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NEAREST POINTS TO CLOSED SETS AND DIRECTIONAL
DERIVATIVES OF DISTANCE FUNCTIONS

SIMON FITZPATRICK

We investigate the circumstances under which the distance function to a closed set in
a Banach space having a one-sided directional derivative equal to 1 or —1 implies the
existence of nearest points. In reflexive spaces we show that at a dense set of points
outside a closed set the distance function has a directional derivative equal to 1.

1. INTRODUCTION
Let K be a closed nonempty subset of a Banach space X . The distance function
d(z) =inf{]lz — 2| : z € K}
is Lipschitzian of rank 1 so that for |ly]| =1 we have

-1 < liminf 4z + ty) ~ d(=z) < lim sup d(z + ty) — d(z) <
t=0+ t t—0+ t

1.

If the one-sided directional derivative

& (z)(y) = Jim “I(Ltyt)“ﬂ?_)

exists, then |d (z)(y)| < 1 if ||yl = 1. In this note we investigate the circumstances
under which d;(z)(?) can equal 1 or —1 for some unit vector T .

As shown by our previous work [4, 5] and by Zajicek [10], differentiability proper-
ties of d are related to nonemptiness and continuity of the metric projection

P(z) = {z € K: |1z — l| = d(z)}.
In Section 2 we give a geometric condition on the Banach space X and a unit vector T’
which is necessary and sufficient for ld’+(:c) ( ?)I =1 to imply that P(z) is nonempty.
It is not possible to deduce continuity of P at z from d;(z)(?) = —1 but if the

norm is locally uniformly convex at =’ and d;_(z)(?) =1 then P is continuous at
z.

In Section 3 we show that if X is reflexive then there is a dense subset D of
X\ K such that if v € D thereis ¥ € X with ”?” =1 and d'_,_(v)(?) =1 and

&y (0)(-7) =-1.
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2. EXISTENCE OF NEAREST POINTS
If P(z) is nonempty and z € X \ K then there is T € X with ”?“ =1

and df‘_(z)(?) = —1: simply take any T with z + d(z) @ € P(z). The following

calculation is useful for constructing examples.

LEMMA 2.1. If ||yn]l = 1 and lim || T +y.| = 2 and ”?“ =1let K =
n—oo

-1

{zn: b € N} where z, = (1 + %) Z +yn (? +yn) . Then d'+(0)(7:") =-1=
—d’+(0)(—?>.

-1
PROOF: If ay = (1 + %) Z +yn , we have by convexity of the norm

1 (”zn -tz ” - ||z,,||) < a;l( Zp—Cp T ” - ||z,,||) whenever 1 £ a,,. Thus

d(t?) ~do) - d(t?) _ d(0)

t—0 t

_1)

1
tn = 1| = flzall + ;)

—1 £ liminf
t—0

= limsup ¢~ inf (I 12 — Zn
t—0 n

= limsupt~'in (

t—0 n
< limsupa;l( Zp — an?“ - ||z,.||)
= lim (llvall - || 7 +waf]) = -1
s0 that d4,(0)( ) = ~1=-d4(0)(- 7). 1

THEOREM 2.2. Let X be a Banach space and = € X with ”?” = 1. The
following statements are equivalent:
(a) if K is nonempty closed subset of X and z € X \ K with d’_,_(a:)(?) =

—1 then = has a nearest point in K ;
(b) if K is a nonempty closed subset of X and z € X \ K with

li‘r_r}gl}_f (d(:c + t?) - d(:z:)) /t = ~1 then z has a nearest point in K ;

(c) if |lynll =1 and nlim ” T + yn|| = 2 then (y,) has a convergent subse-

quence.

PROOF: Clearly (b) implies (a). Suppose (c) holds and, to prove (b), let t,, — 0+
with lim (d(z + tn?) - d(:c))/t,, = —1. Choose z, € K with “z +t, T —za|| <

n—oo
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d(:c+t,,—:£’) +t2. Then

~ llz = zall) /tn = tn

2[)/ e = zall = ~ta + 1= | 7 + va

—
T+t T —zn

(d(z +ta7) — d(2)) ftn > (

2 ~ta + (|2 = zall = llz — 20—l & — 2

where yn = —[|lo ~ za| (= 20). Thus |lyall = 1 and || 7 +ua|| ~ 2 50 (vn)

has a convergent subsequence (ynj) , (znj) converges to a point z € K (since
K is closed) and ||z — z|| = d(z). Finally suppose there is a sequence (y,) with

lynll = 1 and "_:E' +yn|| — 2 but (y.) has no convergent subsequence. Then

-1
K = {(1 + ;ll-) ” z + ynl (_x"’ + Yn): n € N} is a closed set and 0 has no nearext

point in K. However Lemma 2.1 shows that d;(O)(":E') = —1, contradicting (a). §

If d'_,_(:c)(_:?) =1 and I

continuity of P at z under a stronger hypothesis. We say that (z,) is a minimising

p—" . .
T ” = 1 we can get a similar result or we can show

sequence for z if z, € K and lim ||z — z,|| = d(z).

PROPOSITION 2.3. Suppose ¢ € X \ K and T € X with “?” = 1 and
limsup (d(:c-{-t?) —d(a:))/t = 1. If (z,) is a minimising sequence for = and
t—04
Y = ||z — zn]| " (2 = 2n) then “ T 4 yal| = 2.

PROOF: Let r, — 0+ so that lim (d(:c+t,,?) -—d(:c)) [/ta = 1. We may

n—oo

assume that t, < d(z) and t2 > ||z ~ z,|| — d(z). Now

t;‘(d(z + t?) - d(z)) <t (l

<z = zall ™ (lle = 2ntll2 - 2n

24+ taT  za| = llo = zall 4 £2)

7|~ llz - zall) + ta

< 2 we have .|?+yn - 2. ]

Thus liminf ” Z +ya|| = 2. Since ” T + Yn
n—o0

We use this to get the analogue of Theorem 2.2.

