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MULTI-POLY-BERNOULLI NUMBERS AND
RELATED ZETA FUNCTIONS

MASANOBU KANEKO anp HIROFUMI TSUMURA

Abstract. We construct and study a certain zeta function which interpolates
multi-poly-Bernoulli numbers at nonpositive integers and whose values at
positive integers are linear combinations of multiple zeta values. This function
can be regarded as the one to be paired up with the £-function defined by
Arakawa and Kaneko. We show that both are closely related to the multiple
zeta functions. Further we define multi-indexed poly-Bernoulli numbers, and
generalize the duality formulas for poly-Bernoulli numbers by introducing more
general zeta functions.

81. Introduction

In this paper, we investigate the function defined by

1 ©  Lig,. & (1—2¢Y
1 ki ..o kyys)= am——— dt
M) kb = [ el

and its generalizations, in connection with multi-poly-Bernoulli numbers
and multiple zeta values (we shall give the precise definitions later in
Section 2). This function can be viewed as a twin sibling of the function

é(kl) st krv 5)7

1 > Li]€ ik (1 — e_t)
2 ki, ... kp;s) = —— A dt
( ) 5( 1, ) 75) F(S) /0 et — 1 »

which was introduced and studied in [4]. The present paper may constitute
a natural continuation of the work [4].

To explain our results in some detail, we first give an overview of the
necessary background. For an integer k € Z, two types of poly-Bernoulli
numbers {Bﬁlk)} and {CT(Lk)} are defined as follows (see Kaneko [20] and
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20 M. KANEKO AND H. TSUMURA

Arakawa—Kaneko [4], also Arakawa—Ibukiyama—Kaneko [3]):

Lip(l—e™) o= mt"
®) e B

Lip(l—e™) &~ t"
@ Ta1 2O

where Lig(z) is the polylogarithm function defined by

(5) Lisz) = 3 20 (4 <1).

m=1

3

Since Lij(z) = — log(1 — 2), we see that BV (resp. Cél)) coincides with the
ordinary Bernoulli number B,, defined by

_7;)3”71! ( —T;)Bnn!)

A number of formulas, including closed formulas of B,(Zk) and Cflk) in terms
of the Stirling numbers of the second kind as well as the duality formulas

(6) BN =B,
—k— —n—1
(7) o= =Y

that hold for k, n € Z=¢, have been established (see [20, Theorems 1 and 2]
and [21, Section 2]). We also mention that Brewbaker [9] gave a purely
combinatorial interpretation of the number Bffk)
as the number of ‘Lonesum-matrices’ with n rows and k columns.

A multiple version of Bﬁbk) is defined in [4, p. 202, Remarks (ii)] by

of negative upper index

Li tn
T b Yk S IR
where
) CEED —
9 Lig, .k, (2) = ki k k
L<my <e<m, M Mg My

is the multiple polylogarithm. Hamahata and Masubuchi [14, 15] investi-

(k1y..eskr)

gated some properties of By, , and gave several generalizations of the
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known results in the single-index case. Based on this research, Bayad and
Hamahata [8] further studied these numbers. Furusho [12, p. 269] also refers
to (8).

More recently, Imatomi, Takeda and Kaneko [18] defined and studied
another type of multi-poly-Bernoulli numbers given by

Lig, . g ( 1 —e” (kr,. "
(10) = Z Byt

Lig, ...k, (1 (k
(11) " ZC 1
for ki,...,k- €Z. They proved several formulas for B(kl’ k) and
C’nkl""’kT), and further gave an important relation between Cz() 12"'”]%) and
the “finite multiple zeta value”, that is,

1 _ ke k1 k1)
(12) Z m = —Cp_2 mod P
1<my<<my<p "'°1 r
for any prime number p.
The function (2) for ki, ..., k. € Z>1 can be analytically continued to

an entire function of the complex variable s € C [4, Sections 3 and 4]. The
particular case r =k = 1 gives {(1; s) = s((s + 1). Hence £(kq, . . . , k3 8) can
be regarded as a multi-indexed zeta function. It is shown in [4] that the
values at nonpositive integers of £(k; s) interpolate poly-Bernoulli numbers

o
(13) §(ks —m) = (~1)"CfY
for k € Z>1 and m € Z>¢. And also by investigating £(k1, . . ., kr; s) and its

values at positive integer arguments, one produces many relations among
multiple zeta values defined by

1

) ()= Y S (L (D)

1<my<--<my TV
for ly,...,1l, € Zzy with [, > 2 [4, Corollary 11].
Recently, further properties of £(ki, ..., kr;s) and related results have

been given by several authors (see, for example, Bayad—Hamahata [6, 7],
Coppo—Candelpergher [10], Sasaki 28], and Young [31]).
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In this paper, we conduct a basic study of the function (1) and relate
it to the multi-poly-Bernoulli numbers B,(Lkl""’kr) as well as multiple zeta
(or “zeta-star”) values. Note that the only difference in both definitions
(1) and (2) is, up to sign, the arguments 1 — e* and 1 — e™* of Li,, . (2)
in the integrands. One sees in the main body of the paper a remarkable
contrast between “B-type” poly-Bernoulli numbers and those of “C-type”,
and between multiple zeta and zeta-star values. We further investigate the
case of nonpositive indices k; in connection with a yet more generalized
“multi-indexed” poly-Bernoulli number.

The paper is organized as follows. In Section 2, we give the analytic
continuation of n(kq, . . ., k,; ) in the case of positive indices, and formulas
for values at integer arguments (Theorems 2.3 and 2.5). In Section 3, we
study relations between two functions n(ki, ..., k.;s) and {(k1, ..., kr;s)
(Proposition 3.2), as well as relations with the single-variable multiple zeta
function (Definition (26) and Theorem 3.6). We turn in Section 4 to the
study of n(k1, . .., kr; s) in the negative index case and give a certain duality
formula for B, " k) (Definition 4.3 and Theorems 4.4 and 4.7). We
carry forward the study of negative index case in Section 5 and define the
“multi-indexed” poly-Bernoulli numbers {B,S’ff;j;‘,;’%) ’(d)} for (k1,...,k) €
7z, (my,...,m;) €2y and d€ {1,...,r} (Definition 5.1), which include
(8) and (10) as special cases. We prove the “multi-indexed” duality formula
for them in the case d = r (Theorem 5.4).

§2. The function n(ky, ..., k,;s) for positive indices and its values
at integers

2.1 Analytic continuation and the values at nonpositive
integers
We start with the definition in the case of positive indices.

DEFINITION 2.1. For positive integers ki, ..., k, € Z>1, let
1 © Lig, .k (1—¢Y
Kty oo ke s) = g T dt
77( 1 ) 7’75) F(S) /0 1—6t

for s € C with Re(s) > 1 — r, where I'(s) is the gamma function. When r =1,
we often denote n(k; s) by nx(s).

The integral on the right-hand side converges absolutely in the domain
Re(s) > 1 —r, as is seen from the following lemma.
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LEMMA 2.2.
i) Forki,..., k. €Z>1, the function Liy, 1 (1 — ') is holomorphic for
= 1yeeesRopr

t € C with |Im(¢t)| <.

