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Abstract

Airborne electromagnetic induction sensors have demonstrated their extensive capacities to
measure sea-ice thickness distributions. However, biases can emerge when comparing these
1-D measurements to a broader 2-D regional scale due to the spatial anisotropy inherent to
sea-ice cover. Automated processing of available sea-ice maps could significantly ease the deci-
sion on how to set up an optimised flight pattern, which would result in representative ice thick-
ness numbers for the region. In this study, first we investigate the extent to which the sea-ice
anisotropy can influence the representativeness of an airborne survey compared to the regional
situation. Second, we propose a method to process sea-ice maps prior to flights to help preparing
the most representative flight plan possible for the local area. The method is based on automated
segmentation of radar satellite images and extensive simulation of flight transects over the image.
The spatial analysis of these transects enables for the identification of the most representative sur-
vey trajectories for the area. The method was applied for seven different synthetic aperture radar
satellite images over Arctic sea ice north of Svalbard. The results indicate that the proposed
method improved the representativeness of the airborne survey by identifying the most suitable
transect over the ice pack.

Introduction

The ongoing global climate change affects the Arctic more than the rest of the globe
(Serreze and Barry, 2011). The current changes in Arctic sea ice (Perovich and others,
2019; Portner and others, 2019) are of major relevance for shipping companies, fishery,
oil and gas industry, ecosystems and local residents. Understanding these ongoing changes,
in particular the decrease in sea-ice thickness (Ricker and others, 20174; 2017b) and sea-ice
extent (Meier and others, 2014; Perovich and others, 2019), are essential to better under-
stand global climate processes (Budikova, 2009; Liu and others, 2012; Vihma, 2014).
Ground-based electromagnetic (EM) sea-ice thickness profilers have now long demon-
strated their capacities (Kovacs and Morey, 1991; Haas and others, 1997) and paved the
way to airborne electromagnetic instruments (AEM) (Kovacs and others, 1987; Haas and
others, 2009). AEM surveys are now playing an important role in the field for regional-
and large-scale monitoring of the sea ice (Lindsay, 2010; Hendricks and others, 2011;
Lindsay and others, 2012; Renner and others, 2014; Haas and Howell, 2015; King and
others, 2017; Rosel and others, 2018a). The flying speed and range allow a fast and
extended measurement of the regional distribution of sea-ice thickness (Renner and others,
2014; King and others, 2017; Rosel and others, 2018b), which could not be obtained by any
other means. It also avoids an underestimation of thinner ice and leads fraction which may
occur, for safety reasons, on land-based surveys. However, the sea ice may exhibit a sub-
stantial surface anisotropy and, in particular, long linear features, such as leads and ridges,
aligned on a general direction. These features can be undersampled if their broader scale is
not estimated properly, or conversely overrepresented if a significant part of the flight fol-
lows a particular feature. Identifying the true size of 2-D features with 1-D transects is a
well-known problem (Key, 1993; Horvat and others, 2019) as well as the potential error
induced in the resulting sampling (Key and Peckham, 1991).

Flight plans are usually prepared based on available sea-ice maps, which depend on avail-
able and updated remote-sensing products. But in a complex and dynamic environment such
as sea ice, it is not always easy to identify the best route to get the most representative sampling
of the area. Given that expeditions, and in particular flying hours, are costly, it appears essen-
tial to optimise procedures as much as possible.

In this study, we first investigate the extent to which sea-ice anisotropy can affect AEM sur-
veys. Two different approaches have been tested to evaluate the effect of anisotropy, first using
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a radial analysis around the centre point of an image, then by simulating random flight lines
over the images. In both cases the distribution of the ice classes has been calculated for each
line and analysed in regard of their flight trajectories. We then propose an automated process-
ing, based on the flight-line simulations, of sea-ice maps to identify which flight directions
would be preferred to get survey lines that are most representative for sea-ice conditions in
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Data and method
Study area

In this study, we focus on the area of the Norwegian young sea ICE
expedition (N-ICE2015), in the Arctic Basin north of Svalbard. In
particular, we will use the data collected during the drift of so-called
Floe 3, lasting from 18 April 2015 to 5 June 2015 (Granskog and
others, 2016). We chose this phase of the drift experiment because
it included a helicopter to conduct airborne sea-ice thickness sur-
veys, and satellite acquisitions were planned to overlap the surveys.
Figure 1 shows the drift track of the ice station.

The sea ice in the vicinity of Floe 3 consisted of three main ice
types: thin ice of refrozen leads (RL), first year ice (FYI) and
second year ice (SYI), with modal total thickness of 0.2, 1.2 and
2.3 m, respectively (Rosel and others, 2016a), according to ground
surveys conducted in the vicinity (within a 5km radius) of the
R/V Lance. Ice types were identified by ice-core salinity and isotope
analyses, in combination with sea-ice thickness data (Granskog and
others, 2017). Snow thickness was on average 0.45 m on thicker ice
types (Rosel and others, 2016b), while on the RL it was ~0.02 m,
consisting of blowing snow adhering to frost flowers on the surface
(Rosel and others, 2016b). Back-trajectory analysis for the ice sta-
tion showed that the oldest sea ice might originate from September
2013 from the northern Laptev Sea and is thus considered to be
SYI (Itkin and others, 2017).

