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SUMMARY

Dengue fever (DF) is the most prevalent and rapidly spreading mosquito-borne disease globally.
Control of DF is limited by barriers to vector control and integrated management approaches.
This study aimed to explore the potential risk factors for autochthonous DF transmission and to
estimate the threshold effects of high-order interactions among risk factors. A time-series regression
tree model was applied to estimate the hierarchical relationship between reported autochthonous
DF cases and the potential risk factors including the timeliness of DF surveillance systems (median
time interval between symptom onset date and diagnosis date, MTIOD), mosquito density,
imported cases and meteorological factors in Zhongshan, China from 2001 to 2013. We found that
MTIOD was the most influential factor in autochthonous DF transmission. Monthly
autochthonous DF incidence rate increased by 36·02-fold [relative risk (RR) 36·02, 95% confidence
interval (CI) 25·26–46·78, compared to the average DF incidence rate during the study period]
when the 2-month lagged moving average of MTIOD was >4·15 days and the 3-month lagged
moving average of the mean Breteau Index (BI) was 516·57. If the 2-month lagged moving
average MTIOD was between 1·11 and 4·15 days and the monthly maximum diurnal temperature
range at a lag of 1 month was <9·6 °C, the monthly mean autochthonous DF incidence rate
increased by 14·67-fold (RR 14·67, 95% CI 8·84–20·51, compared to the average DF incidence
rate during the study period). This study demonstrates that the timeliness of DF surveillance
systems, mosquito density and diurnal temperature range play critical roles in the autochthonous
DF transmission in Zhongshan. Better assessment and prediction of the risk of DF transmission is
beneficial for establishing scientific strategies for DF early warning surveillance and control.
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INTRODUCTION

Dengue fever (DF), is the most widespread mosquito-
borne viral disease globally, with a distribution that
includes much of the tropics and subtropics [1]. The
increasing geographical expansion and incidence
rates of DF constitute a serious global economic,
social and public health issue [2, 3]. DF has spread
rapidly over the last 50 years as a factor of increased
global trade, international travel, climate change,
urbanization and limited vector control strategies
[4, 5]. Although the first DF vaccine was licensed in
Mexico in December 2015, it will require a lengthy
period before it is used worldwide as the effect estima-
tion of the vaccine, where and how to use the vaccine
should be considered. As such, DF remains a major
public health issue worldwide and a better under-
standing of the potential risk factors for DF transmis-
sion are required to facilitate the development of more
effective control strategies and early warning systems.

DF transmission intensity is determined by multi-
farious risk factors. Many studies focusing on the rela-
tionships between DF incidence rates and weather
variables are based solely on mean temperature, rela-
tive humidity or mean precipitation [6, 7]. It is, how-
ever, still unclear which specific weather elements
facilitate the spread of DF across different geograph-
ical locations and various climatic regions [8].
Conditions including socioeconomic factors, environ-
mental factors, and human behaviour, could poten-
tially interact with meteorological factors to explain
regional differences [9, 10]. Climatic variation has
often been cited as being responsible for differences
in the geographical distribution of DF vectors, the
reproduction rates of dengue virus (DENV), the
extrinsic incubation period (EIP) and mosquito sur-
vival [11]. However, findings from recent studies indi-
cate that short-term temperature fluctuations could
substantially alter the incubation period for parasites
[12, 13]. Quantitative interpretations of the relation-
ship between meteorological factors and DF incidence
rates are scarce.

In 1978, DF re-emerged in Foshan city after a 32-
year hiatus in China. It subsequently spread widely
throughout Guangdong, Guangxi, Hainan Island
and Fujian provinces, affecting hundreds of thousands
of people in the southeast coastal regions of
China [14]. Eighty per cent of reported cases occurred
in Guangdong province, including Guangzhou,
Zhongshan, Foshan, and the adjacent cities during
the past decades. The serotypes of DENV-1–4 have

appeared alternately since the outbreak in China in
1978. However, over the past 15 years, DENV-1 has
predominated in China [15]. Since the re-emergence
of DF, prevention and control have been regarded
as a top priority by the Guangdong provincial govern-
ment. The increasing range of Aedes albopictus has
spurred public health concerns as it may further
expand the global distribution of DF [16]. While
Aedes aegypti is the main vector of DF worldwide,
DENV transmission in China is primarily due to A.
albopictus.