(ii) For ki, ..., ky € Zs1 and t € Rsg, we have the estimates
(15) Lig, k(1 —€e)Y=0 (") (t—0)
and
(16) Lig,. (1= €)= O (#5780} (¢ 00).

Proof. As is well-known, we can regard the function Lig, _, (2) as
a single-valued holomorphic function in the simply connected domain
C \ [1, ), via the process of iterated integration starting with

Lii(2) = /OZ dz/(1— z).

Noting that 1 — e € [1, 00) is equivalent to Im(t) = (2j + 1)7 for some j € Z,
we have the assertion (i).

The estimate (15) is clear from the definition of Lig,  , (z), because its
Taylor series at z =0 starts with the term 2" /1%t ... % As for (16), we
proceed by induction on the “weight” k1 + - - - + k, as follows by using the
formula

1.
; lel?"'zkr—lyk’l‘fl(z) (k'l' > 1)

) k(=17

: Liklymykrfl(z) (kr = 1)7
which is easy to derive and is the basis of the analytic continuation of
Lig, ...k, (z) mentioned above. If r = k; =1, then we have Li;(1 — ¢e') = —¢
and the desired estimate holds. Suppose the weight k is larger than 1 and
the assertion holds for any weight less than k. If k. > 1, then by (17) we
have

1—et Li
0 u

t
1
— Li (1= eV (—=eY) d
’/0 1o ey, ker 1( e’)(—e") dv

(u:=1-—¢")

https://doi.org/10.1017/nmj.2017.16 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2017.16

24 M. KANEKO AND H. TSUMURA
3
< / e
0
t
+ [
1>

for small €>0. The former integral is O(1) because the integrand is
continuous on [0,¢]. On the other hand, by induction hypothesis, the
integrand of the latter integral is O (v¥+ T ~1) as v — co. Therefore, the
latter integral is O (tk1+"'+kr) as t — 0o. The case of k, =1 is similarly
proved also by using (17), and is omitted here. 0

o Ldky o k—1(1 —€”)
e —1

dv

v

e’ —1

Lik17',_7kr_1(l — €v) dv

We now show that the function n(ki, ..., ky; s) can be analytically con-
tinued to an entire function, and interpolates multi-poly-Bernoulli numbers
BlFrke) o nonpositive integer arguments.

THEOREM 2.3. For positive integers ki, ..., k. € Z>1, the function
n(ki, ..., kr;s) can be analytically continued to an entire function on the
whole complex plane. And the wvalues of n(ki,...,ky;s) at nonpositive

integers are given by
(18) Nk, - .oy ks —m) = Bk (€ 7).

In particular, n,(—m) = quf) fork € Z=1 and m € Zyp.

Proof. In order to prove this theorem, we adopt here the method of
contour integral representation (see, for example, [30, Theorem 4.2]). Let C
be the standard contour, namely the path consisting of the positive real axis
from the infinity to (sufficiently small) ¢ (“top side”), a counterclockwise
circle C; around the origin of radius €, and the positive real axis from ¢ to
the infinity (“bottom side”). Let

Li 1_ ¢t
H(kl, ey k?"; S) — / tS*l lk}17...7k‘7-( e ) dt
C

1—¢t
_ (627ris B 1) /OO ts—lLik1v~~,kr(1 _ et) "
5 1—et
+ / tS—lLikl,..,,kT(l - et) dt
€ 1-— et :
It follows from Lemma 2.2 that H(ki,...,kr;s) is entire, because the

integrand has no singularity on C and the contour integral is absolutely
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convergent for all s € C. Suppose Re(s) > 1 —r. The last integral tends to
0 as € — 0. Hence

1

n(kl,...,kr;s):m

H(ki, ...,k s),

which can be analytically continued to C, and is entire. In fact

n(ki, ..., kr;s) is holomorphic for Re(s) > 0, hence has no singularity at
any positive integer. Set s = —m € Z<o. Then, by (10),

—1)"m)!
77(]{31, ey ks —m) = (2)7[‘Z'H(k17 P _m)

271 n!

_ (—1)mm!/ tfmflzBT(Lkl,...,kT) ()" dt = Blhremde).
Ce n=0

This completes the proof. 0

REMARK 2.4. Using the same method as above or the method used in
[4], we can establish the analytic continuation of £(ky, . . ., ky; s) to an entire
function, and see that

(19) €k .o oy kpy —m) = (=1)mCELkD) (€ Zsg)
for ki, ..., ky € Z>1, which is a multiple version of (13).

2.2 Values at positive integers

About the values at positive integer arguments, we prove formulas for
both &(k1, ..., kr;s) and n(ki, ..., ky;s), for general index (ki,..., k).
These formulas generalize [4, Theorem 9(i)], and have remarkable similarity
in that one obtains the formula for n(k1, . . ., k.; s) just by replacing multiple
zeta values in the one for £(ki1, ..., k,; s) with multiple “zeta-star” values.
Recall the multiple zeta-star value is a real number defined by

(20) Cllent)= Y
1<my<-<my 0L T
for ly,...,l, € Z>1 with [, > 2. This was first studied (for general r) by
Hoffman in [16].
To state our theorem, we further introduce some notation. For an index
set k= (k1,..., k) €ZL,, put ky = (k1, ..., k1, k- + 1). The usual dual
index of an admissible index (i.e. the one that the last entry is greater than
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one) k is denoted by k*. For j = (j1, ..., jr) € ZL, we write [j| = j1 +--- +
Jr and call it the weight of j, and d(j) =r, the depth of j. For two such
indices k and j of the same depth, we denote by k + j the index obtained by
the component-wise addition, k + j = (k1 + j1, ..., kr + Jjr), and by b(k; j)
the quantity given by

o (ki1
b(k; j) ::H ( ) >
i=1 Ji
THEOREM 2.5. For any index set k= (k1,...,k,) € 2% and any m €
Z>1, we have
(21) Ehr, o km) = Y b((ey)53) C(key)T +J)
lil=m—1, d(j)=n
and
(22) ks, ..., kpym) = (=1)""" > b)) 3) (k)T ),
ljl=m—1,d(j)=n

where both sums are over all j€Z%, of weight m —1 and depth n:=
d(k}) (= k[ +1 —d(k)).
In particular, we have
g(klv SR kT’ﬂ 1) = C((kJr)*)
(=C((ky), by the duality of multiple zeta values)

and
(ks kes 1) = (1)1 (kg )).

In order to prove the theorem, we give certain multiple integral expres-
sions of the functions £(kq, ..., ky; s) and n(k1, ..., ks s).