Similarly, the ice core analysis from Granskog and others
(2017) indicated that the sea ice in the area consisted mainly of
only FYI and SYI, interrupted by RL with young ice and pressure
ridges. Rosel and others (2018a) presented a simplified ice
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classification of the area with three classes ‘thin’ (comprising
open water and RL), ‘level’ and ‘deformed’ ice, with the respective
fraction of each class: 11, 74 and 14%. For an ease of comparison
between remote-sensing imagery and AEM survey, we use here a
similar classification of the ice.

Sea-ice thickness and surface roughness from airborne surveys

As part of the N-ICE2015 campaign, 16 helicopter-borne regional
ice surveys over Floe 3 and sea ice in the vicinity were conducted
in the period of 15 April 2015 to 18 May 2015 (King and others,
2016). Results of the campaign are so far published in Rosel and
others (2018a), Itkin and others (2017), Johansson and others
(2017) and King and others (2018). In this study we use total
sea ice and snow thickness measurements (further referred to
as ‘sea-ice thickness’ for simplicity) and surface roughness
estimates along the flight tracks obtained using AEM instrument,
towed under a helicopter. Here we will use the definition of the
roughness as derived from the radar meaning of the term: the
std dev. of the local surface elevation (Ulaby and others, 1982).
The ice thickness sensor, presented in detail by Haas and
others (2009), makes use of the principles of EM induction at
the seawater/sea-ice interface. Using a set of transmitting and
receiving coils it allows deriving the distance from AEM to the
bottom of the sea ice. A Riegl LD90-3100HS laser altimeter
mounted in the AEM additionally provides the distance from
the instrument to the top of the ice, or snow surface in the case
of snow-covered sea ice. Over level sea ice, the accuracy of the
AEM measurements was found to lie within +0.1 m of drillhole
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Fig. 1. Map of the study region, along with footprints for satellite images used in this study (dashed and dotted lines, see legend for details). The ALOS-2 segmented
images are shown with light blue for open water and thin ice class, teal for level ice and yellow for deformed ice. The Radarsat-2 (RS-2) images are only presented
here with their footprints for a better readability of the map. Finally, the overlapping AEM tracks are overlaid on the SAR satellite images. The background shades of

blue represent the bathymetry (from shallower in light blue to deeper in dark blue).
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measurements (Haas and others, 2009). The instruments
footprint in regular operating conditions, with a helicopter flight
altitude of ~40 m, is of ~50 m (Kovacs and others, 1995; Beamish,
2003; Renner and others, 2014). This suggests that the inferred
thickness of ice ridges, which are narrower than the instrument’s
footprint, is often underestimated. Whenever possible, in addition
to the AEM data, we used imagery from a helicopter-mounted
automatic camera (GoPro) that recorded overlapping images of
the flight track every 2s to aid a visual interpretation of the
AEM data, in particular identification of leads and open water.

Surface roughness along the flight paths is calculated using the
laser altimeter of the AEM, which offers a + 15 mm accuracy of
the measured distance. The sampling rate of the laser is set to
100 Hz. With a typical flying speed of 30-40 m 5", the sampling
distance varies from 30 to 40 cm.

This altimeter was not intended for surface topography measure-
ment, in particular, it has no inertial measurement unit. The dis-
tance measured is relative to the AEM and is therefore affected by
the helicopter movements. As it is impossible to fly the helicopter
perfectly parallel to a reference surface, such as sea level, the distance
recorded is heavily affected by the changes in altitude, in addition to
the surface signal. The surface profile, and therefore the surface
roughness, cannot be directly interpreted from the signal recorded.
The helicopter movements have to be removed by filtering first.

In broad outline, the signal is a superposition of a high fre-
quency component from the height variations of the sea-ice sur-
face and a low frequency component from the helicopter
movement. Therefore, retrieving the ice surface topography con-
sists of isolating the helicopter motion using a low-pass filter
and subtracting it from the laser altimeter signal. To filter the heli-
copter movement, we followed a three-step filter proposed by
Hibler III and others (1972), commonly used in such applications
(Beckers and others, 2015; Yitayew and others, 2018). An example
of the filtering is shown in Figure 2. On this 2 km segment of the
flight, we can see the estimated motion of the aircraft and the
resulting surface topography. Without elements of comparison,
it appears impossible to quantify the accuracy of the filter.
Aside from few exceptions (e.g. ~1100 and 1450 m in Figure 2,
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possibly cracks in the sea ice, or filtering artefacts), the recon-
structed surface profile looks credible.

