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Abstract

For a given integer n and a set S ⊆ N, denote by R(1)
h,S(n) the number of solutions of the equation

n = si1 + · · · + sih , si j ∈ S, j = 1, . . . , h. In this paper we determine all pairs (A, B),A, B ⊆ N, for which

R(1)
3,A(n) = R(1)

3,B(n) from a certain point on. We discuss some related problems.

2010 Mathematics subject classification: primary 11B34.

Keywords and phrases: additive number theory, representation functions.

1. Introduction

Let N be the set of nonnegative integers. For a given infinite set A⊂ N the
representation functions R(1)

h,A(n), R(2)
h,A(n) and R(3)

h,A(n) are defined in the following way:

R(1)
h,A(n) = #{(ai1 , . . . , aih ) : ai1 + · · · + aih = n, ai1 , . . . , aih ∈ A},

R(2)
h,A(n) = #{(ai1 , . . . , aih ) : ai1 + · · · + aih = n, ai1 , . . . , aih ∈ A, ai1 ≤ · · · ≤ aih},

R(3)
h,A(n) = #{(ai1 , . . . , aih ) : ai1 + · · · + aih = n, ai1 , . . . , aih ∈ A, ai1 < · · · < aih}.

Representation functions have been extensively studied by many authors and are still
a fruitful area of research in additive number theory. Using generating functions,
Nathanson [6] proved the following result.

Let A, B and T be finite sets of integers. If each residue class modulo m contains
exactly the same number of elements of A as elements of B, then we write A ≡ B
(mod m). If the number of solutions of the congruence a + t ≡ n (mod m) with a ∈ A,
t ∈ T , equals the number of solutions of the congruence b + t ≡ n (mod m) with b ∈ B,
t ∈ T , for each residue class n modulo m, then we write A + T ≡ B + T (mod m).
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N’ T. Let A and B be infinite sets of nonnegative integers, A , B.
Then R(1)

2,A(n) = R(1)
2,B(n) from a certain point on if and only if there exist positive integers

N, m and finite sets A, B, T with A ∪ B ⊂ {0, 1, . . . , N} and T ⊂ {0, 1, . . . , m − 1} such
that A + T ≡ B + T (mod m), andA = A ∪ C and B = B ∪ C, where C = {c > N : c ≡ t
(mod m) for some t ∈ T }.

It is clear that R(2)
2,A(n) = dR(1)

2,A(n)/2e and R(3)
2,A(n) = bR(1)

2,A(n)/2c, so for the setsA, B

in Nathanson’s theorem we have R(2)
2,A(n) = R(2)

2,B(n) and R(3)
2,A(n) = R(3)

2,B(n) from a certain
point on. It is easy to see that the symmetric difference of the setsA andB in the above
theorem is finite. Sárközy asked whether there exist two infinite sets of nonnegative
integersA and B with infinite symmetric difference, that is,

|(A ∪ B) \ (A ∩ B)| =∞

and
R(i)

2,A(n) = R(i)
2,B(n)

if n ≥ n0, for i = 1, 2, 3. For i = 1, the answer is negative (see [3]). For i = 2 and 3,
respectively, Dombi [3] and Chen and Wang [2] proved that the set of nonnegative
integers can be partitioned into two subsetsA and B such that R(i)

2,A(n) = R(i)
2,B(n) for all

n ≥ n0. In [5] Lev gave a common proof of the above mentioned results of Dombi [3]
and Chen and Wang [2]. Using generating functions, Sándor [7] determined the sets
A⊂ N for which either

R(2)
2,A(n) = R(2)

2,N\A(n) for all n ≥ n0

or
R(3)

2,A(n) = R(3)
2,N\A(n) for all n ≥ n0.

In [8] Tang gave an elementary proof of Sándor’s results and in [1] Chen and Tang
studied related questions. We can rewrite Nathanson’s theorem in equivalent form as
follows.

E   N’ T. Let A and B be infinite sets of
nonnegative integers, A , B. Then R(1)

2,A(n) = R(1)
2,B(n) from a certain point on if and

only if there exist positive integers n0, M and finite sets FA, FB, T with FA ∪ FB ⊂
{0, 1, . . . , Mn0 − 1} and T ⊂ {0, 1, . . . , M − 1} such that

A = FA ∪ {kM + t : k ≥ n0, t ∈ T },

B = FB ∪ {kM + t : k ≥ n0, t ∈ T },

and
(1 − zM) | (FA(z) − FB(z))T (z).

We conjecture that Nathanson’s theorem can be generalised in the following way.

