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NEAREST POINTS TO CLOSED SETS AND DIRECTIONAL
DERIVATIVES OF DISTANCE FUNCTIONS

SIMON FITZPATRICK

We investigate the circumstances under which the distance function to a closed set in
a Banach space having a one-sided directional derivative equal to 1 or —1 implies the
existence of nearest points. In reflexive spaces we show that at a dense set of points
outside a closed set the distance function has a directional derivative equal to 1.

1. INTRODUCTION

Let K be a closed nonempty subset of a Banach space X. The distance function

d(s) = inf{||* - z|| : z£K}

is Lipschitzian of rank 1 so that for ||y|| = 1 we have

liminf «*(« + * ) - ' * ( « ) < l i m s u p

«—o+ t
inf < l i m s u p

o+ t t—o+ t
If the one-sided directional derivative

exists, then |d'+(s)(i/)| < 1 if ||y|| = 1. In this note we investigate the circumstances

under which d'+(x)( ~x* \ can equal 1 or —1 for some unit vector ~x .

As shown by our previous work [4, 5] and by Zajicek [10], differentiability proper-
ties of d are related to nonemptiness and continuity of the metric projection

P{x) = {z£K: \\z-x\\ =d(x)}.

In Section 2 we give a geometric condition on the Banach space X and a unit vector ~z

which is necessary and sufficient for d'+(x) ( it ) = 1 to imply that P(x) is nonempty.

It is not possible to deduce continuity of P at x from d'+(x)( it ) = — 1 but if the

norm is locally uniformly convex at it and d+(a;)( ~~x J — 1 then P is continuous at
x.

In Section 3 we show that if X is reflexive then there is a dense subset D of
X \ K such that if v £ D there is V £ X with II l H | = 1 and d'+{v) (it ] = 1 and
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2. EXISTENCE OF NEAREST POINTS

If P(x) is nonempty and x 6 X \ K then there is it 6 X with ~aM = 1

and d!j.(!c)( it ) = —1: simply take any ~~x with x + d(x) it £ •?(»)• The following

calculation is useful for constructing examples.

LEMMA 2.1. If llj/JI = 1 and lim || "i* + i/J| = 2 and it II = 1 ie< K =
n—too || || II

{zn: be N} wAere zn = (l + £) || ~i* + 2/n| ("^ + 3/n) • Then <£'+(0)(V) = - 1 =

PROOF: If ajv = (l + ^) "5* +2/" » w e n a v e ^y convexity of the norm

t'1 ( | z n - < «* || - ||«n||) ^ «^ J (l^n - an IE* || - ||zn||) whenever 1 £ aB . Thus

d(Vs?)-«f(O) dffr) -d(0)
-1 < liminf - ^ '- < lim sup —̂  '-

- t-> o t - t_o t
= lhnsup*-1 inf (hit - zn| | - l )

= lim sup t"1 inf ( zn - <"£* - ||zn|| + - )
t—o n \l II n/

^ lim sup a" 1 (\\zn - anlt\\ - \\zn\\)

= lim ( | | y n | | - | | x > + yn| | ) = - 1

so that d'+iO)^^ = - 1 = -«i

THEOREM 2.2. Let X fee a Ba.na.ch space and it E X with MM = 1. The

following statements are equivalent:

(a) if K is nonempty closed subset of X and x 6 X \ K with d'+(x) ( it I —

—1 then x has a nearest point in K;

(b) if K is a nonempty closed subset of X and x € X \ K with

liminf {dlx + t~x J — d(x))/t = —1 tiien x has a nearest point in K;

(c) if \\yn\\ = 1 and lim \\lt + yn\\ —2 then (yn) has a convergent subse-
n—»oo || ||

quence.

