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ON GEOMETRIC PROPERTIES
OF ORLICZ-LORENTZ SPACES

H. HUDZIK, A. KAMIŃSKA AND M. MASTYŁO

ABSTRACT. Criteria for local uniform rotundity and midpoint local uniform rotun-
dity in Orlicz-Lorentz spaces with the Luxemburg norm are given. Strict K-monotonicity
and Kadec-Klee property are also discussed.

Introduction. A function ß: R+ ! R+ is said to be an Orlicz function if ß is
convex, ß(0) = 0, and ß(u) Ù 0 for all u Ù 0. Let (ΩÒΣÒ ñ) denote a complete õ-finite
measure space and let L0 = L0(ΩÒΣÒ ñ) denote the space of all (equivalence classes
of) ñ-measurable real-valued functions, equipped with the topology of convergence in
measure on ñ-finite sets.

For any f 2 L0 the nonincreasing rearrangement of f is the function f Ł defined by

f Ł(t) = inffï Ù 0 : ñf (ï) � tg

(by convention inf ; = +1), where ñf is the distribution function defined by

ñf (t) = ñ
�
f° 2 Ω : jf (°)j Ù tg

�
Ò t ½ 0

In the sequel we shall use the following inequalities without further references (see
e.g. [1], p. 41)

f Ł
�
ñf (ï)

�
� ïÒ

�
ñf (ï) Ú 1

�
; ñf

�
f Ł(t)

�
� tÒ

�
f Ł(t) Ú +1

�


A function w: [0Ò ç) ! R+, 0 Ú ç � +1, is called weight function if it is nonincreasing
and locally integrable with respect to the Lebesgue measure m.

For an Orlicz function ß and a weight function w: [0Ò ç) ! R+, ç = ñ(Ω), the
Orlicz-Lorentz space ΛßÒw is the set of all x 2 L0(ñ) such that

Iß(ïx) =
Z 1

0
ß(ïxŁ)w dm Ú +1

for some ï Ù 0.
ΛßÒw is a Banach space equipped with the Luxemburg norm defined by

kxk = inffï Ù 0 : Iß(xÛï) � 1g
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Note that if w � 1, then ΛßÒw is the Orlicz function space Lß. If ß(t) = t, then ΛßÒw is
the Lorentz space Λw.

In [7], we studied the geometry of some Calderón-Lozanovskii spaces as well as the
Orlicz-Lorentz spaces. This paper is a continuation of the previous one, where we study
other geometric properties of the Orlicz-Lorentz spaces. Recently Lin and Sun have also
examined several other geometric properties in Orlicz-Lorentz spaces (e.g. [12]).

In what follows if X is a Banach space, B(X) and S(X) denote its unit ball and
unit sphere, respectively. X is said to be locally uniformly rotund (LUR), whenever
xnÒ x 2 B(X) and kxn + xk ! 2 imply kxn � xk ! 0. X is said to be midpoint locally
uniformly rotund (MLUR) if for every x 2 S(X) and every sequence (xn) in B(X) if
kxn + xk ! 1 and kxn � xk ! 1 then kxnk ! 0. We say that X has the Kadec-Klee
property if the norm and weak convergence of sequences coincide on the unit sphere of
X. It is well known that LUR implies the Kadec-Klee property.

Let E be a Banach function space over a measure space (ΩÒΣÒ ñ). E is said to have
the Kadec-Klee property for convergence in measure, whenever xn ! x in measure
(globally) on Ω and kxnk ! kxk imply kxn � xk ! 0.

E is said to have the Kadec-Klee property for local convergence in measure if xn ! x
in L0 and kxnk ! kxk imply kxn � xk ! 0.

The Kadec-Klee property for the local convergence in measure was studied in [8] in
some Calderón-Lozanovskii spaces. This property and also the Kadec-Klee property for
convergence in measure were investigated in [3] and [13] for symmetric spaces defined
on any interval [0Ò ã), 0 Ú ã � +1 and on interval [0Ò 1), respectively. It is easy to see
(cf. [9]) that every Banach function space E which is LUR has the Kadec-Klee property
for the local convergence in measure. Note also that L1 and Orlicz spaces generated by
Orlicz functions satisfying the so-called ∆2-condition have the Kadec-Klee property for
local convergence in measure (see [8]).