Once the surface topography is obtained, we estimated the sur-
face roughness by calculating the std dev. of the surface on a slid-
ing window of 200 points, corresponding roughly to the AEM
footprint of 50 m. Finally, the sea-ice roughness is segmented in
two classes of roughness. As the histograms of surface roughness
only present one mode (Fig. 3), the boundaries between the
smooth and rough classes was chosen arbitrarily based on the
average roughness for each flight (0.045m for 19 April 2015,
0.041 m for 24 April 2015, 0.051 m for 29 April 2015, 0.032 m
for 18 May 2015).

The AEM data are also classified, according to the thickness,
into two classes: thin ice and thick ice. The thickness threshold
between thin and thick ice can be subject to discussion. For sim-
plicity, and taking into account that some AEM surveys only pre-
sent one thickness mode (King and others, 2016; Rosel and
others, 2018a), we chose to base the threshold on the lowest
point between the two main modes in the overall AEM sea-ice
thickness distribution: 0.6 m (Fig. 4). The AEM data are then
classified into three ice classes, combining roughness and
thickness segmentation: (1) thin ice: ice under 0.6 m of thickness;
(2) level ice: ice over 0.6 m thick and below average roughness;
(3) deformed ice: ice over 0.6m thick and above average
roughness.

Satellite data

This study is based on L-band (ALOS-2) and C-band (RS-2) fine
quad-polarisation synthetic aperture radar (SAR) satellite remote-
sensing data acquired during the N-ICE2015 expedition. Their
processing and classification aim to assess the general ice situation
and identify the best airborne survey strategy. A total of seven
images overlapping with AEM flights have been processed, four
ALOS-2 and 3 RS-2, acquired on 19 April 2015, 23 April 2015
and 28 April 2015 for both ALOS-2 and RS-2 (ALOS-2 and
RS-2 images overlapping on each dates), and 18 May 2015 with
ALOS-2 only.
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Fig. 2. Example of the filtering of the helicopter movement on a 2 km section of the flight from 24 April 2015. The top figure presents the altimeter profile recorded
by the AEM (in red) and the estimated aircraft motion (in blue). The resulting estimation of the surface topography is presented in the bottom figure, relative to the

mean surface elevation.
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Fig. 3. Histograms of the surface roughness as estimated from the four airborne surveys on 19 April 2015, 24 April 2015, 29 April 2015 and 18 May 2015. The histo-

gram on the left represents the histogram of the four flights combined together.
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Fig. 4. Histograms of the ice thickness as measured during the four airborne surveys on 19 April 2015, 24 April 2015, 29 April 2015 and 18 May 2015. The histogram
on the left represents the histogram of the ice thickness for the four flights combined together. The red vertical line represents the limit of 0.6 m chosen to separate

thin and thick ice.

The satellites images are high-resolution quad-polarimetric
SAR images, acquired at 1.2GHz (ALOS-2) and 5.41 GHz
(RS-2) (Johansson and others, 2017). The difference in the oper-
ation frequencies results in differences in the retrieved back-
scattering. C-band SAR images are commonly used in sea-ice
monitoring for extent, concentration and drift speed (Maillard
and others, 2005; Walker and others, 2006; Karvonen and others,
2007). L-band SAR has, more recently, also demonstrated its value
in monitoring Arctic sea ice (Lehtiranta and others, 2015). In par-
ticular, it appears more efficient than C-band in discriminating
deformed ice from level ice (Dierking, 2009; Eriksson and others,
2010). In this study we chose to process these two types of images
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identically (with the same algorithm and settings, independently
from their characteristics) to set ourselves in the most general
configuration possible.

The images have been segmented using a Gaussian mixture
model clustering algorithm developed by Doulgeris and Eltoft
(2009); Doulgeris (2013). The segmentation algorithm separated
each image into unlabelled categories which had to be interpreted.
Although the algorithm may fail over complex parts of the
images, where the ice presents heterogeneous properties, it allows
a rigours clustering of similar areas of a scene (Moen and others,
2013). The algorithm has been set up for a ‘generic’ ice segmen-
tation: it was not tuned for any specific purpose (e.g. ice versus
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open water or thin ice versus thicker ice) but to discriminate as
many segments as possible. In such configuration for quick pro-
cessing, we do not expect the segmentation to be perfect and some
segments may exhibit ambiguity and ice class mixing. Our goal is
to preserve the main sea-ice features and keep them easily recog-
nisable. The similar segments are merged together, for easier
reading and analysis, and labelled into three main ice classes
((1) open water and thin ice - further called thin ice for simpli-
city—, (2) level ice and (3) deformed ice), based on the direct
field observations as well as the Pauli false-colour versions of
the SAR satellite images.

The ALOS-2 image from 23 April 2015 is frequently used as an
example in the analysis below. The area covered by this particular
image features clear networks of ridges and freshly opened leads.
It is also the one exhibiting the least ambiguity in the classification.