Confirmation of DF cases in China is based on clin-
ical diagnosis and laboratory diagnosis. Early notifi-
cation of DF cases identified in primary and
secondary care is crucial for identifying outbreaks
and initiating an early response. Early diagnosis of
DF is challenging [17]. The incubation period of
patients infected with DENV for transmission via
mosquitoes is 4–5 days (maximum 12 days), and the
average time interval between symptom onset and
laboratory confirmation of DF patients is 6 days in
China [18]. Timely diagnosis and early treatment of
patients are essential, especially for severe cases.
Furthermore, cases that remain undetected or are
not identified in a timely manner represent a poten-
tially important risk factor in the spread of DF
virus. Few studies have quantitatively assessed the
timeliness of diagnosis of autochthonous DF. The
aim of the current study is to identify the hierarchical
relationship between timeliness of DF surveillance sys-
tems, mosquito density, imported cases, meteoro-
logical factors and autochthonous DF incidence
rates, and to estimate the threshold effects of high-
order interactions among these risk factors on the inci-
dence rates of autochthonous DF. This information
will be beneficial in guiding future approaches for
the control of DF in Guangdong province and
beyond.

MATERIALS AND METHODS

Study site

The study site was located in Zhongshan city (latitude
22·515847° N, longitude 113·392207° E), which is in
south-central Guangdong province in the port of the
Pearl River Delta. Zhongshan is close to Guangzhou
(the capital city of Guangdong), Hong Kong and
Macau. In 2012 the population of Zhongshan was
3 155 078 [19]; there is, however, substantial movement
of people between Zhongshan and adjacent cities which
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may facilitate the spread of disease. Zhongshan city has
a subtropical monsoonal climate with hot, humid sum-
mers and mild, dry sunny winters. The annual mean
temperature is between 21 °C and 23 °C, and the
annual total precipitation is 2010 mm (Fig. 1).

Data collection and case definitions

Notification of DF is a legally mandated in in China,
and cases are diagnosed according to the national
diagnostic criteria of DF [20, 21]. Data on both
autochthonous and imported cases were obtained
from the Notifiable Infectious Disease Reporting
System (NIDRS) at Zhongshan Center for Disease
Control and Prevention (CDC) for the period 1
January 2001 to 31 December 2013. The DF diagnosis
criteria included epidemiological exposure history, clin-
ical manifestations, and laboratory tests. Since DF is a
notifiable disease, positive test results need to be
reported by hospitals to China CDC. DF was clinically
diagnosed according to the following symptoms: pre-
senting fever 39–40 °C and with one of the following
symptoms: rash, headache, retro-orbital pain, myalgia,
arthralgia, rash and conjunctival congestion. The
serum samples of suspected patients were then sent to
the local CDC laboratory for confirmation based on
the following different laboratory tools: the detection
of the virus isolation and identification, viral nucleic
acid positive by PCR test, detection of antigens or anti-
bodies, a fourfold increase in specific IgG antibody titre
in the paired serum specimens in the acute and conva-
lescent phase or the combination of these methods [22].
The laboratory-test tools for DF serum are combined
on the basis of the days of illness phases. The sensitivity
of each approach is influenced by the duration of the
patient’s course of illness. The ratio IgM/IgG is used
to identify primary and secondary DENV infections
[22]. Autochthonous DF cases were defined as the
confirmed cases in a patient with no history of travel
to endemic areas outside China or other cities in
China in the preceding 14 days. Conversely, at the
city level, imported DF cases were defined as the
patients with DF who had traveled to dengue-endemic
areas (as specified by WHO) outside China or other cit-
ies in China in 14 days prior to the development of
symptoms [23].

The symptoms of DF are non-specific and may
mimic other febrile illnesses. As such, clinical diagnoses
lack specificity and laboratory confirmation is generally
sought. For every notified DF case, the date of symp-
tom onset and the date of laboratory diagnosis were

recorded. The timeliness of diagnosis was defined as
the monthly median time interval between symptom
onset date and laboratory diagnosis date (MTIOD).