PROOF: Clearly (b) implies (a). Suppose (c) holds and, to prove (b), let <n —» 0+

with lim (d(x + tnlt ) - d{x])/tn = - 1 . Choose zn 6 K with \\x + tn~x - zn\\ <
n—>oo V \ / / II II

https://doi.org/10.1017/S0004972700002707 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002707


[3] Nearest points and directional derivatives 235

d(x + tn~x) +t2
n. Then

(d(x + tnl?) - d(x))/tn > (||x + tnl? - 2n|| - ||x - zn\\) /<„ - tn

> -tn + (||x - zn\\ - \\x - zn-\\ x-zn l^l l) / \\x - zn\\ = -tn + 1 - | |^ + yn

where yn — - \\x - zn\\
 1(x-zn). Thus ||yn|| = 1 and *** + JM -+ 2 so (j/n)

has a convergent subsequence (j/n,-) > (z»»i) converges to a point 2 6 if (since

K is closed) and ||x — z\\ = d(x). Finally suppose there is a sequence (yn) with

||yn|| = 1 and \\H? + yn\\ —+ 2 but (yn) has no convergent subsequence. Then

/C = {(l + i ) "5* + yn I ~x + YnJ : n G N} is a closed set and 0 has no nearext

point in K. However Lemma 2.1 shows that d'+(0) ( "5* j = - 1 , contradicting (a). |

If (f!,.(x)( ~x J = 1 and ~a? = 1 we can get a similar result or we can show

continuity of P at x under a stronger hypothesis. We say that (zn) is a minimising

sequence for x if zn £ K and liin ||z — zn\\ = d(x).

PROPOSITION 2.3. Suppose x e X \ K and "i* G X with "i* = 1 and

limsup (d(x + t ~x ) — d(x))/t = 1. If (zn) is a minimising sequence for x and
t_o+ V V / /

yn = \\x - z^f1 {x - zn) then || i* +yB|| - . 2 .

PROOF: Let rn -+ 0+ so that lim (d(x + tnl? J - d(x)j/tn = 1. We may

assume that tn < d(x) and t*n > \\x - zn\\ — d(x). Now

tit) - d(x)) < t-1 (||z + tnl? - zn\\ - \\x - zn\\ + t2
n)

- iix - Zn\\) + tn< \\x -

Thus liminf r i * + yn\\ =2. Since \\'x* + yn\\ ^ 2 we have \\lt + yn\\ -> 2. |
n—00 || || II II II II

We use this to get the analogue of Theorem 2.2.

THEOREM 2.4. Let X be a Banach space and ~x G X with "a? = 1- The

following statements are equivalent:

(a) for each closed nonempty subset K of X and x G X\K, if d'+(x) l~stj =

1 then K has a nearest point to x ;
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(b) for each closed nonempty subset K of X and x £ X \ K ,if

limsup \d\x + t~3?) — d(x))/t = 1 then every minimising sequence for
t—o+ v v / '

x has a convergent subsequence;

(c) if \\yn\\ = 1 and h"m ~£* + yn\\ = 2 tiien (yn) iias a convergent Subse-
ti—>oo II | |

quence.

PROOF: Clearly (b) implies (a). Assume (c) and suppose x € X \ K with

limsup (d[x + t~x) — d(x)) /t = 1. Then any minimising sequence (zn) has ~x* + yn\\t—o+ V \ / / II II

-+ 2 where yn = ||x — Zn]]'1 (x — zn), by Proposition 2.3. Therefore (yn) has a con-

vergent subsequence (t/nj. J and lznj I is convergent because ||ic — zn\\ —> d(x) > 0.

Finally, suppose (c) does not hold so there are yn with | | j / n | | = 1 and lim
n—>oo

x + yn\\ = 2 but (j/n) has no convergent subsequence. Let K =

{-( l + ^) II ~x + j / n | | f i * + t / n ) : n 6 N } . Then K is closed and 0 has no nearest

point in K. But Lemma 2.1 shows that d'+(O)(l^j = 1. |

Recall that JT is locally uniformly convex at "5* with "x* = 1 provided every

sequence (j/n) with \\yn\\ — 1 and ~x* + yn\\ -* 2 has ~x* - yn -» 0.