Spatial analysis of the SAR satellite images

Radial analysis

As a first approach, we investigate the orientations of sea-ice fea-
tures by analysing the percentage of each ice class along a simu-
lated transect for each degree of azimuth (relative to the
geographical north) around the central point of the image. In
order to simulate the footprint of the AEM the fractional coverage
of each ice class is calculated in a 100-m wide buffer along the
flight path. As one would expect, this first analysis clearly shows
strong directional differences of the sea-ice features for the
example chosen (Fig. 5). The distribution of the classes can sig-
nificantly change according to the direction of the flight.

We can notice several peaks for the thin ice class and some azi-
muths (e.g. ~90") where the deformed ice class disappears com-
pletely from the sampling. In particular, the azimuths between
210" and 235 demonstrate two major peaks and a generally
higher fraction of thin ice (36% of thin ice, Fig. 5). If a transect
were to be made with this azimuth, we would get a measurement
of the area with a poor representation of the area abundances. The
scene-average areal coverage of each class is 12% (9), 75% (9) and
12% (6) for thin, level and deformed ice, respectively, with num-
bers in parenthesis showing the associated std dev.

ALOS-2 23 April 2015
T T
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The analysis points to the azimuth of 200 to be most represen-
tative of the whole image (on average 11% of thin ice, 72% of level
ice and 17% of deformed ice and ridges).

However, this method presents two main shortcomings. First,
each azimuth is sampled only once and covers only half of the
image from the centre point. This can be heavily biased by possible
regional effects, which is highlighted by the absence of an expected
180" rotational symmetry. Second, the centre area of the image is
oversampled compared to the outer parts of the image.

Random flight simulations
In order to obtain an optimised representation of the area, we fur-
ther elaborate a method of flight path simulation along random azi-
muth lines. The flight lines are simulated by generating random
points on the edge of the SAR satellite image and connecting all
possible pairs. The number of points varies from 170 to 297
between the SAR scenes, due to constraints introduced in the gen-
eration algorithm, such as restricted area on the edge of the images
and a minimum distance of 200 m between points. In total, ~15
000 to 20 000 lines are generated for each SAR scene. Figure 6 pre-
sents an example of the proposed approach, showing for a better
visualisation a randomly selected subset of 100 generated lines.
The points shown on the outer edge form a complete set used in
generating the entire set of simulated flight tracks. In this particular
case, 183 points yield a total of 16 653 simulated flight paths.
This approach may present a bias as the length of simulated
lines varies. To investigate the impact of transect length on the
variance of the surveyed ice classes, we simulated lines of flight
of fixed length (ranging from 1 to 30 km), covering the whole
SAR image, and parallel to the range direction of the images
(longer side on ALOS-2 images, to ensure optimal cover of the
image and longer transects). For every length of the flight track,
we then calculated the std dev. of the ice classes distribution.
Figure 7 presents the evolution of the std dev. as a function of
transect length. The RS-2 image from 19 April 2015 is not pre-
sented in the figure because, with only two ice classes, the std
dev. is the same for the two classes and does not change above
5km. For all but one scene, the inter-class variability generally
decreases with increasing transect length. The ALOS-2 scene
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Fig. 5. Fraction of each class (thin, level and deformed) against the azimuth (relative to the north) for the ALOS-2 from 23 April 2015 (radial analysis).
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figures can be found in sub-figures (f).

from 28 April 2015 demonstrates an opposite pattern with a rapid The set of randomly generated lines is then cleaned by filtering
increase of the std dev. of the thin and level ice classes with a  out the lines on the outer edge of the image (containing more
maximum ~12 km transect length (Fig. 7c). We do not have an  than 50% of ‘no data’ values), or lines shorter than 20 km. This
explanation for this particular case. threshold is chosen based on our general procedure when
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analysis). The grey bands represent the std dev. of each class (scaled down by a factor 3 for readability).

planning a survey. It also fits the results shown in Figure 7. After
having applied these criteria, ~25% of the generated transects are
further excluded from analysis. In order to simulate the AEM
footprint, the percentage of each ice class is then calculated in a
100-m wide buffer along the simulated flight line. The results
are presented on a cumulative area distribution, binned by degree
of azimuth. For each azimuth, we took the average fraction of each
class and calculated the corresponding std dev. Figure 8 shows the
example of ALOS-2 from 23 April 2015.

Results
Empirical interpretation

Both analyses conducted on the segmented images revealed a clear
directional anisotropy of the distribution of ice classes. The random
flight tracks approach shows a 180" rotational symmetry in the dis-
tribution, whereas this is not apparent in the radial approach. This

https://doi.org/10.1017/a0g.2020.61 Published online by Cambridge University Press

difference is due to design of the experiment: in the radial analysis
each line only covers half of the image, from the centre to the edge,
while the lines are crossing the whole image in the random analysis.
The latter approach also enables a more complete coverage of the
different sub-regions of the image.

Detailed analysis of the results suggests that some flight direc-
tions appear to have a more homogeneous distribution of the ice
classes than others (Fig. 9). This is linked with regional features;
e.g. Figures 1 and 6 demonstrate that RL and ridged ice is more
frequent in the southern half of the scene.