PROPOSITION 2.6. Notations being as above, write (ky)* = (l1,...,1,).
Then we have, for Re(s) >1—r,

(i) U T )

1 > > 1,011 In—1
LT , oy e A
1=
1 1 1
X eIt Fan _ | ’ et otTn 1 on _ 1d$1 -dz,
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(i) ki, .. kr; s)

T ? / /“ )y T
zl Z

CE2+ +Tn emn
X ea:l—‘,-m—‘,-xn — ez2+~~~+mn —7 pr— dl’l . d.’L'n
Proof. First write the index (ki, ..., k) as
(koo k)= (1,0, Lbi+ 1,00 1, 1,0+ 1),
——— —_———
a;—1 ap—1
with (uniquely determined) integers h>1, a; >1 (1<i<h), bj>1

(1<i<h-—1),and b, > 0. Then, by performing the intermediate integrals
of repeated dz/(1—z) in the standard iterated integral coming from

(17), we obtain the following iterated integral expression of the multiple
polylogarithm Liy, . (2):

lel y 7

/ dl’h / /Ih d.%’h / 71 1—zp 4 an dl‘h_l
0 1 —xp

Th—1

/xhl d.’Eh_l /l"hl da:h_l /Ihl 1 ] <1 — Th—9 ) @h—1
] e e s e e e Og
0 Tho1 0 Th1 Jo o ap—1! 1 —xp

de‘g T2 dIQ /12 de’Q /3:2 <1 — T ) a2
X e . — ]Og
T2 0 T2 0 X9 0 CLQ! 1— xT9

L do (M / dxy / log —2))" da
1 Jo z

Here, to ease notation, we used the same variable in the repetitions of inte-
grals fg: dz/z, and we understand z;, = z if by, = 0. The paths of integrations
are in the domain C\ [1, 00), and the formula is valid for z € C\ [1, 00).
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We may check this formula by differentiating both sides repeatedly and
using (17). Putting 2 =1 — e~! and 1 — e!, changing variables accordingly,
and suitably labeling the variables, we obtain

Lig, ... ;ﬁ (1—e" t)

Loy +--+bp, 12 1 1
0 etb1+.i.+bh _ 1 etb1+i.i+bh71+2 _ 1

ap

1 (boy oty 41 = oyt )

ap! etb1+“'+bh71+1 -1

1 1

etbl+i.i+bh71 -1 etb1+'”+bh—2+2 -1

bp_1—1

i (tb1+62+1 - tb1+b2)a3 . 1 1

as! elbrtba+l — ] elbitbz — 1 eti+z — 1

i (tb1+1 — tbi)a2 . 1 1

as! elbi+1 — 1 el — 1 etz — 1

1!
(23) CLl' etl — dt]_ dtQ A dtb1+"'+bh7

and

lel (1 - 6

tbl+ +by, to etb1+.i.+bh etb1+“'+bh71+2
0 etb1+“‘+bh -1 etb1+,i.+bh71+2 1

b —1

ap ptoy+ by 1 +1
1 (tb1+"'+bh71+1 _tbl‘i‘""i‘bhfl) he bt

ap! etbittby 141
etb1+.i.+bh_1 etb1+"'+bh—2+2
etbl+.i.+bh_1 1 etb1+..i+bh_2+2 -1
~~
bp_1—1
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1 (o 4byt1 — Toy b, ) 301 tb2t? elb1+bz elb1+2
CL3! 6tb1+b2+l —1 etb1+b2 —1 etb1+2 -1
by—1
1 (ty, 41 — tp,)*2e’0r e el?
X ol prea— B e RREEEE T
b—1
al t1
(24) ’ alllettll 6_ 1 dtl dtQ A dtb1+---+bh-

The factor (—1)" on the right of (24) comes from (—1)%+ +on = (1),
Plugging (23) and (24) into the definitions (2) and (1) respectively and
making the change of variables

t=x1+ -+ Tp, tpygog, =T2+ -+ Tny tpy4ogby—1 = T3+ - - + Tpy,
yl2 =2Tp-1+ Tn, t1 =2Tn,

we obtain the proposition. One should note that the dual index (ky)* =

(l1, ..., 1) is given by
ki )*=1,....,La+1,1,....,Lapo1+1,...,1,...,1,a1+1)
< ~—_—— —_———
by, bp_1—1 b1—1

and the depth n is equal to by + - - - + by, + 1, and that (the trivial) xii_l =1
when [; = 1. [

Proof of Theorem 2.5. Set s=m in the integral expressions in the
proposition, and expand (27 + - - -+ ;)™ ! by the multinomial theorem.
Then the formula in the theorem follows from the lemma below.

LEMMA 2.7. Forly,...,l, € Zsy with 1, > 2, we have

gt gl

o ln) = / / €x1+ +a, : 1
€x2+---+zr 1 emr — 1d$1 cday

and

ll Lo g1

S ke

w2+ Fxy

e v — 1dm1 < dxy.
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Proof. The first formula is given in [4, Theorem 3(i)]. As for the second,
we may proceed similarly by using n=* =I'(s)~' [ t571e ™™ dt to have

(.. )= Z Z n

1 o
ST 2 Z_/o

Jj=1

x e-mu(@rtotan) | gmma(Tatedan) L ommety go L gy

l1 1. lr—l
/ / 6x1+ +$r_]_

$2+ +Tr

dxy -+ - dx,.

.

' €$2+"'+Ir — 1 o exr — 1

We record here one corollary to the theorem in the case of n(m)
(compare with the similar formula in [4, Theorem 9(i)]). Noting (k+ 1)* =
(1,...,1,2), we have
———

k—1

COROLLARY 2.8. For k,m > 1, we have

(25) me(m)= " > (e =10 dr-10 k).
J1rdk—1210 22
J1+tig=k+m
83. Relations among the functions ¢, n and (, and their con-
sequences to multiple zeta values and multi-poly-Bernoulli
numbers

In this section, we first deduce that each of the functions n and & can
be written as a linear combination of the other by the same formula.
This is a consequence of the so-called Landen-type connection formula for
the multiple polylogarithm Liy, . (2). We then establish a formula for
&(k1, ..., ky; s) in terms of the single-variable multiple zeta function

1
(26) QUSRNSSR > TR .

1<mi<--<myp<m my---m
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defined for positive integers 1, . . ., [, the analytic continuation of which has
been given in [4] (the analytic continuation of a more general multi-variable
multiple zeta function is established in [1]). This answers the question posed
in §5 of [4]. As a result, the function n(ki, ..., kr; s) can also be written by
the multiple zeta functions of the type above. We then give a formula for
values at positive integers of £(k1, ..., k,; s), and hence of n(ky, ..., k.;s),
in terms of the “shuffle regularized values” of multiple zeta values, and
thereby derive some consequences on the values of 7x(s).

Let k= (k1,..., k) €ZL, be an index set. Recall that k is said to be
admissible if the last entry k, is greater than 1, the weight of k is the
sum ki +---+ k., and the depth is the length r of the index. For two
indices k and k' of the same weight, we say k' refines k, denoted k < k/,
if k is obtained from k’ by replacing some commas by +’s. For example,
(5)=(2+3)=<(2,3), (2,3)=(1+1,2+1)=(1,1,2,1), etc. The standard
expression of a multiple zeta-star value as a sum of multiple zeta values is
written as

Cl)= Y (),

k/ <k
admissible

where the sum on the right runs over the admissible indices k’ such that k
refines k'.

The following formula is known as the Landen connection formula for the
multiple polylogarithm [26, Proposition 9].