In the sequel we will need the definition of K-functional of Peetre for the interpolation
couple (L1ÒL1). For every x 2 L1 + L1 and t Ù 0,

K(tÒ x) = inffkx0kL1 + tkx1kL1 : x = x0 + x1g

It is well known (see [1] or [11]) that

K(tÒ x) =
Z t

0
xŁ(s) ds

and the relation � defined on L1 + L1 by

x � y if and only if K(tÒ x) � K(tÒ y) for all t Ù 0

is a pre-order (see [1]).
A Banach function space E over the Lebesgue measure space ([0Ò ç)ÒΣÒm) with

ç 2 (0Ò+1] is said to be symmetric if for every x 2 L0 and y 2 E with mx = my, we have
x 2 E and kxk = kyk. For basic properties of symmetric spaces we refer to [1] and [11].
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A symmetric space E is said to be K-monotone if

x � y with x 2 L1 + L1Ò y 2 E imply x 2 E and kxk � kyk

By the well known result of Calderón [2] (see also [11]) it follows that the class of all
K-monotone spaces is exactly the class of all exact interpolation spaces between L1 and
L1. It is well known that symmetric spaces with the Fatou property as well as separable
symmetric spaces are K-monotone (see [1], [11]). Recall that a Banach function space
X has the Fatou property if 0 � xn ", supn½1 kxnk Ú +1 imply x = sup xn 2 X and
kxnk ! kxk.

A symmetric space with the Fatou property is called rearrangement invariant (ri in
short). Examples of ri spaces are among others Lorentz spaces, Marcinkiewicz spaces
and Orlicz-Lorentz spaces.

A symmetric space E is said to be strictly K-monotone if

xÒ y 2 EÒ x � yÒ xŁ 6= yŁ imply kxk Ú kyk

The following result has been proved in [3].

THEOREM 1. Let E be a separable symmetric space on [0Ò+1). If E is strictly
K-monotone then the following statements are equivalent:

(i) E has the Kadec-Klee property for convergence in measure.
(ii) E has the Kadec-Klee property for local convergence in measure.

In what follows the ∆2-condition for the Orlicz function will play an important role.
We say that ß satisfies the ∆2-condition if there exist positive constants K and u0 such
that the inequality ß(2u) � Kß(u) holds for all u Ù 0, whenever

Rç
0 w dm = +1 and it

holds for u ½ u0, whenever
Rç

0 w dm Ú +1. We simply indicate this by ß 2 ∆2.
In the sequel we will need the following result.

THEOREM 2. The Orlicz-Lorentz space ΛßÒw has the Kadec-Klee property for con-
vergence in measure whenever ß 2 ∆2.

PROOF. The proof presented in [8] works also in the case of infinite measure. This
follows by the fact that if xn ! x in measure then (xn � x)Ł ! 0 and xŁn ! xŁ m-a.e. (see
[11]).

We shall now state two results that will be needed later on. The first result of Hardy,
Littlewood and Pólya can be found in [1] (p. 88) and second one is a result of Szlenk
[16].

THEOREM 3. Let x, y 2 L1(ñ) + L1(ñ). Then K(tÒ x) � K(tÒ y) for any 0 Ú t Ú ñ(Ω)
if and only if Iß(x) � Iß(y) for any Orlicz function ß.

THEOREM 4. In L1(0Ò 1), every weakly convergent sequencehas a subsequencewhose
arithmetic means are norm convergent.
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REMARK. Szlenk’s theorem holds true for every abstract AL-Banach lattice. In par-
ticular it holds true in weighted L1-spaces.

In what follows L1
0 = L1

0(ñ) denotes the closure of L1(ñ) in L1(ñ) + L1(ñ) equipped
with the norm K(1Ò Ð). It is easy to show that x 2 L1

0 if and only if x is locally integrable
and xŁ(s) ! 0 as s ! +1.

Let for each y 2 L1(ñ) \ L1(ñ)Ò fy be a linear functional defined by fy(x) =
R

Ω xydñ
for x 2 L1

0. We let Γ = ffy : y 2 L1(ñ) \ L1(ñ)g. It is clear that hL1
0ÒΓi forms a dual

system. In what follows we will consider the weak topology õ(L1
0ÒΓ) induced on L1

0 by
Γ.

The following result has been proved by Sedaev and for the sake of completeness we
provide a proof (cf. Theorem 8 in [15]).

