any Orlicz function .

THEOREM 14. Assume that the Orlicz function ¢ satisfies the A,-condition and that
Jgwdm = +oo if ¥ = +oo. Then the Orlicz-Lorentz space A, is strictly K-monotone if
one of the following conditions holds:

(i) ¢ isstrictly convex.

(if) wisstrictly decreasing on (0, 7).

Proor. If (i) holds then by [10], it follows that A, is rotund and thus also strictly
K-monotone by Lemma 11.

Suppose now that condition (ii) holdsand x < y. Since A\ is.i. space, we have
IXII < llyll- Assume||x|| = ||y||. We need to prove that x* = y*. We may assume without
loss of generality that ||x|| = ||y|| = 1. Since ¢ € Ay, we have

©) ‘/Oﬂp(x*)wdm: /(jcp(yk)wdm: 1.

Notethat for any f € Ay, and every 0 < s < 7y theintegration by partsyields

‘/OSK(t,f)d(—W(t)) —K(t.f)w(t)|8+./Osf*(t)w(t)dt

@) —K(s. F)w(s) + /0 " F (OW(t) dt.

Hence, by virtue of equalities (6) and (7), it easily follows that
L (K(t000) = K(t o)) ) d(-w0) = [ (07) = o)) wem=o.

Since the function K(t, ¢ (y*)) — K(t. ¢(x")) is continuous and nonnegative on (0.7),
by Lemma 13, and w being strictly decreasing, we obtain that K (t. o (x")) = K(t. ¢ (y"))
on (0.7). Thisimplies that o (x*(t)) = ¢(y*(t)) for every t € (0.7) and in consequence
x* =y*on(0,7).

THEOREM 15. If A, is strictly K-monotone, then ¢ € A, and Jgwdm = +oo
whenever ¥ = +oo.
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PROOF. If ¢ ¢ Ay, then A, contains an order isometric copy of 1°° (see [10], [7])
and thus A, is not strictly K-monotone.

Assume that 7 = +oo and Jg™wdm < +oo. Let (A,) be a sequence of pairwise
digoint measurable sets in (0, +oo) such that m(A,) = +oo, N € N. Let a be such that
v(@) Jg>° wdm= 1. Define x, = axa, for n € N. Then X, = ax(0,+o0) and

impliesthat for all n € N
Il = 3] = [0 = 2

Define an operator T:1>° — A, by the formula

T¢= i Enxn for &= (&) €1,
n=1

Since (x,) is a sequence of pairwise digjoint elements, it follows simply by the above
equalitiesthat T isan order isometry. Thusweprovedthat if ¥ = +oo and f5° wdm < +oo0,
then A\, contains an order isometric copy of |, and we are done.

In order to present the next result let as define
a(e) =inf{u> 0: ¢ isaffineon[u,v] for somev > u},
B(w) =inf{s>0: wisconstanton [s, t] for somet > s}.

PROPOSITION 16. Let ¢ be an Orlicz function and w be a weight function such
that Jg wdm = +o0 if 7 = +o0. If ¢(a(p)) fo™ wdm < 1, then A, is not strictly
K-monotone.

PrROOF. Leta = a(p) and b = g(w). By continuity of ¢ and ¢(s) = [Fwdm, there
exist u > aand ¢ > b such that w is constant on [b, c], ¢ is affineon[a, u] and

C
<,p(u)/O wdm < 1.

Choose v > u such that

b d (b+c)/2 d c dm =
g@(V)/O w m+gp(u)./b wdm+ <p(a).(b+c)/zw m=1

and define

X=VX(00) ¥ UX(b,(b+c)/2) T AX(b+e)/2.0)»
y = Vxon * ((@+U)/2)xno-

Itisobviousthat K(t,x) > K(t,y) forany t € (0,7) andx = x* Z y* = y. Since ¢ isaffine
on the interval [a, u] and w is constant on the interval [b. c], we get [.(X) = I,(y) = 1,
and thus ||x|| = ||y|| = 1. This showsthat A,  is not strictly K-monotone.