The population statistics data were obtained from
Zhongshan Statistical Bureau [19]. Previous studies
have reported that meteorological factors such as
temperature, rainfall, relative humidity, and diurnal
temperature range (DTR) are related to DF incidence
rates [6, 13]. DTR is defined as the difference between
the maximum and the minimum daily temperature.
In this study, monthly meteorological data were pro-
vided by Zhongshan Meteorological Bureau [24].
Meteorological variables used in the study included:
monthly maximum temperature (MaxT) (°C), monthly
minimum temperature (MinT) (°C), monthly mean
temperature (MeanT) (°C), monthly maximum diurnal
temperature range (MaxDTR) (°C), monthly mean
diurnal temperature range (MeanDTR) (°C), monthly
minimum diurnal temperature range (MinDTR) (°C),
monthly mean rainfall (MeanRF) (mm), monthly
maximum relative humidity (MaxRH) (%), monthly
minimum relative humidity (MinRH) (%), and
monthly mean relative humidity (MeanRH) (%).

A. albopictus is the sole vector for the transmission
of DENV in Zhongshan, China [25]. Mosquito sur-
veillance, especially larval density surveillance is rou-
tinely performed in Zhongshan. Larval density
surveillance is routinely performed in the 24 adminis-
trative districts of Zhongshan. Breteau index (BI) was
defined as the number of positive containers contain-
ing larvae per 100 houses inspected by monthly
door-to-door interview [22]. BI is considered as the
most informative index for A. albopictus density due
to inclusion of the information of positive containers
and houses [22]. The surveillance was conducted at
monthly intervals over the study period.

Statistical analysis and modelling

Time-series cross-correlation analysis

As the relationship between DF incidence rates and
other factors for the current month or previous
months require exploration, cross-correlations were
used to compute correlations between meteorological
factors and the DF incidence over a range of time
lags (a time lag was defined as the timespan between
the risk factors and incidence rates of DF fever).
The cross-correlation function was performed to
quantify the linear correlation between the monthly
autochthonous DF cases and risk factors, including
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the monthly imported cases, meteorological variables,
mosquito density and monthly MTIOD over a lag
time of 7 months. In this study, we used the lagged
moving average (MA) value to calculate the lagged
effect on the series of the factors. The significant
time lags of the risk factors were chosen for the calcu-
lation of lagged MA. The MA value is applied in a
time-series model which is defined as the mean value
of the previous numbers of lagged periods [26]. The
lagged MA could be better for explaining the lagged
effects of the factors.

Time-series classification and regression tree

The classification and regression tree (CART) model
is a flexible, robust and non-parametric statistical
method which is useful for the analysis of complex
ecological applications. Exploring and constructing
the decision-tree model in the ensemble method can
express the nonlinear relationships, high-order interac-
tions, and missing values.

CART is suitable for predicting the relationships
between dependent variables and exploratory vari-
ables [27]. It can interpret the variation of a single
response variable by recursive partitioning of the the
ecological data into more homogeneous subsets,
using combinations of explanatory variables. The
response variable can be a categorical variable (a clas-
sification tree) or a continuous variable (a regression
tree) [28]. A time-series regression tree model was
used to determine the threshold effects of the risk fac-
tors in the monthly incidence rates of autochthonous
DF. In this study, we used meteorological variables,

mosquito density, timeliness of diagnosis and the sea-
sonality factor [harmonic factors: sin(2pt/52) and cos
(2pt/52)] as the independent variables for analysis in
the CART model. The tenfold cross-validation was
performed to identify the hypothesis in the analysis.

The tree was grown by the recursive binary splitting
of variables, including meteorological variability,
mosquito density, and timeliness of diagnosis. Each
split formed on the basis of a single explanatory vari-
able and two nodes, which was selected to maximize
homogeneity (minimize impurity) of the resulting
two nodes. Homogeneity was assessed with several
impurity functions, and two measures were used for
regression trees: least squares (Gini splitting rules)
and least absolute deviations (two splitting rules).
During the process of modelling, a preferred method
is to produce an overly large tree and then prune
and test using independent data. Pruning is used to
reduce the tree to an optimal size, which is determined
using cross-validation or independent tests. Cross-val-
idation is used to choose the best tree on the basis of
the misclassification error and the complexity of the
tree. The task is achieved through cost-complexity
function: RC(T) =R(T) + c(T̃)�minT, where R(T) is
the residual estimate of error, misclassification error
of the tree T, c(T̃) is the complexity measure which
depends on T̃, which is the number of terminal
nodes in the tree, c is the parameter which is used to
build the tree through learning sample and testing
sample [29]. The procedure of tenfold cross-validation
is performed to prune the overly large trees and
to select the best-trimmed tree through a training
data subgroup and a testing data subgroup. The