THEOREM 5. Assume that xn, x 2 L1
0 and xn ! x in the topology õ(L1

0ÒΓ). If xn 6! x
in the norm topology of L1(ñ) + L1(ñ) then there exists é 2 (0Ò 1] such that

lim
n!1

sup
t2[éÒé�1]

K(tÒ xn)
K(tÒ x)

Ù 1(1)

PROOF. We first note that in [14] (cf. [3], Proposition 1.2), it is proved that if Λw is
any Lorentz space and x 2 Λw, (yn) ² Λw, and if (yn) converges in measure to 0, then

kx + ynkΛw = kxkΛw + kynkΛw + o(1)(2)

Thus, if we assume that yn = xn � x ! 0 in measure, it follows by (2) that

Z 1

0
xŁn(s) ds =

Z 1

0
xŁ(s) ds +

Z 1

0
yŁn(s) ds + o(1)

This implies that (1) holds with é = 1.
Now assume that for some ú Ù 0, limn!1ñ

�
Qn(ú)

�
Ù 0, where Qn(ú) = f° 2 Ω :

jyn(°)j Ù úg. In [14], Lemma 3, it is proved that formula (1) holds with some é 2 (0Ò 1]
whenever for some 0 Ú 2ú1 Ú ú the following holds

lim
n!1

ñ
�
M(ú1) \ Qn(2ú1)

�
Ù 0Ò(3)

where M(s) = f° 2 Ω : jx(°)j Ù sg for any s Ù 0.
In order to finish the proof we only need to consider the case limn!1 ñ

�
M(ú1) \

Qn(2ú1)
�

= 0. This implies that for some decreasing sequence (ún) with ún ! 0, we have

ñ
�
M(ún) \ Qn(2ún)

�
! 0(4)

Consider a sequence (ynüM(ún)), where yn = xn� x. It follows by (3) that this sequence
tends to 0 in measure. Thus if we assume that ynüM(ún) 6! 0 in the norm topology of
L1(ñ) + L1(ñ), then we obtain by (2) that

lim
n!1

Z 1

0
(x + yn)Ł(s) ds ½ lim

n!1

Z 1

0
(x + ynüM(ún))Ł(s) ds

=
Z 1

0
xŁ(s) ds + lim

n!1

Z 1

0
ynüM(ún) ds
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This shows that (1) holds with é = 1.
Suppose now that ynüM(ún) ! 0 in the norm of L1(ñ) + L1(ñ). Then, for any t Ù 0,

we have K(tÒ x + yn) = K(tÒ x + zn) + o(1), where zn = ynüΩnM(ún). In consequence the proof
will be finished if we can show that for some 0 Ú é � 1

lim
n!1

sup
t2[éÒé�1]

K(tÒ x + zn)
K(tÒ x)

Ù 1

Without loss of generality, we may assume that for some ú0, we have f° 2 M(ú0) :
jxn(°)j Ù 3ú0g = Ø and

ñ
�
f° 2 Ω : jzn(°)j Ù 3ú0g

�
Ù p Ù 0

Hence by the definition of the set M(ú0), it follows that for any s ½ ú0, we have

qn(s) = ñ
�
f° 2 Ω : jx(°) + zn(°)j Ù sg

�
½ ñ

�
f° 2 Ω : jx(°)j Ù sg

�
= q(s)Ò

and for ú0 � s � 2ú0,

qn(s) ½ ñ
�
f° 2 Ω : jx(°)j Ù sg [ f° 62 M(ú0) : jzn(°)j Ù 3ú0g

�
½ q(s) + p

The integration by parts yields

K
�
q(ú0) + pÒ xn

�
=
Z q(ú0)+p

0
xŁn(s) ds = xŁn(s)sjq(ú0)+p

0 �
Z q(ú0)+p

0
s dxŁn(s)

=
�
q(ú0) + p

�
xŁn
�
q(ú0) + p

�
+
Z 1

xn
Ł(q(ú0)+p)

qn(s) ds

=
Z 1

0
q̃n(s) dsÒ

and

K
�
q(ú0) + pÒ x

�
=
Z q(ú0)+p

0
xŁ(s) ds

=
�
q(ú0) + p

�
xŁ
�
q(ú0) + p

�
+
Z 1

xŁ(q(ú0)+p)
q(s) ds

=
Z 1

0
q̃(s) dsÒ

where

q̃n(s) =

8<
: q(ú0) + pÒ 0 � s � xŁn

�
q(ú0) + p

�
,

qn(s)Ò xŁn
�
q(ú0) + p

�
Ú s Ú 1,

and

q̃(s) =

8<
: q(ú0) + pÒ 0 � s � xŁ

�
q(ú0) + p

�
,

q(s)Ò xŁ
�
q(ú0) + p

�
Ú s Ú 1.