On the ALOS-2 image from 23 April 2015, for a range of azi-
muths the fraction of thin ice is significantly increased. A strong
directional anisotropy of leads and a RL contributes to thin ice
fraction maxima ~140" and 150" of azimuth. The deformed ice
class also presents peaks (e.g. between 50" and 60), but it is overall
less noticeable than the thin ice class. We can also note that
within these azimuths the inter-class variability is generally higher
than between 0" and 20° (Table 1). Major leads and ridges tend to
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prevail on the southern half of the image. Any line in the south-
ern half would therefore capture a bigger proportion of leads and
ridges than in the northern part of the scene. This has to be taken
into account while creating flight plans.

Looking at the temporal evolution (Fig. 10), we can see the
change of the main leads and ridges orientation as well as the gen-
eral ice conditions. On 19 April 2015, the ridges present a much
more abundant class than leads, which are barely present. This is
confirmed by the segmented SAR images (Fig. 1). Apart from
leads near the eastern and southern edges of the image, barely
any can really be seen in the rest of the scene. Due to ice diver-
gence in the study area, the leads appear more frequently on 23
April 2015 and become even more dominant on 28 April 2015.
We can also see an overall change in the main orientation of
the leads, globally rotated ~15 counter-clockwise.

A major storm was recorded in the observation area between
25 April 2015 04.00 UTC and 27 April 2015 23.00 UTC with a
peak wind speed up to 12.6ms~" (Cohen and others, 2017).
Unfortunately, the weather station on the ice was not in operation
before the 23 April 2015 10.00 UTC. The reference 10-m wind
speed measurement has been reconstructed using the data from
the ship anemometer (Hudson and others, 2015; Cohen and others,
2017). Looking at the data, two events, in the afternoon of 19 April
2015 and the afternoon of 20 Aprl 2015, could be considered as
storms, with 11.1 and 12.5ms™" peak wind speed, respectively.
This can be considered the main driver for the observed changes
in the state of sea-ice cover between 19 April 2015 and 28 April
2015. In particular, this explains the significant increase of the
open water classes we can notice in a sequence of three images
from 19 April 2015 (Fig. 10a), 23 April 2015 (Fig. 10b) and 28
April 2015 (Fig. 10c). Finally, on 18 May 2015, no clear homoge-
neous area really appears anymore (Fig. 10). In particular in the

Table 1. Comparison of class variability for two different 20" azimuth bands, as
shown in the figure

Ice class std (0'-20") std (40°-60")
Thin ice 0.05 0.20
Level ice 0.05 0.17
Deformed ice 0.04 0.09
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southern half, the ice pack appears significantly more broken
with distinctive ice floes drifting apart (Fig. 1).

In contrast to ALOS-2, the segmentation algorithm, in its cur-
rent configuration, applied to RS-2 images resulted in a poorer
discrimination of the ice types into the segments (Fig. 11). In par-
ticular, thin ice and deformed ice could often be mixed in the
same segment with implications for the general capacity of the
method to identify best flight patterns. The resulting classification
is therefore biased and may alter our capacity to identify the best
lines of flight. Though this could easily be solved by adjusting the
algorithm parameter, e.g. via increasing the numbers of segments,
our motivation was to keep the experiment as generic as possible
to get closer to the operational situation.

Despite this class mixing, we can notice a similar pattern on 19
April 2015 between the ALOS-2 and the RS-2 images. The level
and deformed ice classes proportion are more stable between
160" and 180" of azimuth. On 23 April 2015, these features are
barely visible and totally non-existent on 28 April 2015. This
may highlight the importance of spatial features conservation.

Automated interpretation of the ice type distributions

Here we aim to identify the ranges of azimuths presenting an ice type
distribution the closest to the average over the whole image with the
lowest variance. The visual interpretation of the processed SAR satel-
lite images already gives a good idea on the directions one could pre-
fer when planning a flight. But in some cases, like for 28 April 2015
for the RS-2 image or 18 May 2015 for the ALOS-2 image, this
empirical interpretation can be complicated, if not impossible.

We here propose a metric to identify which azimuths and
hence potential flight directions are the closest to the
image-averaged ice classes distribution. We first calculate the
overall median percentage of each class in the image and then
we calculate the mean, and the corresponding std dev., over a 5
azimuth sliding window. The distribution of mean values
obtained against the azimuth is then compared with the overall
median for each class. The difference between the two is multi-
plied by the associated std dev. The std dev. is used here as a
weighing parameter to discriminate azimuths close to the overall
ice types distribution, with the lowest variance. The values are
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Fig. 10. Distribution of the sea-ice classes under the simulated flight paths, according to the flight path azimuth, for all four ALOS-2 images. The grey bands

represent the std dev. of each class (scaled down by a factor 3 for readability).
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Fig. 11. Distribution of the sea-ice classes under the simulated flight paths, according to the flight path azimuth, for all three RS-2 images.