LEMMA 3.1. For any index k of depth r, we have

(27) Lik(z : 1) =(-1)" Y Lil(2).

o K=<k’

We can prove this by induction on weight and by using (17), see [26].
By using this and noting z/(z —1) =1 — e’ (tesp. 1 —e7 ) if 2=1—e¢~
(resp. 1 — e?), we immediately obtain the following proposition.

t

PROPOSITION 3.2. Let k be any index set and r its depth. We have the

relations

(28) n(k; s) = (=1)""1 Y £(K'; )
K=<k’

and

(29) ks s) = (=)0 Y (K s).
k=<K’
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COROLLARY 3.3. Let k be a positive integer. Then we have

(30) m(s)= > ks

k:weight k

and

(31) ()= > nks),
k:weight k

where the sums run over all indices of weight k. Here we have written &(s)

for &(k; s).
Proof. The index (k) is of depth 1 and all indices of weight &k (admissible
or nonadmissible) refine (k). 0

We mention here that, also by taking k = (k) in Lemma 3.1 and setting

t t

z=1—¢"or 1 — e’ one immediately obtains a kind of sum formulas for

multi-poly-Bernoulli numbers as follows (compare with similar formulas in

[17, Theorem 3.1]).

COROLLARY 3.4. Fork>1 and m >0, we have

(32) B = (-1)" i)
ky4-+kr=k
ki,r>1
and
) RIS - )
oy 4 +kp=Fk
k;,r>1

Next, we prove an Euler-type connection formula for the multiple
polylogarithm. If an index k is of weight |k|, we also say the multiple zeta
value ((k) is of weight |k|.

LEMMA 3.5. Let k be any index. Then we have
(34) Lik(1—2)= Y a®;i)Lip . 1(1—2) Lig(2),
where the sum on the right runs over indices k' and integers 7 > 0 that satisfy
K| + j < |k|, and cx(K'; 7) is a Q-linear combination of multiple zeta values
of weight |k| — |k'| — j. We understand Lig(z) =1 and |0| =0 for the empty
index (), and the constant 1 is regarded as a multiple zeta value of weight 0.
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Proof. We proceed by induction on the weight of k. When k = (1),
the trivial identity Lij(1 — z) =Li;(1 — 2) is the one asserted. Suppose
the weight |k| of k is greater than 1 and assume the statement holds
for any index of weight less than |k|. For k= (ki,..., k), set k_ =
(kl, ey kT—17 ,ICT — 1) and k+ = (kl, Ceey kr—17 kir + 1).

First assume that k is admissible. Then, by (17) and induction hypothesis,

we have
d . Lig_(1—2)
7 Lig(1 —2) = 1
1 - :
=1 Z Cki(l;j)Lll,“.’l(l—Z) Lij(2),
1,5>0 N——

J

the right-hand side being of a desired form. Here, again by (17), we see that

1 ) .
a0 (5 B g
w_/

7 j—1

We therefore conclude

Lig(l1—2)=— ) o Z L11 1(1 = 2) Liyy4(2) + C

1,70

*/L

with some constant C. Since lim, ,o Liy ~ 1(1 — 2)Lij144(2) =0, we find
) )

g—i

C = ((k) by setting z — 0, and obtain the desired expression for Lix(1 — z).
When k is not necessarily admissible, write k = (kg, 1,...,1) with an
—_———

q
admissible kg and ¢ > 0. We prove the identity by induction on g. The case
q =0 (k is admissible) is already done. Suppose ¢ > 1 and assume the claim
is true for smaller ¢. Then by assumption we have the expression

Lig, 1, 1(1—2)= > aw(m;j) Lip, . 1(1—2) Lim(2),
where we have put k' = (ko, 1, ..., 1). We multiply Li; (1 — z) on both sides.
1
—

Then, by the shuffle product, the left-hand side becomes the sum of the form
gLik(1—2)+ )| Lig 1, 1(1=2),

k{:admissible

*

q—1
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and each term in the sum is written in the claimed form by induction
hypothesis. On the other hand, the right-hand side becomes also of the
form desired because

Lif(1-2)Liy 1 -2)=0G+DLip  1(1-2).
—_—— ~—_———

j j+1
Hence Lik(1 — 2) is of the form as claimed. [

With the lemma, we are now able to establish the following (see
[4, Section 5, Problem (i)]).

THEOREM 3.6. Let k be any index set. The function &(k;s) can be
written in terms of multiple zeta functions as

s+73—1
J

(kis)= Y alk; j)(

k', j>0

)C(k';s+j)-

Here, the sum is over indices k' and integers j > 0 satisfying |K'| + j < k|,
and cx(K'; j) is a Q-linear combination of multiple zeta values of weight
k| — |K'| —j. The index X' may be O and for this we set ((0;s+ j)
=C(s+7).

Proof. By setting z = e~ in the lemma and using

(—log(1 —2))/

(35) Lig 1(2) = g

we have
. - N
Lig(1—e %) = Z Ck(k/;j)ﬁ Lij (e7).
k', j>0

Substituting this into the definition (2) of £(k; s) and using the formula [4,
Proposition 2, (i)]

1 [e'e) ts—l ) 3
C(k, S) = F(S) /0 o 1 le(e t) dt,

we immediately obtain the theorem. 0
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REMARK 3.7. This theorem generalizes [4, Theorem 8|, where the
corresponding formula for Lip 1,k(1 —2z)is

Lit, ., 1x=2) =D Y Lip 11— 2) Lijies (2)

—— artebig=rtl S~
r—1 Vi =1 Jep—1
k—2
+) (C17¢(L. . Lk—j)Lip . 1(2).
J=0 r—1

J

As pointed out by Shu Oi, one can deduce Lemma 3.5 by induction using
[27, Proposition 5]. However, to describe the right-hand side of the lemma
explicitly is a different problem and neither proof gives such a formula in
general. See also [25] for a related topic.

EXAMPLE 3.8. Apart from the trivial case (1,...,1), examples of the
identity in Lemma 3.5 up to weight 4 are:

Lip(1 — z) = —Liz(2) — Li1(1 — 2)Lis (2) + ¢(2),
Liz(1 — 2) = Lij 2(2) 4+ Lia 1(2) + Lij (1 — 2) Li1 1 (2) — ¢(2) Lii (2) + ¢(3),
Lij2(1 — 2z) = —Lis(2) — Li; (1 — 2) Lia(2) — Liy 1 (1 — 2) Lit(2) + ¢(3),
Lis 1(1 — z) = 2Li3(z) 4+ Li1 (1 — 2) Lia(2) + ¢(2) Li1 (1 — 2) — 2¢(3),
Lig(1 — 2) = —Lij 12(2) — Lij21(2) — Lia 1 1(2) — Li1 (1 — 2) Lij 1,1(2)
+ ¢(2)Li11(2) — ¢(3)Lix(2) + ¢(4),
Li; 3(1 — 2z) = Liy 3(2) + Liz 2(2) + Lig 1 (2) + Lii (1 — z) Lij 2(2)
+ Li; (1 — 2) Liy 1( )+ Lii1(1—2)Liji(2)
— ((3)Li(2) + 3¢(4)
Ligo(1 — 2) = —Liza(2) — 2L13 1(2) = Li; (1 — 2) Lig 1(2)
— ((2)Li1 (1 — 2) Lia(2) — ¢(2)Liz(2) + 2¢(3)Lis (2) + ¢(4),
Liz1(1 — z) = —2Li; 3(2) — Lig 2(2) — Lij (1 — 2)Lij 2(z) + ((2)Lia(2)
+C(3)Lir (1 — 2) — 3¢(4),
Lij12(1 — 2) = —Lia(z) — Lii (1 — 2) Liz(z) — Li1 1 (1 — 2) Lia(2)
—Lijg1(1 — 2) Liz(2) 4+ ¢(4),

I
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Lij21(1 — z) = 3Lia(2) + 2Li; (1 — 2) Liz(z) + Li1 1 (1 — 2) Lia(2)
+ ¢(3)Liy (1 — 2z) — 3¢(4),

Lig11(1 — 2) = —3Lis(2) — Li; (1 — 2) Li3(z) + ((2)Liy 1 (1 — 2)
—2¢(3)Lir(1 — 2) + 3¢C(4).