Fig. 1. Location of Zhongshan, Guangdong, China.
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process of cross-validation is performed as follows: the
data are randomly split into ten subsets, training the
model on nine subsets and calculating the estimated
error rates on the tenth subset. The best optional
tree is the one with the smallest estimated error rates
[27].

Monthly DF incidence was considered a continuous
response variable when the regression model was
built in this study. The risk factors which were signifi-
cantly positively or negatively associated with the
autochthonous incidence rates in cross-correlation
analyses were applied to the time-series regression
tree model as independent variables. All time-series
variable graphs were completed by Microsoft Excel
2007 (Microsoft Corp., USA). Cross-correlation
between the factors and DF incidence rates were
performed using SPSS v. 16 (SPSS Inc., USA) and
time-series regression tree models were constructed
in R software v. 3.1.1 (R Foundation for Statistical
Computing, Austria).

Ethics statement

Ethics clearance for this project was approved by
Sun Yat-Sen University and Zhongshan Center for
Disease Control and Prevention Ethical Review
Committee (Approval no: 2015024). DF data were
collected from NIDRS. All potentially identifiable
information has been removed to protect the privacy
of individuals.

RESULTS

Descriptive analysis

The seasonal variations of autochthonous DF cases,
meteorological factors, mosquito density and
MTIOD during the study period are shown in
Figure 2. There were 1110 notifications for autoch-
thonous DF cases and 40 imported cases in
Zhongshan city during the period 1 January 2001 to
31 December 2013. The autochthonous cases mainly
occurred between July and November. The mean
monthly number of autochthonous cases was 7·12
(Table 1).

Cross-correlation analysis

The results of the cross-correlation function show that
autochthonous DF incidence rates were significantly
positively associated with MaxT, MTIOD, and
MeanBI at 1–3 months lagged MA, with monthly

imported DF cases at a lag of 1 month, with MinT
and MeanT at 1–2 months lagged MA, with
MaxDTR, MeanRH, MaxRH at a lag of 1 month.
MinRH was positively associated with the DF
incidence rates at a lag of 2 months (Fig. 3,
Supplementary Table S1). There was no significant
relationship between MaxRF, MeanRF, MeanDTR,
MinDTR and autochthonous DF incidence rates
(Supplementary Fig. S1, Supplementary Table S1).

The regression tree model

We calculated the lagged MA values with the signifi-
cantly lagged orders based on the cross-correlation
analysis. The significant factors from cross-correlation
at the different time lags were used for the construc-
tion of regression tree models (Fig. 4). For the period
1 January 2001 to 31 December 2013, the regression
tree model demonstrated MTIOD was the most
important splitting factor contributing to DF inci-
dence rates, with a threshold value of 4·15 days
(Fig. 4). The model also showed that mosquito density
was of greater importance than the meteorological
factors temperature range. For example, the monthly
incidence rates of autochthonous DF increased by
26·43-fold [relative risk (RR) 26·43, 95% confidence
interval (CI) 11·74–41·13, compared to the average
DF incidence rate during the study period] when the
2-month lagged MA of MTIOD was >4·15 days. In
the right branch of the tree, the monthly autochthon-
ous DF incidence rates increased by 36·02-fold (RR
36·02, 95% CI 25·26–46·78, compared to the average
DF incidence rate during the study period) when the
3-month lagged MA of MeanBI was 516·57 and
the 1–2 months lagged MA of MTIOD was >4·15
days. MTIOD and MaxDTR were included in the
left branch of the tree. If the 1–2 months lagged MA
of MTIOD was between 1·11 and 4·15 days and
MaxDTR at a lag of 1 month was <9·6 °C, the
monthly mean autochthonous DF incidence rate
increased by 14·67-fold (RR 14·67, 95% CI 8·84–
20·51, compared to the average DF incidence rate
during the study period). However, the other branch
showed the autochthonous DF incidence rate
increased by 3·06-fold compared to the overall
monthly mean autochthonous DF incidence rate
when the 1–2 months lagged MA of MTIOD was
between 1·11 and 4·15 days and MaxDTR at a lag
of 1 month was 59·6 °C (RR 3·06, 95% CI 1·17–
4·95) (Fig. 4).
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Fig. 2. Monthly distribution of autochthonous dengue cases, imported dengue cases, mosquito density, meteorological
variation and time interval between onset and diagnosis from January 2001 to December 2013 in Zhongshan, China.
Mean rainfall (mm), monthly mean rainfall; mean temperature (°C), monthly mean temperature; MaxDTR (°C), monthly
maximum diurnal temperature range; MTIOD (days), monthly median time interval between symptom onset and
diagnosis by day; MeanBI, monthly mean Breteau Index; MinRH (%), monthly minimum relative humidity.