THEOREM 2.5. Let X be a Banach space and ~x G X with "x* = 1. The

following statements are equivalent:

(a) for each nonempty closed set K and x G X \ K, if d'+(x)l ~~x \ — 1 then

P(x) has exactly one element;

(b) for each nonempty closed set K and x G X \ K, if limsup
t~o+

(dlx + t~a? J — d(x))/t = 1 then every minimising sequence for x con-

verges to x — d(x) x and P is continuous at x;
(c) X is locally uniformly convex at ~x .

PROOF: Clearly (b) implies (a). Assume (c) andlet limsup (d(x + t It) — d(x)) jt
<—o+ V V ' '

= 1 and x G X \ K. Suppose (zn) is a minimising sequence for x . By Proposi-

tion 2.3, yn — ||x - ZnW'1 (x - zn) has "x* + y j -» 2. Since ||yn|| = 1 we have
* — yn —* 0 so that zn —• x — d(x) ~x . The continuity of P at x follows immedi-

ately.

Finally, suppose X is not locally uniformly convex at ~x . Then there are yn G K

with | |yn| | = 1 and II ~x + yn\\ -» 2 , but || It - yn\\ ^ 6 > 0 for all n. If (yn) has no
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convergent subsequence we can use Theorem 2.4 to get a closed set K, and x £ X \ K

so that d'+(x)(l?) = 1 and P(x) — 0. Otherwise some subsequence (yn) converges

to a point y of X with II ~x - yll > 6 > 0 and | ~x + y\\ = 2 . Since \\y\\ = 1 for

K = { - " ? , -y} we have d'+(0) ( ~x \ = 1, but P(0) = {- it, y} contradicting (a). |

We note that no geometric condition on the norm combined with d'+(x) ( ~~x ) = - 1

can give single-valuedness of the metric projection at x: let x = 0 and K be the unit

sphere of X, for example.

3. D E N S E SETS OF POINTS WITH ONE-SIDED DERIVATIVE 1 OR - 1

We start with an example to show that we need to consider reflexive Banach spaces.

Example 3 .1 . If X is a nonreflexive Banach space, let x* be any element of X* such

that ||sc*|| • ||z|| > x*(x) for all x ^ 0. These exist by James' Theorem [7]. Then

K = kerz* is closed subset of X with |<f'+(:c)(y)| < 1 for all x € X \ K and \\y\\ = 1.

Indeed, we have d(x) — \x*(x)\ for every x G X so that d'+(x)(y) =

sgn(x*(x))x'(y).
Preiss [9] (see [1], p.523) has shown that any Lipschitzian function on a Banach

space X which is an Asplund space is Frechet differentiable at a dense set of points of
X.

THEOREM 3.2. If X is an Asplund space and K is a closed nonempty subset of
X then there is a dense set of points in X\K at which d is Frechet diffeienti&ble with
derivative having norm 1.

PROOF: Using Preiss' result we only need to show that if d is Frechet differentiable
at a point x e X \ K then ||d'(a:)|| = 1. But we showed this in [4], Theorem 2.6. |

COROLLARY 3.3. If X is a reflexive Banach space and K is a closed subset of X
then there is a dense subset D of X \ K such that for each x £ D there is ~x* £ X
with II "5* II = 1, d'+{x)(~x\ =1 and d'+{x)(-l?^ = - 1 .

PROOF: Let D be the dense set given in Theorem 3.2. For each x £ D let "x* be
any element with = 1 and d'{x)(~x\ = 1.

This corollary together with Theorem 2.4 (or Theorem 2.2) and Theorem 2.5 show
that in a reflexive space with Kadec norm there is a dense set D of points in X \ K
such that each x £ D has a nearest point K, and if the norm is locally uniformly
convex then P is continuous at each point of D. However Lau [8] has shown that the
sets of points with those properties in such reflexive spaces are residual in X \ K. Thus
we ask the following question.
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P r o b l e m 3.4. If X is a reflexive Banach space and K a closed subset of X. Is the
set

residual in X\K1
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