Since qn(ú0) ½ q(ú0) + p, it follows by the properties of rearrangement that

xŁ
�
q(ú0) + p

�
� ú0 � xŁn

�
qn(ú0)

�
� xŁn(q(ú0) + p)

Finally, combining the above with q̃n(s) ½ q̃(s) for all s Ù 0 and q̃n(s) Ù q̃(s) + p for
ú0 � s � 2ú0, we obtain

K
�
q(ú0) + pÒ x

�
� ú0p + K

�
q(ú0) + pÒ xn

�
Ò

which completes the proof.
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1. Results. We start by proving some general results. Some of them will be applied
in order to prove criteria for LUR and MLUR of Orlicz-Lorentz spaces. Recall that the
fundamental function †E of a symmetric space E on [0Ò ç) is defined by †E(t) = kü(0Òt)kE

for t 2 (0Ò ç). It is well known that the Köthe dual E0 of a symmetric space E, defined by

E0 =
²

y 2 L0 : kykE0 = sup
kxkE�1

Z
jxyj dm Ú +1

¦
Ò

is a ri space on [0Ò ç) with the fundamental function †E0(t) = tÛ†E(t) for t 2 (0Ò ç) (see
[1], [11]).

LEMMA 6. Let E be a ri space on [0Ò ç) such that †E0(0+) = 0. Then B(E) is
sequentially compact in the weak topology õ(EÒΓ) induced by Γ = ffy : y 2 L1 \ L1g.

PROOF. By the Fatou property of E, we have E = E00 with equality of norms. Thus it
follows by the order density of ∆ = L1 \ L1 in E and the Beppo-Levi theorem that

E = (∆̄E0)0 = X0

with equality of norms, where X = ∆̄E0 is the closure of ∆ in E0. Since X is a symmetric
space with †X = †E0 , it follows by †E0(0+) = 0 that X is separable (see [11]). Thus, we
obtain that X0 is order isometric to the dual space XŁ of X. In consequence E is isometric
to XŁ, which yields in particular that the unit ball of E is a compact for the õ(EÒΓ)
topology. Since Γ contains a countable total subset of functionals, B(E) is metrizable in
the õ(EÒΓ) topology and this completes the proof.

REMARK. It is well known that a Banach space X is a dual space if and only if B(X) is
compact in some locally convex Hausdorff topology on X. Note also that the well known
Pełczyński’s result says that separable dual spaces do not contain copies of c0. Using the
above and taking for example E = L1

0(R+) we conclude that in general the assumptions
that E has the Fatou property and †E0(0+) = 0 are essential in Lemma 6.

PROPOSITION 7. Let E be a ri space with †E0(0+) = 0 and let E ² L1
0. Then

BŁ(E) := fxŁ : x 2 B(E)g is a compact subset of L1 + L1.

PROOF. Let (xŁn) ² BŁ(E). By Lemma 6 we may assume, by passing to a subsequence
that xŁn ! x in the topology õ(EÒΓ) with x 2 B(E). Assume that xŁn 6! x in L1 + L1.
Then, by Theorem 5, it easily follows by concavity of the K-functional of Peetre and a
compactness argument that there are é 2 (0Ò 1), t 2 [éÒ é�1] and a subsequence (yn) of
(xŁn) such that

lim
n!1

K(tÒ yn) Ù K(tÒ x)

This yields

lim
n!1

Z t

0
yn(s) ds Ù

Z t

0
xŁ(s) ds ½

Z t

0
x(s) ds

Since xŁn ! x in õ(EÒΓ), we obtain a contradiction. Thus we have that kxŁn�xkL1+L1 ! 0.
This implies by the inequality

kxŁn � xŁkL1+L1 � kxŁn � xkL1+L1

that xŁn ! xŁ in L1 + L1 and thus x 2 BŁ(E).
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PROPOSITION 8. Let X be a Banach function space over a measure space (ΩÒΣÒ ñ)
with supp X = Ω. If xn ! x weakly in X and xn ! y in L0 then y = x.

PROOF. By the õ-finiteness of ñ, we have suppX 0 = supp X. Thus there is a strictly
positive function h on Ω with khkX0 = 1. Since X ² X 00 and kxkX00 � kxkX for each
x 2 X, we obtain that X !̈ L1(h dñ) with continuous inclusion. Assume that xn ! x
weakly in X. Then by the Szlenk’s theorem we can suppose, by passing to a subsequence,
that

ksn � xkL1(h dñ) ! 0Ò(5)

where sn = 1
n

Pn
k=1 xk. It follows, by (5) that sn ! x in L0. Since xn ! y in L0, we get

sn ! y in L0, and thus x = y.

By a modification of the proof of Proposition I.1 in [4] in the case of a probability
measure space, we obtain the following result.