Table 2. Ranges of azimuth for potential flight paths considered as
representative for the area for all satellite images

ALOS-2 RS-2
19 April 2015 [171 to 2117 [167 to 1827
23 April 2015 [172° to 2197 [216" to 2187
28 April 2015 [157" to 2077 [155 to 1561
18 May 2015 [82" to 867

All the ranges have a 180" counter-parts (due to rotational symmetry) not noted here.

finally normalised to be compared. This metric value is assigned
to the corresponding azimuth for each ice class. For each ice class,
we define a set of azimuths as valid for having a metric below the
arbitrarily chosen threshold of 0.1. This threshold may need to be
adjusted depending on the results obtained and the user’s expec-
tations. Finally, an intersection of the three derived sets of valid
azimuths yields the ranges of valid lines of flight for a given ana-
lysed SAR satellite image (Table 2).

For the ALOS-2 images, the results obtained are, in most cases,
consistent with the empirical estimation. It must be noted that we
had to lower the validation threshold to 0.05 to avoid too many
results on the image from 18 May 2015. With a standard
threshold many isolated azimuths are considered validated, making
the final choice more difficult to achieve. Another solution could be
to increase the size of the sliding window from 5 to 10, for
example.

Although consistent with ALOS-2, the results are not as satis-
factory for the RS-2 images. The segmentation resulted in more
class mixing, leading to an overall higher variance in the ice
classes. This introduce more noise in our metric and makes the
identification of a valid range more complicated. In order to
limit the analysis output, we had to lower the threshold to elim-
inate the validated individual azimuths. The result for 19 April
2015 also remains consistent with our empirical analysis.

Discussion
Radial versus random lines approaches

The random lines approach, as of now, is computationally inten-
sive and hence currently not practical for operational planning of

https://doi.org/10.1017/a0g.2020.61 Published online by Cambridge University Press

flights. On a regular laptop computer, it takes between 24 and 48
h, for one image, to compute where the radial analysis only takes
few minutes. The radial analysis method, though more efficient
computationally, does not provide an even coverage; a bias around
the pivot point makes it unsuitable for the purpose.

We can expect the computing time issue of the random line
approach to be improved in the future with optimisation of the
code, in particular using parallel processing, and more powerful
computers. The random line approach gave the desired results,
helping us identify the most representative azimuths for a survey
in the area. However, it remains dependent on the image segmen-
tation to give proper results.

Segmentation and classification of the SAR satellite images

The segmentation of the SAR satellite images plays an important
role in the identification of the optimal line of flight. While the
segmentation algorithm gave overall good results on the L-band
images (as visually compared to Pauli false-colour images), the
C-band images resulted in a substantial variability of ice types
in some segments. In particular, RL partly or entirely covered
with frost flowers could be mixed up with deformed ice, explain-
ing a higher deformed ice proportion.

In an attempt to make the results easier to understand and
interpret, we merged the different ice segments into three main
ice classes (the number of initial segments varying between the
images from 3 to 9). Even if it appeared sufficient in our study,
in particular for ALOS-2, this classification was not done by a
trained sea-ice analyst and may results in misinterpretation of
some segments. This point can be improved with training and
experience of the user.

Although coarsely classified into three ice types, the analysis
conducted on the images let us identify the optimal lines of flight
in all ALOS-2 images. It is interesting to notice that the RS-2
image from 19 April 2015 is the only one able to give proper
results among RS-2 images, while it is also the one with the
least number of initial ice segments from the segmentation algo-
rithm (only 3). Distinguishing between leads and ridges for this
scene was not possible with the current settings of the segmenta-
tion algorithm. This can be a major issue if for a particular scene
the spatial distributions of these two ice classes are anisotropic and
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directionally different. But in this case, considering that the
selected azimuths are consistent with the ALOS-2 image from
the same date, the segmentation appears sufficient for the purpose.
The proper classification of the sea ice may not be a major criter-
ion when it comes to processing them for the purpose of survey
planning, as long as the main features are preserved. In order to
assist the classification procedure, we suggest to visually compare
the segmented image to a Pauli false-colour image (e.g.) instead
of putting more effort and time in the classification of the
image. If the main features appear preserved, the segmentation
can be considered good enough as it is for this purpose. Since
this assessment relies on the user’s ability to interpret polarimetric
SAR images, we suggest some training prior to an expedition, in
such SAR image interpretation or, if possible, the assistance of a
trained person.

Comparison of simulated tracks with actual AEM data

This method could be derived to make post-flight assessments of
airborne surveys. All satellite scenes selected for this study were
acquired within one day from the AEM surveys conducted in
the study area, allowing the comparison between the two. The
flight tracks were corrected for the ice pack drift, using the ship
positions as a reference and the time difference between the flight
and satellite acquisition. We here assume that relative motions
between ice floes are negligible over the time difference and the
ship drift is representative of the local ice pack drift. As the flights
were conducted following a triangular pattern, each segment of a
flight with a main direction was analysed separately. To be com-
pared with the SAR satellite data, the AEM data are cropped to
match the footprint of the satellite. The ice type distribution for
each flight leg is presented in Table 3.