Accordingly, we have

§(255) = =C(25s) = sC(1; s + 1) + C(2)¢(s),
£(3;s) = C(1,2;8) +C(2,1; 8) + sC(1, 1; s +1) = C(2)¢(1; 5) + C(3)¢(s),

601,29 = —~C(r9) — 525+ 1)~ e 0 9) 4 @),
€2,155) = 20(3; )+ 5C(2 5+ 1)+ C(2)sC(s + 1) ~ A (B)S(s),
E(4;8) = —C(1,1,2;8) — (1,2, 1;8) — ¢(2,1,1;8) — sC(1,1,1; s+ 1)
FERIC 1) — (B 8) + CAY(s),

£(1,3;8) = C(1,3;5) +((2,2;8) +¢(3, 15 5)

+5C(1,2;s+1)+sC(2,1;s4+ 1)+

— L5 9) + ZEAC6),

€(2,258) = —((2,2;5) —2¢(3,1;5) — s((2, 1;s + 1) — ((2)s¢(L; s + 1)
= ((2)¢(2; 5) +2¢(3)¢ (15 8) + FC(4)¢(s),

£(3,1;8) = —2¢(1,3;8) — €(2,258) —sC(1, 255 + 1) + ((2)((2; 5)
+C(3)s¢(s + 1) = FC(4)¢(),

s(s+1)

£(1,1,2;5) = —C(4;5) —s¢(3;8 + 1) — 5

_ WC(L 5+ 3) + C(4)¢(s),

¢(2;s+2)

6
€(1,2,1:) = 3¢(4: ) + 25C(3 s+ 1) + "I 2) 4+ @)scls +1)
—5C(4)(9)
62,1, 15) = 300 8) — 535+ 1) + @ a1 2)

—2¢(3)s¢(s +1) + 3C(4)¢(5)-
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From these and (30) of Corollary 3.3, we have for instance
ma(s) = &€(258) +£(1, 15 )
—C(258) = sC(L; s + 1) +¢(2)¢(s) +
13(s) = €(3;5) +&(1,2;8) +6(2,1;8) +£(1, 1, 15 s)

s(s+1)

— (B 8) 4+ C(1,2:8) + (2,1 8) + sC(1, Ty s+ 1) — 5(5; Deis+2)
R )+ C@)sc(s + 1) 4 SETDEFD g

6
na(s) = &(4;8) +&(1,3;8) +&(2,2;8) +&(3,1;8) +&(1, 1, 2; )
—|—§(1 2, 1; 8) +£(2,1,1; 8) —|—§<1, 1,1,1; 8)
=—C(4;s) —C(1,3;s) —C(2,2;8) —((3,1;5) — ¢(1,1,2;5)
—¢(1,2,1;8) —€(2,1,158) —sC(1,1, 15 s+ 1) + €(2)¢(1, 15 8)
D 4,155 42) — C(2)s¢(15 5 +1)

2
+C(2)S(s;1)§(s+2) B s(s+lé(s+2)

7 s(s+1)(s+2)(s+3)
+ @) + .

Before closing this section, we present a curious observation. Recall the
formula

¢(1;s+3)

C(s+4).

gk(m)zg*(lv RN 17k+1)

m—1
discovered by Ohno [24]. Comparing this with the two formulas (25) and
[4, Corollary 10], one may expect

?
1

This is not true in fact. However, we found experimentally the identities

(36) Mk (1) = Ny (k)
and

= 201 2"F)¢(k) (ks even),
(37) 3:1 s -0 = {0 (k: odd).
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These are respectively analogous to the duality relation

¢1,...,L,k+1)=¢1,...,1,m+1)
m—1 k—1
and the relation
k—1 1—k .
S 1k 1y = g 20T ) (heven),
= H/l—/ 0 (k Odd),
P

which is a special case of the Le-Murakami relation [23] (or one can derive

this from the well-known generating series identity [2, 11]

r1-x)ra-y)
T(1-X_Y)

1= ) ¢, Lk—j+)XFIyi=

k>j>1 )

by setting Y = —X and using the reflection formula for the gamma func-
tion.)

We are still not able to prove (36)!, but could prove (37) by using the
following general formula for the value {(k;m) and the relation (28) in
Proposition 3.2. For other aspects of “height one” multiple zeta values,

see [22].
ProproSITION 3.9. Let k be any index and m > 1 an integer. Then we
have
38 k:m)=(—1)""1¢"(ky,1,...,1),
(38) §(k;m) = (=1)" ¢ (ky )

m—1
where (" stands for the “shuffle reqularized” value, which is the constant
term of the shuffle regularized polynomial defined in [19].

Proof. By making the change of variable =1 — e~ in the definition
(2), we have

1 X
¢(k; S):F(ls)/o (- log(l—@)s_lLik(x)%.

Put s =m and use (35) to obtain

1 dx
eliom) = [ L, (@) L)
——

m—1

TQuite recently, Shuji Yamamoto communicated to the authors that he found a proof.
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The regularization formula [19, Equation (5.2)], together with the shuffle

product of Lij () Lix(z), immediately gives (38). [
1

By using (38) and (30), we can write 7, (m) in terms of shuffle regularized

values. The following expression seems to follow from that formula by taking
the dual, but we have not yet worked it out in detail.

o) 2 (" et b

14 J_ . . .
_ Z <]1 Jr 1>C(j1+1,..-7]r—1+]—7.]r+2)'

2<r<kt1 k—r+l
j1+tir=mtk—r—1

§4. The function n(ky, ..., k,; s) for nonpositive indices

In this section, as in the case of positive indices, we construct n-functions
with nonpositive indices. It is known that Li_;(z) can be expressed as
P(z; k)
(1 — 2)ktl

for k € Z>¢, where P(x; k) € Z[z] is a monic polynomial satisfying

Li_j(2) =

deg P(z; k) = {; E: i (1)3

x| P(x; k)
(see, e.g., Shimura [29, Equations (2.17),(4.2) and (4.6)]; Note that the

above P(z; k) coincides with zP;41(z) in [29]). We first extend this fact to
multiple polylogarithms with nonpositive indices as follows.

LEMMA 4.1. For ky,..., k. € Z>o, there exists a polynomial P(x;kq,

ooy k) € Zz] such that

: P(z;kla"-7k'r')
(39) Ll_k17"'7_k7‘ (Z) = (1 _ z)k1+"'+kr+’f’

ki=--=k-=0
(40) degP(x, kl?"'akr): ' ( : . " )
ki +---+k-+r—1 (otherwise),

(41) x| P(x; ky,y ..o k).
More explicitly, P(x;0,0,...,0)=x".