PROPOSITION 9. Let (ΩÒΣÒ ñ) be a nonatomic measure space. If x 2 L1
0 and (xn) ² L1

0

are such that K(tÒ xn) ! K(tÒ x) and K(tÒ xn + x) ! 2K(tÒ x) for every t Ù 0 then xn ! x
in L0.

Before the proof of the next result we introduce the notion of (LURŁ)-property for
symmetric spaces. A symmetric space E is said to have (LURŁ)-property if xŁ 2 BŁ(E)
and (xŁn) ² BŁ(E) with kxŁn + xŁk ! 2 imply kxŁn � xŁk ! 0.

PROPOSITION 10. If a ri space E ² L1
0 has (LURŁ)-property then x 2 B(E), (xn) ²

B(E), and kxn + xk ! 2 imply xn ! x in L1 + L1.

PROOF. Let x 2 B(E), (xn) ² B(E) and kxn + xk ! 2. We have (xn + x) � (xŁn + xŁ).
Since ri spaces are K-monotone, it follows that

kxn + xk � kxŁn + xŁk � kxŁnk + kxŁk � 2

Hence kxŁn+xŁk ! 2 and thus, by the assumption that E has (LURŁ)-property, kxŁn�xŁk !
0. This implies

lim
n!1

K(tÒ xn) = K(tÒ x) for every t Ù 0

Moreover, we have

k(xn + x)ŁÛ2 + xŁk � kxn + xkÛ2 + kxk � 2Ò

lim
n!1

k(xn + x)ŁÛ2 + (xŁn + xŁ)Û2k = lim
n!1

k(xn + x)ŁÛ2 + xŁk

and
(xn + x) � (xn + x)ŁÛ2 + (xŁn + xŁ)Û2

Hence k(xn + x)ŁÛ2 + xŁk ! 2. Thus k(xn + x)ŁÛ2 � xŁk ! 0, by (LURŁ)-property.
Consequently

lim
n!1

K(tÒ xn + x) = 2K(tÒ x) for every t Ù 0
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From Proposition 9, it follows that xn ! x in L0. Since kxŁn � xŁk ! 0, we have
xŁn ! xŁ in the topology õ(EÒE0 \ L1

0). It follows from [6], Corollary 29, that there
exists a subsequence (yn) of (xn) such that (yn) converges to some y 2 E in the topology
õ(EÒE0 \ L1

0) and thus yn ! y weakly in L1 + L1. Now, by Proposition 8

xn ! x weakly in L1 + L1

Since K(tÒ xn) ! K(tÒ x) for any t Ù 0, it then easily follows by Theorem 5 (cf. the proof
of the Proposition 7) that xn ! x in L1 + L1.

Now we are in a position to prove criteria for LUR and MLUR of Orlicz-Lorentz
spaces. Recall that a Banach space X is rotund if every x 2 S(X) is an extreme point. In
what follows we will need the following simple technical lemma.

LEMMA 11. Every symmetric rotund and K-monotone space E is strictly K-monotone.

PROOF. Let xÒ y 2 E satisfy x � y and xŁ 6= yŁ. We need to prove that kxk Ú kyk.
Assume for the contrary that kxk = kyk. We have for every t 2 (0Ò ç),

Z t

0
2xŁ(s) ds �

Z t

0
xŁ(s) ds +

Z t

0
yŁ(s) ds =

Z t

0
(xŁ + yŁ)Ł(s) ds

Thus 2x � xŁ + yŁ and by the K-monotonicity of E we obtain

k2xk � kxŁ + yŁk � kxŁk + kyŁk = 2kxk

This implies by rotundity of E that xŁ = yŁ, a contradiction.

In all further results we assume that the Orlicz-Lorentz space ΛßÒw is defined over the
Lebesgue measure space ([0Ò ç)ÒΣÒm), where 0 Ú ç � +1.

THEOREM 12. For the Orlicz-Lorentz space ΛßÒw the following conditions are equiv-
alent:

(i) ß is strictly convex on R+, ß 2 ∆2,
R ç

0 w dm = +1 whenever ç = +1 and w is
positive on (0Ò ç).

(ii) ΛßÒw is locally uniformly rotund.
(iii) ΛßÒw is midpoint locally uniformly rotund.
(iv) ΛßÒw is rotund.

PROOF. The implications (ii) ) (iii) ) (iv) are obvious and (iv) ) (i) was proved in
[10]. In order to finish the proof we need to show (i) ) (ii). Assume that (i) is satisfied
and let x = xŁ 2 B(ΛßÒw) and (xn) = (xŁn) ² B(ΛßÒw) satisfy kxn + xk ! 2.