Table 3. Percentage of ice classes for each leg of each helicopter flight, later
used for the comparison with the simulated AEM surveys

Flight date Satellite  Azimuth () Thin (%) Level (%) Deformed (%)
19 April 2015 ALOS-2 91 5 55 40
ALOS-2 244 1 60 39
ALOS-2 359 1 60 39
RS2 91 6 54 40
RS2 244 1 61 39
24 April 2015  ALOS-2 15 15 52 33
ALOS-2 135 14 50 35
ALOS-2 223 8 55 37
RS2 15 25 38 37
RS2 223 13 50 37
29 April 2015  ALOS-2 53 6 53 41
ALOS-2 204 18 41 41
ALOS-2 291 3 62 35
RS2 53 5 55 40
RS2 204 14 49 38
RS2 291 3 61 35
18 May 2015  ALOS-2 124 0 64 35
ALOS-2 186 30 35 36
ALOS-2 352 32 37 31

Each date had only one single flight. Each line of the table represents one flight leg, with its
corresponding azimuth. The legs are cropped to fit the corresponding SAR satellite image.

Table 4. Comparison of the ice classes distribution in AEM data and ALOS-2 data

Jean Negrel and others

For the images from 19 April 2015, 23 April 2015 and 28 April
2015, one of the flight legs has an azimuth considered as represen-
tative for the ALOS-2 acquisitions. None of the flight legs are
matching azimuths with a low metric value for the RS-2 images.
The comparison of the AEM data to the ALOS-2 data highlights
two main differences. The deformed ice class is either systematic-
ally underrepresented in the satellite-based analysis, or overesti-
mated in the AEM data (Table 4). This could be explained by
the threshold used to differentiate deformed ice from level ice in
the AEM data. The derived surface roughness probability densities
are unimodal (Fig. 3) and the threshold had to be chosen arbitrar-
ily. Setting an arbitrary threshold to differentiate level from
deformed ice should influence the result. Furthermore, the defin-
ition of ice classes in the two datasets differs significantly, in par-
ticular with respect to the surface roughness estimation
procedure. The laser altimeter of the AEM offers a limited spatial
sampling of ~0.3 m, which is conditional on the AEM operational
speed. This allows capturing bigger structures on the ice surface,
such as ice ridges. On the other hand, as mentioned previously,
frost flowers can be mixed with deformed ice in the SAR satellite
data, due to a high backscatter (Isleifson and others, 2014;
Johansson and others, 2018), while being mostly invisible for the
laser altimeter. While in the AEM data analysis, the thickness of
the ice is directly measured and used for the classification, in
SAR satellite data analysis, ice thickness is inferred from image seg-
mentation, the Pauli false-colour and the field observations. This
can lead to differences in thin/thick distribution between SAR
and AEM classifications. This supports the importance the identi-
fication of the ice spatial features, in the SAR satellite data, over a
proper classification of the sea ice.

It must be noted that the flight leg from 23 April 2015, repre-
senting a proportion of thin ice the most similar to the SAR data
is also the longest of the three: 25km against 10 km and 16 km
for 19 April 2015 and 28 April 2015, respectively. Longer transects
allow an averaging of potential local clustering, or lack, of ridges
and/or leads. For instance, we can see that almost no thin ice
was flown over during the survey on 19 April 2015. Then, the spa-
tial scale of leads occurrence can be higher than 10 km, and this
class can therefore be underrepresented, compared to the broader
area. In such cases, we would then advise to plan longer transects,
or adjust the flight directions within the triangle such that they fall
into the identified ranges of representative azimuths, if circum-
stances allow.

Limitations

The proposed procedure has so far only been tested on the
N-ICE2015 data. Though the sea-ice cover in the area has been
subject to dynamic changes over the study period, the ice seen
on the SAR satellite images was overall the same between the dif-
ferent images, as the satellite acquisitions were planned to follow
the drift of the ship. The time difference between AEM surveys
and satellite acquisitions has been up to 18 h. With the observed
ice drift and ice divergence in the study area, it was sufficient to
hinder an alignment of the flight tracks with the satellite scenes,
thus making a pixel-based comparison of the two datasets

AEM ALOS-2
Flight date Azimuth () Thin (%) Level (%) Deformed (%) Thin Level Deformed
19 April 2015 359 1 60 39 3% (3) 82% (10) 15% (8)
23 April 2015 15 15 52 33 12% (4) 74% (4) 14% (3)
28 April 2015 204 18 41 41 32% (18) 50% (16) 19% (5)

The associated std dev. is shown in parenthesis.
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inaccurate. We can expect that in more dynamic areas or periods,
the time gap between the satellite acquisition and the actual flight
needs to be minimised down to a few hours to get meaningful
results.