Table 1. Summary statistics of monthly data for all variables between 1 January 2001 and 31 December 2013 in
Zhongshan, China

Variable Mean P
S.E.M. Minimum Maximum 1st quartile 3rd quartile

ADFa 7·115 2·946 0 310 0 0
IDFb 0·26 0·108 1·343 1·805 0 0
MeanBIc 14·39 0·6 3·908 53·586 9·59 18·179
MTIODd 6·044 0·337 1·833 8·384 5·5 7·045
MeanTe 22·907 0·425 10·745 30·41 18·344 27·889
MaxTf 31·790 0·303 19·400 38·700 28·750 32·000
MinTg 15·318 0·581 1·100 26·200 8·125 16·000
MeanDTRh 6·801 0·065 4·997 9·248 6·288 7·219
MaxDTRi 11·276 0·178 7·4 26·8 9·7 12·475
MinDTRj 2·550 0·077 0·800 5·900 1·800 3·100
MeanRFk 40·681 4·207 0 310·467 3·99 64·194
MaxRFl 404·680 40·621 0·000 3258·000 46·275 658·000
MeanRHm 75·036 0·569 30·417 86·733 72·105 79·637
MaxRHn 91·465 0·522 34·524 100·000 89·000 95·000
MinRHo 33·042 0·816 8·000 53·000 25·663 33·000

aADF, Monthly autochthonous DF cases; bIDF, monthly imported DF cases; cMeanBI, monthly mean Breteau Index;
dMTIOD (day), monthly median time interval between symptom onset and diagnosis; eMeanT (°C): monthly mean tempera-
ture; fMaxT, monthly maximum temperature; gMinT (°C), monthly minimum temperature; hMeanDTR (°C), monthly mean
diurnal temperature range; iMaxDTR, monthly maximum diurnal temperature range; jMinDTR (°C), monthly minimum
diurnal temperature range; kMeanRF, monthly mean rainfall; lMaxRF (mm), monthly maximum rainfall; mMeanRH (%),
monthly mean relative humidity; nMaxRH (%), monthly maximum relative humidity; oMinRH (%), monthly minimum rela-
tive humidity; p

S.E.M., standard error of mean.
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DISCUSSION

In this study, we explored the effect of potential risk
factors such as timely diagnosis, mosquito density,
and the meteorological factors on DF incidence
rates in Zhongshan using time-series regression tree
models. This study indicates that the timeliness of
diagnosis, mosquito density, and temperature fluctua-
tions played significant roles in the transmission of
autochthonous DF in Zhongshan.

To some extent, the timeliness of diagnosis could
reflect the sensitivity of the NIDRS run by the local
CDC in China. The time interval between symptom
onset and laboratory diagnosis contributed to the
delay in reporting from the doctors to the surveillance
system. The results of this study indicate that the early
diagnosis of DF was the most important factor for
reducing DF spread. We found that MTIOD was
6·044 days during the study period (Table 1). The
threshold value of 4·15 days at a 1–2 months lagged
MA of MTIOD is the most important factor in deter-
mining the monthly incidence rates of the autochthon-
ous DF in Zhongshan.