By applying Theorems 14, 15 and Proposition 16 we deduce the following.
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COROLLARY 17. (i) TheOrliczspacelL? isstrictly K-monotoneif andonlyif ¢ € A;
and ¢ is strictly convex.

(ii) Aw is strictly K-monotone if and only if w is strictly decreasing on (0,7) and
Jg wdm = +oo whenever v = +oo.

REMARK. In the case when v = 1, Corollary 17(i) has been proved by Medzhitov
and Sukochev in [13]. Corollary 17(ii) has been proved by Sedaev in [14] (cf. also [3]).

At the end of the paper, we will consider the Kadec-Klee property in Orlicz-Lorentz
spaces. The Kadec-Klee property for L orentz space A\, was studied by Sedaev in[14]. It
is proved there that a necessary and sufficient condition for Ay, to have the Kadec-Klee
property is the condition that the weight function w is strictly decreasing. Note also that
recently Dilworth and Hsu [5] have characterized the uniform Kadec-K|ee property for
Lorentz spaces.

THEOREM 18. Let ¢ be an Orlicz function and w be a weight function. Then the
following statements aretrue:
(i) If ¢ € Dy, wissdtrictly decreasingon (0, ) and J; wdm = +oo whenever v = +oo,
then A, has the Kadec-Klee property.
(ii) If ¢ ¢ Dy or fgwdm < +oo whenever ¥ = +oo, then A\, does not have the
Kadec-Klee property.

PrOOF. Assume first that the assumptions from (i) hold. Let x,. x € SA,w) and
Xn — X weakly in A, . We will show that x, — x in measure on (0, 7). Indeed, if
this is not the case, then x, / x in L1 + L. Since A, C L3, by the assumption
Jg2° wdm = +o0, it follows by Theorem 5 that there are a subsequence (yn) of (x,) and
s € (0,7) such that
(8) K(s.X) < nILTO K(S. Yn)-

We havey, — x weakly in L + L. It then easily follows that we have for t € (0,7),
9) K(t, x) < Iinrm)gf K(t, yn)-
We define on [0, v) a sequence (v,) of concave functions by

Pn(t) = min{K(t, yn), 2K(t, x)} foral t € (0,7) and ¢,(0) = 0.

By Helly’s Selection Theorem we may assume, by passingto asubsequence, that ¢, — f
pointwise with f being concave and thus continuous. Now let f, = inf{min(y,f) :
k > n}. Then f, are concave with f,(0) = 0 and we havef, 1 f pointwise. Since f, are
continuous, it follows by the Dini's Theorem that f, — f uniformly on each interval
[0, a] with a < 7. Thisimplies that for the derivatives the following holds:

(10) fi —f’ ae on(0,7).
We obtain from (8) and (9) that for every t € (0,7),
(11) f(t) =Kt f") > Kt x) ad K(s.Xx) <K(sf').
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SinceK(t, f) = fn(t) < K(t, yn) fort € (0,7), itfollowsby Lemmal3that forany n € N,

o(fn) < 2 (Yn).

Thus by the K-monotonicity of the Lorentz space A\, we obtain

b elwdm < ["ptmwdm= 1,4 = 1.

Combining (10) and Fatou Lemma, we get
/w’ o YWwdm < liminf /" o )Wwdm < 1
Jo — nooo JO n -

Thisimpliesthatf” € A, and ||f’]| < 1. Sincex* # f’, by virtue of K(s.x) < K(s,f’),
and A\, being strictly K-monotone by Theorem 14, we obtain by (11)

1= x| < It'] < 1.

This contradiction showsthat x, — X in measure, and thusin view of Theorem 2, x, — X
inAgw.

Now if the assumptionsfrom (ii) hold, then it follows by the proof of Theorem 15 that
N, w contains an isometric copy of |o,, S0 A, w does not have the Kadec-Klee property.

REMARK. Since LUR implies the Kadec-Klee property, it follows that under the
assumptionsof Theorem 12, the Orlicz-Lorentz space\, \, hasthe Kadec-Kleeproperty.
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