—_——

r
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Proof. We prove this lemma by the double induction on r>1 and
K=k +---+k.->0. The case r=1 is as mentioned above. For r > 2,
we assume the case of r —1 holds and consider the case of r. When

K=k +- -4k =0, namely ky =--- =k, =0, we have
(o]
Lio.o(z) = > a™= 3}, > A
m1<---<my m1<-<Mp_1 Mp=myp_1+1

r

__Z men o 2
D DI 1—2)"

my<---<mgp_1
which implies (39)—(41) hold, and also P(z;0,...,0) = 2". Hence we assume
the case K = k1 +---+ k, — 1 holds and consider the case K = k1 + --- +
k,(>1). We consider the two cases k, =0 and k, > 1 separately. First we
assume k, = 0. Then, by induction hypothesis, we have

oo
. k1 kr—1 m
Lig, . hoa0(z)= ) mytem Yy 2"
my<---<mp_1 Myr=my_1+1
z ky_
- Do mim
1—=z2

my<--<my_1
z P(z:ky, ..., kr—1)
1— z (1 — Z)k1+"'+k7‘71+7’_1 ’
Let P(z; k1, ..., kr—1,0)=2P(2; k1, ..., kr—1). Then (39)—(41) hold.
Next we assume k, > 1. Then, using the same formula as in (17) and the
induction hypothesis, we have

Ligy, kg (2) = S Ligy, . —kot1(2)

_d (P(z:kl,...7kr1))

B AN Cha s

2 {P(ziky, .o ke =) —2) F (ky -k — 1) P23k, ke — 1))
B (1 — z)krtthetr )

If ki=---=k_1=0 and k,.=1, then the numerator, that is,
P(0,...,0,—1) equals rz", using the above results. If not, the degree of
the numerator equals k1 + - - - 4+ k, +7 — 1 by induction hypothesis. Both
the cases satisfy (39)-(41). This completes the proof of the lemma. [

REMARK 4.2. 1In the case r>2, P(x;ki,...,k:) is not necessarily
a monic polynomial. For example, we have Lig_1(z)=22%/(1 - 2)3, so

P(x;0,1) = 222
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We obtain from (39) and (40) that

(42)
t. e

Byt (1= ) = P(16(”“(:"lil];!r‘r')t7 S - {ggi)t) El(j‘ih_erwise_ A
as t — 0o, and from (41) that
(43) Lig,,  —k(1—e)=0@") (t—0).
Therefore, we can define the following.

DEFINITION 4.3. For ky, ..., k. € Z>o, define
(44)  n(=k1,...,—kys)= 1“(15) /0OO ts‘lLi’“"'i’_’“;(tl —<) dt

for s € C with Re(s) > 1 — r. In the case r = 1, denote n(—k; s) by n_x(s).
We see that the integral on the right-hand side of (44) is absolutely

convergent for Re(s) > 1 —r. Hence n(—ki, ..., —k;;s) is holomorphic for
Re(s) > 1 —r. By the same method as in the proof of Theorem 2.3 for
n(ki, ..., kr;s), we can similarly obtain the following.

THEOREM 4.4. For ki, ..., ky € Z=o, n(=ki1,...,—ky;s) can be ana-
lytically continued to an entire function on the whole complex plane, and
satisfies
(45) n(=ki, ..., —ky;—m) =BG 7F) (€ Zsy).

In particular, n_;(—m) = BLY (k € Z=p, m € Zxyp).

It should be noted that {(—k1, . .., —k,; s) cannot be defined by replacing
{k;} by {—k;} in (2). In fact, even if r =1 and k=0 in (2), we see that

_ 1 > sflLiU(l_e_t) _ 1 > s—1
go(s)r(s)/o ¢ et—ldtf(s)/o £,

which is not convergent for any s € C. Therefore, we modify the definition
(2) as follows.

DEFINITION 4.5. For ki, ...,k € Z>o with (ki,..., k) #(0,...,0),

define
~ 1 > _ Li,k i—k (1 —€t)
46 —ki, ..., —kps) = — 51 SR dt
( ) g( 1y ) S) F(S) A et —1
for s € C with Re(s) > 1 — r. In the case r = 1, denote £(—k; s) by &_(s)
for k> 1.
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_ We see from (42) and (43) that (46) is well-defined. Also it is noted that
&(k1, ..., kp;s) cannot be defined by replacing {—k;} by {k;} in (46) for

In a way parallel to deriving Theorem 4.4, we can obtain the following.

_ THEOREM 4.6.  For ki,..., k. €Zzo with (ki,..., k) #(0,...,0),
&(—=k1, ..., =k s) can be analytically continued to an entire function on
the whole complex plane, and satisfies

(47) g(_klz vy =k _m) = Cq(q@_kh“"_kr) (m € Zgo).
In particular, &_j(—m) = oM (k€Zx1, m € Zxp).

Next we give certain duality formulas for Bﬁlkl""’k’“) which is a general-

ization of (6). To state this, we define another type of multi-poly-Bernoulli
numbers by

. RSN
Sep() x Ml
a=0 “ )y e ittty —a)
mi My
- (S) xl e xr
(43) DR

mi,...,myp =0

for s € C. In the case r =1, we see that ‘Bg,]f) = Bﬁr]f) for k€ Z. Then we
obtain the following result which is a kind of the duality formula. In fact,
this coincides with (6) in the case r = 1.

THEOREM 4.7. For ki, ..., kr € Zxo,
(49) Nkt ..., —kys) =B .
Therefore, for m € Zxo,
—k1y—ky) _ op(—m
(50) BT(TL ! ) - %l(cl,...),kr'

Proof. We first prepare the following relation which will be proved in
the next section (see Lemma 5.9):

T ZT_‘IV t k1 k
ev=i (1 —e") . pah gk
6y 1 : = > lLig.on(-e)
ol- 2= (] — et) A kil k)
holds around the origin. Let
k1 k
X ERCINNY 54 T
F(x1, ..., xp;8) = n(—kl,...,—kr;s)ﬁ.

k1, kr 20
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As a generalization of [18, Proposition 5], we have from (51) that

F(z1, ..., xr;8)

1 /Oo oy e e
S T(s) Jo 1-ef il e2v=3 % (1 — et)

:11(13)/000#9_1(1 ) 1—rtH176 q 7Z£:j%) dt
r—1 r .
_ r(ls) Z_:(_l)a<r ; 1) O] (1 D S x) j

mla'~~7mr20 le

00 r
tsfle(afr)t e~ ™Mt Jt
b

r—1 T —ZT:'$V mj
B afT—1 Hj:l(l_e - )
_Z(_1)< a ) Z miy 4 +mp+r—a)

a=0 mi,...,myp 20 (

X

Therefore, by (48), we obtain (49). Further, setting s = —m in (49) and
using (45), we obtain (50). [

REMARK 4.8. In the case r =1, (49) implies n_x(s) = B,(CS). Thus, using
Theorem 4.4, we obtain the duality formula (6), which is also written as

(52) N-k(=m) =n-m(=k)

for k, m € Z=o. This is exactly contrasted with the positive index case (36).
Furthermore, by the same method, we can show that §_k_1 (—m) = C’Ig_m_l)
for k, m € Z>o. Hence, using Theorem 4.6 in the case r =1, we obtain the
duality formula (7).