We first show that xn ! x locally in measure. Take any Lebesgue measurable subset
A ² [0Ò ç) of finite measure. Fix positive numbers è and é and define for all n 2 N
measurable sets

An = ft 2 A : jxn(t) � x(t)j ½ égÒ

Bn =
n

t 2 A : ß
�
xn(t)

�
Ù 2Ûû(èÛ2)

o
[
n
t 2 A : ß

�
x(t)

�
Ù 2Ûû(èÛ2)gÒ
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where û(t) :=
R t

0 w dm for t 2 (0Ò ç). Then we have

2 ½ Iß(xn) + Iß(x) ½
Z m(Bn)

0

�
2Ûû(èÛ2)

�
w(t) dt =

�
2Ûû(èÛ2)

�
û
�
m(Bn)

�


Hence û
�
m(Bn)

�
� û(èÛ2), i.e. m(Bn) � èÛ2 for every n 2 N. Define for k 2 N

Ck = ft 2 A : w(t) Ù 1Ûkg

We have Ck " and
S1

k=1 Ck = A. Thus m(A n Ck) ! 0 as k ! 1 and in consequence
m
�
(An n Bn) n Ck

�
Ú èÛ4 for some k not depending on n. Now we shall estimate

m
�
(An n Bn) \ Ck

�
.

By the strict convexity of ß it follows that there exists p 2 (0Ò 1) such that

ß
�u + v

2

�
�

1 � p
2

�
ß(u) + ß(v)

�

whenever ju � vj ½ é and max
�
ß(u)Ò ß(v)

�
� 2Ûû(èÛ2), u, v ½ 0. Thus we conclude

that

ß

 
xn(t) + x(t)

2

!
�

1 � p
2

�
ß
�
xn(t)

�
+ ß

�
x(t)

��

for every t 2 An n Bn, and by convexity of ß

ß
�xn + x

2

�
�

1
2

�
ß(xn) +ß(x)

�
�

p
2

�
ß(xn) + ß(x)

�
üAnnBn

Ò

on [0Ò ç). This implies that for D = (An n Bn) \ Ck, we have

Iß
�xn + x

2

�
�

1
2

�
Iß(xn) + Iß(x)

�
�

p
2

Z
D

�
ß(xn) + ß(x)

�
w dm

� 1 � p
Z

D
ß
�
(xn � x)Û2

�
w dm

� 1 �
p
k

Z
D
ß(éÛ2) dm = 1 �

p
k
ß(éÛ2)m(D)

Since ß 2 ∆2 and kxn + xk ! 2, we have

lim
n!1

Iß
�xn + x

2

�
= 1

Consequently, we obtain that for n large enough, m
�
(AnnBn)\Ck

�
Ú èÛ4. It now follows

that
m(An) � m(Bn) + m

�
(An n Bn) n Ck

�
+ m

�
(An n Bn) \ Ck

�
Ú è

for n large enough, which finishes the proof that xn ! x locally in measure.
Since (i) is satisfied, ΛßÒw is a separable ri rotund space (see [10]) and thus it is

strictly K-monotone by Lemma 11. Now it follows from Theorems 1 and 2 that xn ! x
in ΛßÒw. Thus we proved that the Orlicz-Lorentz space ΛßÒw has (LURŁ)-property. This

https://doi.org/10.4153/CMB-1997-038-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-038-6


GEOMETRIC PROPERTIES OF ORLICZ-LORENTZ SPACES 325

completes the proof by using Proposition 10, an obvious fact that the convergence in
L1 + L1 implies the convergence in measure, and Theorem 2.

Now, we will study the strict K-monotonicity of ΛßÒw. We will present some sufficient
conditions and some necessary conditions separately. Unfortunately, criteria for strict K-
monotonicity of Orlicz-Lorentz spaces are still unknown. In what follows we will need
the following technical lemma which is an easy consequence of the Hardy, Littlewood
and Poyla result (see Theorem 3).

LEMMA 13. Let xÒ y 2 L1 + L1 be such that K(tÒ x) � K(tÒ y) for every 0 Ú t Ú ç.
Then K

�
tÒ ß(xŁ)

�
� K

�
tÒ ß(yŁ)

�
for every 0 Ú t Ú ç and any Orlicz function ß.

THEOREM 14. Assume that the Orlicz function ß satisfies the ∆2-condition and thatRç
0 w dm = +1 if ç = +1. Then the Orlicz-Lorentz space ΛßÒw is strictly K-monotone if

one of the following conditions holds:

(i) ß is strictly convex.
(ii) w is strictly decreasing on (0Ò ç).