In the proposed version of the method, we simulated AEM
surveys as lines connecting the random pairs of points drawn
on the edges of the satellite scenes. This introduces a bias as all
the segments have different lengths, and also differ in length
from the actual AEM survey transects. An option could then be
to define a fixed length for the simulated transects and repeat
the pattern over the whole image. It appears to us that the main
challenge of this approach is the identification of the optimal
length and its applicability in a real case scenario. However, simu-
lating survey lines with a range of lengths has a clear benefit too.
In particular, as presented in Figure 7, the variance of the different
ice classes tends to converge to lower values with longer simulated
transects. This is why we selected longer transects and simulated a
large set of survey lines to average the ice types distribution for
each given azimuth.

Here, we considered the whole scene as representative of the
regional area and a reference for planning an AEM survey. The
variability of the ice on the scale of a satellite scene affects what
one could consider representative of the area. A satellite image
remains a local snapshot of the ice situation and the sea ice in
the image is also affected by wider scale ice conditions. As we
could see on the ALOS-2 scene from 23 April 2015, the southern
half of the image differs significantly from the northern half. In
such a case, one could choose to only consider a subset of the
image as a reference to plan an AEM survey, or on the opposite
use a broader area, provided for example by a wide swath images.

For this study we used high-resolution quad-pol SAR images,
which due to their size cannot always be immediately available
for operational applications in remote areas. Systematic acquisition,
free access and short delivery time makes, e.g. Sentinel-1 wide
swath images more suitable for these kinds of applications. Noise
and the limitation to dual-polarisation are the main issues affecting
the segmentation of a wide-swath image. This, however, is an active
field of research for many groups and constant progress is made in
this research area. We are confident our proposed method will soon
be usable also with wide-swath dual-pol SAR images.

Conclusions

At present, AEM surveys represent almost the only option for
high-resolution ice thickness surveys from local to regional spatial
scales. Proper flight planning based on remotely sensed observa-
tions of the regional ice cover can help optimise the survey and
ensure that the results more accurately represent the ice cover.
Based on segmented satellite SAR imagery, we investigated the
effect of the floe-scale anisotropy on AEM surveys. By simulating
multiple flight lines over SAR satellite images we demonstrated
how variable the results of different surveys could be. As expected,
the analysis confirmed that a flight track configuration have an
implication for representativeness of the survey, a given flight
may not be representative for the area covered by a satellite image.
We used the simulation of flight lines to estimate the optimal
azimuth to survey a given area, by calculating the representative-
ness of each azimuth. The metric we proposed to evaluate this
representativeness of the different azimuths is weighted with the
spatial variability of given azimuths. We would then avoid direc-
tions which have different characteristics between different areas
of the image (for example ensuring crossing of leads and ridges
in any parts of the image). In this study, we only investigated
long transects, crossing the image, and we recommend such
long transects, when possible, to limit the effect of potential
local bias (e.g. an heavily ridged area). If more than one flight
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direction are found optimal for the survey, they could be com-
bined to plan a different flight pattern. In practice, we tend to
limit the numbers of corners in the flight plan to keep the instru-
ment as level as possible. Each turn of the aircraft induces a swing
of the instrument and therefore an interruption in the measure-
ment when the laser altimeter points off-nadir; hence a common
use of triangular or bow-tie-shaped plans only presenting three
and four turns respectively. The flight safety concerns, for
example avoiding flights over wide leads, also have to be taken
into account when planning a survey. Further developments
could integrate these constraints and focus on identifying the
best flight plan pattern to optimise the flight time and the data
collected.

The method has only been tested in one region of the Arctic
Basin, north of Svalbard, in spring conditions. Further investiga-
tions should be conducted over different sectors of the Arctic
Basin and during different seasons. It has also been limited to
quad-pol high-resolution SAR satellite imagery. In practice, wide-
swath dual-pol images are acquired more frequently and offer a fas-
ter release which would make them more suitable for this purpose.

At present, the method is still computationally intensive. The
code we produced for it has not yet been optimised and can be
improved to run faster. In particular, the processing could be heavily
parallelised and take advantage of modern multi-core processors to
significantly reduce this issue. We can expect this to be solved soon.

In general, the main limiting factor in the application of our
method remains the usually unavoidable time difference between
the satellite acquisition and the airborne survey. Assuming the
improvements of future remote-sensing products, and shortened
product delivery time, we can expect the sea-ice maps to be avail-
able within few hours after their acquisitions. The maps could
then be processed using our method to provide a preferred flight
plan. Such processing could either take place on-board or
on-land, depending on the available resources and competences.
The resulting flight plan would then serve as a basis for the prep-
aration of the actual survey.

Finally, this method could be derived to make post-flight
assessments of airborne surveys and the region they took place
in. In such case, the segmentation and the classification of the
SAR images should go through a thorough examination to be
considered as an accurate representation of the local ice situation.
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