Previous studies suggest that timeliness of diagnosis
is associated with patients’ age, education, income,
occupation, doctors’ skills and diagnostic methods
[30]. According to the current status of DF prevention
and control strategies in China, several possible rea-
sons related to the healthcare system and patients
were considered as contributing factors to delayed
diagnosis. First, the lack of specificity of clinical

diagnosis and laboratory-confirmation facilities and
health conditions of the basic community hospitals
or primary healthcare departments can lead to the
delay in diagnosis. Second, the social demography
information of patients such as age, education,
income, and occupation may impact on the timeliness
for seeking the medical service. In our study, 59·14%
of all the reported cases were people aged 20–40
years. Patients were most commonly employed in
the transport, production, and agricultural industries.
A portion of suspected cases who presented with a his-
tory of sudden onset fever might take antifebrile medi-
cine themselves, instead of consulting a doctor at the
hospital during the acute febrile phase, leading to
underestimation or delayed diagnosis. Additionally,
DF cases are not quarantined, which could increase
the opportunity for mosquito–human DENV trans-
mission by human movement during the incubation
period [31]. Therefore, this study indicates that any
delay in diagnosis and notification of cases increases
the risk of introducing the virus into mosquitoes and
driving autochthonous transmission [3].

A number of changes need to be implemented to
improve detection and to facilitate prevention and
control in the community. First, clinical guidelines
and management strategies for early monitoring and
diagnosis of DF need to be improved. Professional
education and training of the clinical doctors, nurses
and other healthcare workers with respect to diagnosis
of DF cases should be widely implemented. Second,

Fig. 3. Plots of cross-correlation function (CCF) between monthly DF incidence rates separately and mosquito density,
diurnal temperature range, timeliness of diagnosis and meteorological variation during January 2001 to December 2013 in
Zhongshan, China. The two dashed lines illustrate critical values for cross-correlation (at the 5% level).
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increased explorations of feasible and low-cost
methods for early diagnosis are required for basic
medical units. The NS1-based test as a rapid screening
tool is utilized for the early diagnosis of DF, although
the accuracy and variance between the primary and
secondary infections of the NS1 test for early
diagnosis of DF infection still needs to be enhanced
in basic healthcare departments, the method’s value
remains [32]. Third, effective public health education
for the population, especially for those at high
risk needs improvement. Finally, customs officers
should be involved in the prevention of epidemics;
customs officers are often the first contact with
imported cases.

Short-term temperature fluctuations were observed
to be positively associated with autochthonic DF
transmission in our study. These findings are consist-
ent with previous studies [11, 33]. Temperature is crit-
ical to the survival of the adult female Aedes mosquito
and to virus transmission. Recent studies have
explored the interaction between temperature fluctua-
tions and mosquito-borne flavivirus transmission [13,
33]. A previous study found that larger diurnal

temperature fluctuations could have a negative effect
on vector survival for mosquitoes [12]. Moderate
fluctuations in temperature (10 °C) would increase
DF risk in the higher DF transmission season [13].
Temperature could influence the EIP of Aedes mos-
quitoes. Carrington et al. [34] showed that the large
DTR might reduce DENV susceptibility and extend
the EIP of mosquitoes. Our study indicates that
when MaxDTR, at a lag of 1 month, was <9·6 °C
and the 1–2 months lagged MA of MTIOD was
1·11–4·15 days, the autochthonous DF incidence
rate was 14·67-fold higher than the average autoch-
thonous incidence rate of DF. The small DTR
might be the key risk factor in DF transmission due
to increased longevity, midgut infection rates and
shortened EIP of Aedes mosquitoes compared to the
large temperature fluctuations or constant tempera-
ture [34].

The main vector species for DF in China is A. albo-
pictus [35]. Although DF transmission depends dir-
ectly on female mosquitos, traditional larval indices
such as BI are still widely used for the entomological
surveillance during epidemic periods [36, 37]. In a