EXAMPLE 4.9. When r =2, we can calculate directly from (48) that

%ﬁ) = — 27%. On the other hand, as mentioned in Lemma 4.1, we have
Li_10(z ) = 22/(1 — 2)3. Hence the left-hand side of (10) equals

: —t —t
Lijo(l—e™) 1-e 3t 2t
= e
1— eft 67315

hence Bﬁ,f L0 _3m _9m Thus we can verify B( L0 _ %gj(]m).
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85. Multi-indexed poly-Bernoulli numbers and duality formulas

In this section, we define multi-indexed poly-Bernoulli numbers (see
Definition 5.1) and prove the duality formula for them, namely a multi-
indexed version of (6) (see Theorem 5.4).

For this aim, we first recall multiple polylogarithms of x-type and of
w-type in several variables defined by

mi e
Z . .. Z
sk _ 1 T
Llsl,...,sr (217 sy ZT) = § miime2 e’
1<Smy<<my 12 "
mi . ma2—mi My —Mp—1
Z Z o oe e Z
oW - 1 2 r
(53) L151,---78r (21,5 2r) = § : m‘ilng . omBr
r

1I<my<---<my

00 1 o

coa gl

llv-n,lr:l lil (ll + l2)82 e (ll _|_ P + lr)sr

for s1,...,5.€C and z1,...,2 €C with |z;|<1 (1<j<7) (see, eg.,
[13]). The symbols * and w are derived from the harmonic product and the
shuffle product in the theory of multiple zeta values. In fact, Arakawa and
Kaneko defined the two types of multiple L-values L*(k1, ..., ks f1,-- -, fr)
of x-type and L"(ki, ..., kr; f1,..., fr) of w-type associated to periodic
functions {f;} (see [5]), defined by replacing {2]"} by {fj(m)} and setting
(s5) = (kj) € Z%, on the right-hand sides of (54) and (53) for (k1,...,k;) €
Z%,,. Note that

T T
ok T W
(55) Lig,  s.(21,-.0,20) = Lig <H Zj, H Zjy ooy Zr—1%r, zT>.
Jj=2

j=1

DEFINITION 5.1. (Multi-indexed poly-Bernoulli numbers) For si,...,
s €C and de€{l,2,...,r}, the multi-indexed poly-Bernoulli numbers
{BS}fﬁ"n{;ST)’(d)} are defined by

F(xi,..., @581, .,8;d)
Li§) s, (1 — e~ 2= B 2 B e_m)
d —ST_x,
[[j=i(1—e 2= ® )
i ngl(l e 2u=j :vu)lrt%(d)

X = _ —
11,-..,er=1 ngl (21]/:1 ZV) !
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_ (51, () FT 0 2
B = > B FPRE
mi,...,mr=0
where 0;(d) =1 (j <d), =0 (j > d).
REMARK 5.2. Note that Liy| , (z,...,2) = Lik, . (2) defined by (9).
Suppose 1 =---=z,_1 =0 and (s;) = (k ) €Z" in (5 ) We immediately

see that if d =1 then
B(()kl,...,kr),(l) _ Bg]icl,...,kr) (m c Z}O)

,ee0,m

(see (6)), and if d =r then
B((]kl’ . ) (T) (kl,“.,kr) (m c 220)

,er,0,m

(see (8)).

REMARK 5.3. Let
(57)  Ap={(x1,...,2,)€C [[1—e Zv=i"| <1 (1<j<r)}
Then we can see that

Li¥ (1 — e 2=t R I e*xT) (s1,...,8€C)

S1ye-0sSt

is absolutely convergent for (z;) € A,. Also F(z1,...,2p;51,...,5:;d) is
absolutely convergent in the region A, x C", so is holomorphic. Hence
B,(,f}j_'j_':fﬁz’(d) is an entire function, because

B(sl,...,sr),(d)

M1,..., My
g \"™ a\"
:<8:c> <8 ) F(z1,...,2;81,...,8;d)
1 Tr (@1,0-0,27)=(0,...,0)
is holomorphic for all (s1,...,s,) € C".

In the preceding section, we gave a certain duality formula for Bgf 1-okr)

(see Theorem 4.7). By the similar method, we can prove certain duality
formulas for B(kl’ ’kT) @ , though they may be complicated. Hence, in the
rest of this section, we Wlll consider the case d = r. For emphasis, we denote
Bt ) o %) Note that 6,(r) = 1 for any j. With this notation,
we prove the following duality formulas.

THEOREM 5.4. Formq,...,my, ki,..., k. € Z>p,
(58) B ) =B .
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Now we aim to prove this theorem. First we generalize Lemma 4.1 as

follows.

LEMMA 5.5. For ki, ...,k € Zxg, there exists a polynomial ﬁ(xl, cee
Tpy k1, ..., ky) €Z[xy, . .., x| such that

PO 2, T 2 e e 2re12es 2o Koty oo
Lity (21,0, 20) = ULz 2 o % —, ,: 11 T)7
yoeey—kor H;‘:l(l_ny jzl/)zu:j v+
(59)
-

(60) deg, P(x1, ..., apiki, .. k) <Y ky+1,
(61) (21 2) | Py, ... @ k1, k).

Set yj=1l,—; 2 (L <j<r). Then (59) implies

ﬁ(y17’y7'7k17’k1“)
[Ty (1 —yy) == bt

J=1

(62) LiL—uk;l,...,—k;r (Y1, yr) =

Proof. In order to prove this lemma, we have only to use the same method
as in Lemma 4.1 by induction on 7. Since the case of r =1 is proven, we
consider the case of r > 2. Further, when K =k; +---+ k. =0, it is easy
to have the assertion. Hence we think about a general case K=k +---+
kr(>1). When k, =0, we have

Zr

Lity,  p(21,,2) = — Lity, k(21,0 2r2, 2r12r)
oz ﬁ(H§,1 Zjy ooy Zr—12pi k1, oo kpo1)
(R

Therefore, setting ]5(501, ey Xy ke, oo kroq,0) = xrlg(xl, e, Tp_1; R,

.y ky—1), we can verify (59)—(61).
Next we consider the case k, > 1. For k € Z>¢, we inductively define a
subset {C§k3}0<j7ygk+1 of Z by

d k+1 k+1
(63) s (Z mkzm) = gy o 2 Gl

m>1 7=0 v=0
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In fact, by
d § : m 1 l l I+1
% ( z ) = m(z + lZ — lZ ),

and

Z mh ™ = z% (Z mk_lzm> (k>1),

m>l m>1

we can determine {cgky)} by (63). Using this notation, we have

d

Litkl,...,—kT (Zl, ey Zr) = ZT’ELitklw--,—krﬂ-l (Zl, Cee Zr)
r

kyp— My
= Zr E mlfl o Tn’rr—llzin1 e Zr—rl '

my<---<mp_—1

% Z Zu =0 ]1/ mz_lzlﬂr—l'i‘j

(1 — 2 )frtl
T‘ T
} :2 : (kr— Zj+1
T (L= gkt
7=0 v=0
k
X E R e R UL IR ISP LU

mp<-<Mp—1

By the induction hypothesis in the case r — 1, this is equal to

Z k= Zj+1
(1= 2z )krt1 v
7=0 v=0

P(TZt 2y s Zeazes by o ooy Koo, Bp1 4 1)

X J=1
Skl
0=t (-, 2) ™

(1 — ZT—lzT)kT_1+V+1

Therefore, we set

kr kr
D kr— i _
P(xy,...,¢xp k1,0 k) = E §7 )miﬂ(l — xr,l)k’“ v
=0 v=0

X ]S(xl, vy X1y k1, oo ke—o, ke + ).