THEOREM 2.4. Let X be a Banach space and T € X with ”?” = 1. The

following statements are equivalent:

(a) for each closed nonempty subset K of X and z € X\K, if df,,(z)(?) =

1 then K has a nearest point to z;
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(b) for each closed nonempty subset K of X and =z € X \ K,if
lim sup (d(:c + t?) - d(z)) /t =1 then every minimising sequence for
t-—0+4
z has a convergent subsequence;
(¢) if |lynll=1 and lim ” z + y,,“ = 2 then (y,) has a convergent subse-
n—oo

quence.

PROOF: Clearly (b) implies (a). Assume (c¢) and suppose ¢ € X \ K with

limsup (d(:c +1 ?) - d(:c)) /t = 1. Then any minimising sequence (z,,) has || 7 + y,,”
t—0+4
— 2 where y, = ||z — 2,|| "' (z — 2»), by Proposition 2.3. Therefore (y,) has a con-

vergent subsequence (ynj) and (z,.j) is convergent because |z — z,|| — d(z) > 0.

Finally, suppose (¢} does not hold so there are y, with |lyn]] = 1 and lim

n—oo

“? + Yn = 2 but (y,) has no convergent subsequence. Let K =

-1
{—(1 + %) ” z + :yn” (? + y,,) :n € N}. Then K is closed and 0 has no nearest

point in K. But Lemma 2.1 shows that d’+(0)(?) =1. ]

Recall that X is locally uniformly convex at = with ” z “ =1 provided every

sequence (yn) with [lyn|l =1 and |? +ynl ~ 2 has “? —yn“ — 0.

THEOREM 2.5. Let X be a Banach space and & € X with ||?” — 1. The

following statements are equivalent:
(a) for each nonempty closed set K and z € X \ K, if d;(z)(?) =1 then

P(z) has exactly one element;

(b) for each nonempty closed set K and z € X \ K, if limsup
t—0+

(d(:z: +1 ?) - d(:c)) /t =1 then every minimising sequence for z con-
verges to = — d(z) T and P is continuous at z;

(¢) X is locally uniformly convex at =z .

PRrOOF: Clearly (b) implies (a). Assume (¢) and let limsup (d(:z: +t _:E’) - d(:c)) /t
t—0+

=1and z € X \ K. Suppose (z,) is a minimising sequence for z. By Proposi- '

tion 2.3, yn = ||z — za[| "' (z — zn) has “ T +Yn
—

| = -

ately.

— 2. Since |lyn]l = 1 we have

— 0 so that z, — z — d(z) 7 . The continuity of P at z follows immedi-

Finally, suppose X is not locally uniformly convex at Z . Then there are y,, € K
with [|yn|| = 1 and “? + vn| = 2, but |7 = va|| > 6> 0 forall . If (ya) has o
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convergent subsequence we can use Theorem 2.4 to get a closed set K,and z € X \ K

so that d’+(:c)(?) =1 and P(z) = 0. Otherwise some subsequence (y,) converges
to a point y of X with "? —yll 26 >0 and H? +y|l = 2. Since |Jy|| =1 for
K ={-7%, —y} we have d;(O)(?) =1, but P(0) = {— 7, y} contradicting (a). I

We note that no geometric condition on the norm combined with d!, (z) ( ?) =-1
can give single-valuedness of the metric projection at z: let £ =0 and K be the unit
sphere of X, for example.

3. DENSE SETS OF POINTS WITH ONE-SIDED DERIVATIVE 1 OR —1
We start with an example to show that we need to consider reflexive Banach spaces.

Example 3.1. If X is a nonreflexive Banach space, let z* be any element of X* such
that ||z*|| - Jlzl| > =*(z) for all ¢ # 0. These exist by James’ Theorem [7]. Then
K = kerz* is closed subset of X with |d,(z)(y)] <1 forall z€ X\ K and |jy|]| =1.

Indeed, we have d(z) = |[¢*(z)| for every z € X so that d\(z)(y) =
sgn(z*(z))z*(y).

Preiss [9] (see [1], p.523) has shown that any Lipschitzian function on a Banach
space X which is an Asplund space is Fréchet differentiable at a dense set of points of
X.

THEOREM 3.2. If X is an Asplund space and K is a closed nonempty subset of
X then there is a dense set of pointsin X\ K at which d is Fréchet differentiable with

derivative having norm 1.

PROOF: Using Preiss’ result we only need to show that if d is Fréchet differentiable
at a point z € X \ K then |[d'(z)|{| = 1. But we showed this in [4], Theorem 2.6. [

COROLLARY 3.3. If X is a reflexive Banach space and K is a closed subset of X
then there is a dense subset D of X \ K such that for each ¢ € D thereis T € X

with | 2| =1, dy(2)(7) =1 and & (2)(-7) = -1.

PROOF: Let D be the dense set given in Theorem 3.2. For each £ € D let T  be
any element with ” z ” =1 and d'(:c)(?c") =1. 1

This corollary together with Theorem 2.4 (or Theorem 2.2) and Theorem 2.5 show
that in a reflexive space with Kadec norm there is a dense set D of pointsin X \ K
such that each ¢ € D has a nearest point K, and if the norm is locally uniformly
convex then P is continuous at each point of D. However Lau [8] has shown that the
sets of points with those properties in such reflexive spaces are residual in X \ K. Thus
we ask the following question.
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Problem 3.4. If X is a reflexive Banach space and K a closed subset of X . Is the

set
cexve (37 ex) (|71 (ao(=) -))
residual in X \ K?
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