Fig. 4. Results of time-series classification and regression tree modelling the relationship between mosquito density,
diurnal temperature range and the time interval between onset and diagnosis and monthly autochthonic DF incidence
rates during the period January 2001 and December 2013 in Zhongshan, China. The regression tree shows the monthly
mean autochthonic incidence rates of DF, the threshold values of the tree.
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study conducted in Vietnam, Pham et al. showed that
there was a linkage between mosquito indices and DF
incidence rate [38]. A Brazilian study identified that
Aedes larval indices and rainfall could enhance DF
outbreaks [39]. The time-lag effect between peak lar-
val mosquito density and peak incidence rates of DF
outbreaks was about 1 month [39]. We found the
monthly autochthonous incidence rates of DF to be
significantly positively correlated with the MeanBI
at lags of 1–3 months (Fig. 3). Monthly autochthon-
ous DF incidence rate increased by 36·02-fold when
the 3-month lagged MA of the mean BI 516·57 and
the 2-month lagged MA of MTIOD was >4·15 days
(Fig. 4). BI, as a predictor to identify high-risk areas
for DF transmission, was evaluated in Havana,
Cuba [40]. This study showed BI 516·57 to be a sign-
ificant predictor. The threshold effects of A. albopictus
density in our study were different from other studies
[40, 41], which might be explained by ecological fac-
tors. Additionally, climate change, global travel,
herd immunity, DENV serotypes, and timeliness of
diagnosis would be possible factors to influence the
relationship between the Aedes density and DF trans-
mission risk [42, 43].

This study demonstrated the hierarchical interac-
tions between predictors of DF using the time-series
regression tree. It evaluated the relevance among the
time interval between symptom onset and diagnosis,
diurnal temperature fluctuations, mosquito density
and autochthonic DF incidence rates in China using
a time-series regression tree model construction. It
suggests that the assessment of threshold effect of
the important risk factors of DF and the implementa-
tion of management control measures could be attrib-
uted to DF transmission. Regression tree models can
provide a non-parametric approach that can poten-
tially better accommodate these complex interactions
since they avoid some of the assumptions associated
with linear regression [44].

In our previous study, we also compared the out-
comes of the Bayesian CART model, with those of
the traditional CART model. The analyses indicate
that the nature and magnitude of the effect estimates
were similar for the two methods [45]. Additionally,
we tested the autoregression (AR) term in the
CART model. The results showed that the key envir-
onmental factors remain significant in the relationship
in the model even if we included the AR term in the
model. However, the goodness-of-fit analyses indicate
that the model without the AR term had higher accur-
acy than the model with the AR term [model with AR

term: root mean squared error (RMSE)=0·528; with-
out AR term: RMSE=0·356]. As the study aimed to
assess and select the key environmental factors we
did not include the AR term in the non-parametric
model.

We suggest that local public healthcare depart-
ments should invest further in DF health education,
enhance laboratory diagnostic services, focus more
on Aedes mosquito density, and improve the sensitiv-
ity and specificity of surveillance systems, focused on
both vectors and patients.

There were, however, a number of limitations to
this study which need to be acknowledged. First,
monthly data were used in the study. Weekly data
would be better to assess the relationships between
weather, mosquito density, and DF. Unfortunately,
in this study, weekly data on mosquito density were
unavailable. Second, the potential risk factors (herd
immunity, human behaviour, virus strain and mos-
quito survival rate) were not included in the analysis
as they were not available. It is suggested that the
rapid and community-based diagnostic methods for
decrease of DF infection and the spread in the mos-
quito–human interface are needed in future studies.
Third, we did not evaluate the lifespan of larvae and
the mosquito–human contact rate, thus the analysis
was on the basis of a hypothesis that there was a posi-
tive correlation between mosquito density, biting rate,
and infection rate. This study was an ecological study,
which applied links between the risk factors and out-
come of the diseases based on the population.
Further research is needed to determine the possible
causal association between the factors and DF inci-
dence rates.

CONCLUSION

In this study, time-series regression tree models were
used to assess and predict the risk of DF. We empha-
size that timeliness of diagnosis, mosquito density,
and diurnal temperature fluctuation play key roles in
autochthonous DF transmission. MTIOD was deter-
mined to be the most critical factor in the assessment
of the risk of DF transmission and the implementation
of management control measures. Public health
departments in China should pay more attention to
mosquito control. The threshold effects of meteoro-
logical variation such as MaxDTR may be considered
as a predictor of DF incidence rate. We conclud that
the threshold effect of timeliness of diagnosis, mos-
quito density and diurnal temperature fluctuation
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examined in the time-series regression model could be
used to predict and assess the risk of DF epidemics,
and the factors identified is this study can benefit the
early warning infectious diseases surveillance system.

SUPPLEMENTARY MATERIAL
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