Then this satisfies (59)—(61). This completes the proof. [
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From this result, we can reach the following definition.

DEFINITION 5.6. For ki, ..., k, € Z>o, define
7’](—]{]1,... —kr;sl,... ST)
w1
= 3
H] 1 H
Li o (1—eXimatv 1 —elr—1ttr ] _gtr) T
(64) b s )H dt;
[T= (1 —exv=i™) j=1
for s1,..., s, € C with Re(s;) >0 (1 <j<r).

Lemma 5.5 ensures that the integral on the right-hand side of (64) is
absolutely convergent for Re(s;) > 0. By the same method as in the proof
of Theorem 2.3 for n(ky, ..., k:; s), we can similarly obtain the following.

THEOREM 5.7. For ki, ...,k € Z>o, n(—k1,..., —kr;S1,...,8) can
be analytically continued to an entire function on the whole complex space,
and satisfies

n(=ki, ..., —kp;—mi,...,—m,) = B(—k10—hr) (my,...,my € Zxp).

Mmi,...,;Mp
(65)

Proof. As in the proof of Theorem 2.3, let

H(_klw"a_kr;slv"'vST)
_ ﬁ R T G ety 1—eh) dt;
~ Jor 1L [T, (1 — e2v= ) !
= 7j=1 Jj=1
T T
:H(627ri8j _ 1) /00 .. /OO Hﬁj-l
J
j=1 € ¢ j=1
Li%  k (1—eZ$=1tv,. 1 —elr 11[
X [ RE) T -
H§:1(1 — ev=i v j=1

(1—ezv:1 oo 1—elr) L

Li*
H i—1 -~k ...~k
( . / t87 3eeey -
¢ =1 IE 11— e
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where C" is the direct product of the contour C defined before. Note that
the integrand on the second member has no singularity on C". It follows
from Lemma 5.5 that H(—k1, ..., —ky; $1,...,s,) is absolutely convergent
for any (s;) € C", namely is entire. Suppose Re(s;) > 0 for each j, all terms
except for the first term on the third member of (66) tend to 0 as € — 0.

Hence
n(_kb R _kr7 S1y-v v S’F)
1
= . H(—ki,...,—kp;s1,...
H;:1(€27msj — 1)F(SJ) ( 1, ) ry S1, 3 ST)7

which can be analytically continued to C". Also, setting (s1,...,s,) =
(=ma, ..., —m;) € ZL, in (66), we obtain (65) from (56). This completes
the proof. 0

Next we directly construct the generating function of n(—ki, ..., —k,;
S1,...,57). We prepare the following two lemmas which we consider when

(x;) is in A, defined by (57).
LEMMA 5.8. For (s;) € C" with Re(s;) >0 (1<j<r),

F(:Ul,.. Xy 81y - e -

y Spy T
oo"” S Ty
etv=j
g A / { TS AR S }Hdt'

Proof. Substituting n=* = (1/T'(s)) [y~ t*"te™" dt into the second mem-
ber of (56), we have

S ay -l 1
F({z;};{sj}; Z H 1_6 - ) [T, T(s;)

U yeolr=1 j=1 j=1

X/Om.../ooo]f[l{t‘;j_lexp< (zjjz) )}H dt;.

We see that the integrand on the right-hand side can be rewritten as

j]jltjfj Hexp —1; <Z )

=J

(67)
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Hence we have

F({z;};{s;}ir)
1 .
T T(s) (1 — e o= ™) / / Ht
3 [I0—e Soomie bt ] a
- I

1 co T 72’2:,,5” s
I (s / / EZ’“_;V 72’"_-tuH dt;
Jj= 1 (1 — € v=j )e = =

1 00 oo T - e Ve Tv r
= / / B s s 1] 4t
[15=1 T(s5) Jo 0 G 1 —esr=s"(1 —es=v=i™)
This completes the proof. 0
LEMMA 5.9. Let z1,...,2 € C and assume that |z;| (1<j<r) are
sufficiently small. Then
T r Ty o0 kl k
z;esv=i gk
(68) H d T - Z LlEkl _k (Zl, e )71“ .
_. 7 sk N
=1 1= zjedv=i® [ - kyle o

Set zj=1— e2v=i (1<j<r) for (tj) € Ar. Then
r eZLJ- Ty (1 _ eZT/:j t'/)

jl_Il 1 — exv=

=j 117,/(1 _ 621’;:]. t,/)

o0 Z xkl xkr
o -w o Tty e 1 Yy
(69) = Z Li% & (1 elv=1 1 —c¢ ) e
[ —
In particular, the case ty =---=t,_1 =0 and t, =t implies (51).

Proof. We have only to prove (68). Actually we have

e kl P ka‘
. r
E Ll—kl,...,—kr(217 ey )71C Tl
1 sl
k1,...,kr=0

_ Z Z H 1mu)x]) jzmj

ki,...,kr=0 my,...,my=1 5=1
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- > e

mi,...,mpr=1 j=1

r ZTi, T,
_ oDy T\ zje— =
N I (= | =
mi,...,mp=1 j=1 =1 1= ZjeZ”:] "
Thus we have the assertion. [
Using these lemmas, we obtain the following.
THEOREM 5.10. For ky, ...,k € Z>o,
(70) N(—kiy e~k st s) = BU,

Proof. By Lemmas 5.8 and 5.9, we have

F(ml,.. S Xy 81y .-

y Sry T
00 r ZT':_Q;U T
59 -1 e=r=J
J = - dtj
el Litfe =
1 / ) 1%
S £
Hj:l INER) . { H

for Re(s;) >0 (1 <j <r). Combining (56), (64) and (71), we obtain (70)
for Re(sj) >0 (1 < j <), hence for all (s;) € C, because both sides of (70)
are entire functions (see Remark 5.3). [

Proof of Theorem 5.4. Setting (s1,...,s,) = (—m1,...,—m,) in (70),
we obtain (58) from (65). This completes the proof of Theorem 5.4.

EXAMPLE 5.11. We can easily see that

2122(2 —Z1 — 22)
(1 — 21)2(1 — 22)2‘

Z1%9
(1= 21)%(1 = 22)’

Li%) o(21, 22) = Lig 1 (21, 22) =

Hence we have

BLRO=273"  BRLU=(2"+1)3" (m,n € Zs).
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Therefore, IB%E)TILO) = Bg%*l) = 3. Similarly we obtain, for example,
B, =B, =18 B{;>V=B{ """ =182,
By, Y =B{"% = 1958.

REMARK 5.12. Hamahata and Masubuchi [14, Corollary 10] showed the
special case of (58), namely

IBS(()O""’O’_k)

7"'707m

= B(()(,).T.-,.(’)Ol;_m) (m, k € Zxo)

)

(see Remark 5.2). On the other hand, Theorem 4.7 corresponds to the case
d=1%#r except for r =1 (see Remark 5.2), hence is located in the outside
of Theorem 5.4. Therefore, in (50), another type of multi-poly-Bernoulli
numbers appear.
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