PROOF. If (i) holds then by [10], it follows that ΛßÒw is rotund and thus also strictly
K-monotone by Lemma 11.

Suppose now that condition (ii) holds and x � y. Since ΛßÒw is ri space, we have
kxk � kyk. Assume kxk = kyk. We need to prove that xŁ = yŁ. We may assume without
loss of generality that kxk = kyk = 1. Since ß 2 ∆2, we have

Z ç

0
ß(xŁ)w dm =

Z ç

0
ß(yŁ)w dm = 1(6)

Note that for any f 2 Λw and every 0 Ú s Ú ç the integration by parts yields

Z s

0
K(tÒ f ) d

�
�w(t)

�
= �K(tÒ f )w(t)js0 +

Z s

0
f Ł(t)w(t) dt

= �K(sÒ f )w(s) +
Z s

0
f Ł(t)w(t) dt(7)

Hence, by virtue of equalities (6) and (7), it easily follows that

Z ç

0

�
K
�
tÒ ß(xŁ)

�
� K

�
tÒ ß(yŁ)

��
d
�
�w(t)

�
=
Z ç

0

�
ß(yŁ) �ß(xŁ)

�
w dm = 0

Since the function K
�
tÒ ß(yŁ)

�
� K

�
tÒ ß(xŁ)

�
is continuous and nonnegative on (0Ò ç),

by Lemma 13, and w being strictly decreasing, we obtain that K
�
tÒ ß(xŁ)

�
= K

�
tÒ ß(yŁ)

�
on (0Ò ç). This implies that ß

�
xŁ(t)

�
= ß

�
yŁ(t)

�
for every t 2 (0Ò ç) and in consequence

xŁ = yŁ on (0Ò ç).

THEOREM 15. If ΛßÒw is strictly K-monotone, then ß 2 ∆2 and
R ç

0 w dm = +1
whenever ç = +1.
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PROOF. If ß Û2 ∆2, then ΛßÒw contains an order isometric copy of l1 (see [10], [7])
and thus ΛßÒw is not strictly K-monotone.

Assume that ç = +1 and
R+1

0 w dm Ú +1. Let (An) be a sequence of pairwise
disjoint measurable sets in (0Ò+1) such that m(An) = +1, n 2 N. Let a be such that
ß(a)

R+1
0 w dm = 1. Define xn = aüAn for n 2 N. Then xŁn = aü(0Ò+1) and

� nX
k=1

xk

�Ł
=
�1X

k=1
xk

�Ł
= aü(0Ò+1)

implies that for all n 2 N

kxnk =






nX
k=1

xk





 =





1X

k=1
xk





 = 1Ò

Define an operator T: l1 ! ΛßÒw by the formula

Tò =
1X

n=1
ònxn for ò = (òn) 2 l1

Since (xn) is a sequence of pairwise disjoint elements, it follows simply by the above
equalities that T is an order isometry. Thus we proved that if ç = +1 and

R1
0 w dm Ú +1,

then ΛßÒw contains an order isometric copy of l1, and we are done.

In order to present the next result let as define

ã(ß) = inffu Ù 0 : ß is affine on [uÒ v] for some v Ù ugÒ

å(w) = inffs Ù 0 : w is constant on [sÒ t] for some t Ù sg

PROPOSITION 16. Let ß be an Orlicz function and w be a weight function such
that

Rç
0 w dm = +1 if ç = +1. If ß

�
ã(ß)

� Rå(w)
0 w dm Ú 1, then ΛßÒw is not strictly

K-monotone.

PROOF. Let a = ã(ß) and b = å(w). By continuity of ß and û(s) =
R s
0 w dm, there

exist u Ù a and c Ù b such that w is constant on [bÒ c]Ò ß is affine on [aÒ u] and

ß(u)
Z c

0
w dm Ú 1

Choose v Ù u such that

ß(v)
Z b

0
w dm +ß(u)

Z (b+c)Û2

b
w dm + ß(a)

Z c

(b+c)Û2
w dm = 1

and define

x = vü(0Òb) + uü(bÒ(b+c)Û2) + aü(b+c)Û2Òc)Ò

y = vü(0Òb) +
�
(a + u)Û2

�
ü(bÒc)

It is obvious that K(tÒ x) ½ K(tÒ y) for any t 2 (0Ò ç) and x = xŁ 6= yŁ = y. Sinceß is affine
on the interval [aÒ u] and w is constant on the interval [bÒ c], we get Iß(x) = Iß(y) = 1,
and thus kxk = kyk = 1. This shows that ΛßÒw is not strictly K-monotone.

By applying Theorems 14, 15 and Proposition 16 we deduce the following.
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COROLLARY 17. (i) The Orlicz space Lß is strictly K-monotone if and only if ß 2 ∆2

and ß is strictly convex.
(ii) Λw is strictly K-monotone if and only if w is strictly decreasing on (0Ò ç) andRç

0 w dm = +1 whenever ç = +1.

REMARK. In the case when ç = 1, Corollary 17(i) has been proved by Medzhitov
and Sukochev in [13]. Corollary 17(ii) has been proved by Sedaev in [14] (cf. also [3]).

At the end of the paper, we will consider the Kadec-Klee property in Orlicz-Lorentz
spaces. The Kadec-Klee property for Lorentz space Λw was studied by Sedaev in [14]. It
is proved there that a necessary and sufficient condition for Λw to have the Kadec-Klee
property is the condition that the weight function w is strictly decreasing. Note also that
recently Dilworth and Hsu [5] have characterized the uniform Kadec-Klee property for
Lorentz spaces.

THEOREM 18. Let ß be an Orlicz function and w be a weight function. Then the
following statements are true:

(i) If ß 2 ∆2, w is strictly decreasing on (0Ò ç) and
R ç

0 w dm = +1 whenever ç = +1,
then ΛßÒw has the Kadec-Klee property.

(ii) If ß Û2 ∆2 or
R ç

0 w dm Ú +1 whenever ç = +1, then ΛßÒw does not have the
Kadec-Klee property.

PROOF. Assume first that the assumptions from (i) hold. Let xnÒ x 2 S(ΛßÒw) and
xn ! x weakly in ΛßÒw. We will show that xn ! x in measure on (0Ò ç). Indeed, if
this is not the case, then xn 6! x in L1 + L1. Since ΛßÒw ² L1

0, by the assumptionR+1
0 w dm = +1, it follows by Theorem 5 that there are a subsequence (yn) of (xn) and

s 2 (0Ò ç) such that
K(sÒ x) Ú lim

n!1
K(sÒ yn)(8)

We have yn ! x weakly in L1 + L1. It then easily follows that we have for t 2 (0Ò ç),

K(tÒ x) � lim inf
n!1

K(tÒ yn)(9)

We define on [0Ò ç) a sequence (†n) of concave functions by

†n(t) = minfK(tÒ yn)Ò 2K(tÒ x)g for all t 2 (0Ò ç) and †n(0) = 0

By Helly’s Selection Theorem we may assume, by passing to a subsequence, that†n ! f
pointwise with f being concave and thus continuous. Now let fn = inffmin(†kÒ f ) :
k ½ ng. Then fn are concave with fn(0) = 0 and we have fn " f pointwise. Since fn are
continuous, it follows by the Dini’s Theorem that fn ! f uniformly on each interval
[0Ò a] with a Ú ç. This implies that for the derivatives the following holds:

f 0n ! f 0 a.e. on (0Ò ç)(10)

We obtain from (8) and (9) that for every t 2 (0Ò ç),

f (t) = K(tÒ f 0) ½ K(tÒ x) and K(sÒ x) Ú K(sÒ f 0)(11)
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Since K(tÒ f 0n ) = fn(t) � K(tÒ yn) for t 2 (0Ò ç), it follows by Lemma 13 that for any n 2 N,

ß(f 0n ) � ß(yn)

Thus by the K-monotonicity of the Lorentz space Λw, we obtain

Z ç

0
ß(f 0n )w dm �

Z ç

0
ß(yŁn)w dm = Iß(yn) = 1

Combining (10) and Fatou Lemma, we get

Z ç

0
ß(f 0)w dm � lim inf

n!1

Z ç

0
ß(f 0n )w dm � 1

This implies that f 0 2 ΛßÒw and kf 0k � 1. Since xŁ 6= f 0, by virtue of K(sÒ x) Ú K(sÒ f 0),
and ΛßÒw being strictly K-monotone by Theorem 14, we obtain by (11)

1 = kxk Ú kf 0k � 1

This contradiction shows that xn ! x in measure, and thus in view of Theorem 2, xn ! x
in ΛßÒw.

Now if the assumptions from (ii) hold, then it follows by the proof of Theorem 15 that
ΛßÒw contains an isometric copy of l1, so ΛßÒw does not have the Kadec-Klee property.

REMARK. Since LUR implies the Kadec-Klee property, it follows that under the
assumptions of Theorem 12, the Orlicz-Lorentz space ΛßÒw has the Kadec-Klee property.
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