C. Let h ≥ 2, A and B be infinite sets of nonnegative integers, A , B.
Then R(1)

h,A(n) = R(1)
h,B(n) from a certain point on if and only if there exist positive
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integers n0, M and sets FA, FB and T such that FA ∪ FB ⊂ {0, 1, . . . , Mn0 − 1},
T ⊂ {0, 1. . . . , M − 1},

A = FA ∪ {kM + t : k ≥ n0, t ∈ T },

B = FB ∪ {kM + t : k ≥ n0, t ∈ T },

and
(1 − zM)h−1 | (FA(z) − FB(z))T (z)h−1.

The next theorem shows the sufficiency of the conjecture.

T 1.1. Let A and B be infinite sets of nonnegative integers, A , B. If there
exist positive integers n0, M and finite sets FA, FB and T with FA ∪ FB ⊂ {0, 1, . . . ,
Mn0 − 1}, T ⊂ {0, 1, . . . , M − 1} such that

A = FA ∪ {kM + t : k ≥ n0, t ∈ T },

B = FB ∪ {kM + t : k ≥ n0, t ∈ T },

and
(1 − zM)h−1 | (FA(z) − FB(z))T (z)h−1

then R(1)
h,A(n) = R(1)

h,B(n) from a certain point on.

However, we can only prove the conjecture in full in the case h = 3.

T 1.2. Let A and B be infinite sets of nonnegative integers, A , B. Then
R(1)

3,A(n) = R(1)
3,B(n) from a certain point on if and only if there exist positive integers n0,

M and sets FA, FB and T with FA ∪ FB ⊂ {0, 1, . . . , Mn0 − 1}, T ⊂ {0, 1, . . . , M − 1}
such that

A = FA ∪ {kM + t : k ≥ n0, t ∈ T }, (1.1)

B = FB ∪ {kM + t : k ≥ n0, t ∈ T }, (1.2)

and
(1 − zM)2 | (FA(z) − FB(z))T (z)2. (1.3)

In 2011, Yang [9] gave another proof of Nathanson’s theorem without using
generating functions. In his paper he posed the following problem.

P. If p ≥ 3 is a prime and A is an infinite set of nonnegative integers, then
does there exist an infinite set of nonnegative integers B with A , B such that
R(1)

p,A(n) = R(1)
p,B(n) for all sufficiently large n?

In this paper we show that the answer to Yang’s question is negative.

T 1.3. For every prime p there exists an infinite set of nonnegative integers
A such that for any infinite set of integers B, A , B, we have R(1)

p,A(n) , R(1)
p,B(n) for

infinitely many positive integer n.
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We studied some similar problems for the following results.

T 1.4. For every positive integer H ≥ 2 there exist infinite sets of nonnegative
integers A, B, A , B such that R(l)

h,A(n) = R(l)
h,B(n), for every l = 1, 2, 3 and 2 ≤ h ≤ H

from a certain point on.

In the special case l = 1, Theorem 1.4 cannot be extended for infinitely many h.

T 1.5. If for some infinite sets of nonnegative integers A and B the
representation function R(1)

h,A(n) = R(1)
h,B(n), for n ≥ n0(h), for infinitely many positive

integers h ≥ 2, thenA = B.

In this paper let A(z), B(z), FA(z), FB, T (z), S (z) denote the generating functions
of the sets A, B, FA, FB, T and S ⊆ N (that is, A(z) =

∑
a∈A za, where z is a complex

number, z = r · e2πiθ, and so on, and these functions converge in the open unit disc).

2. Proof of Theorem 1.1

In order to prove Theorem 1.1 we need to show that A(z)h − B(z)h = P(z), where
P(z) is a polynomial. By definition ofA and B,

A(z) = FA(z) +
zn0 MT (z)
1 − zM

and

B(z) = FB(z) +
zn0 MT (z)
1 − zM

.

Therefore, using the binomial theorem,

A(z)h − B(z)h =

(
FA(z) +

zn0 MT (z)
1 − zM

)h

−

(
FB(z) +

zn0 MT (z)
1 − zM

)h

=

h∑
k=1

(
h
k

)(zn0 MT (z)
1 − zM

)h−k

(FA(z)k − FB(z)k).

Now we verify that, for 1 ≤ k ≤ h − 1,

(1 − zM)h−k | T (z)h−k(FA(z)k − FB(z)k).

Since
FA(z) − FB(z) | FA(z)k − FB(z)k,

it is enough to show that

(1 − zM)h−k | T (z)h−k(FA(z) − FB(z)).

For a given integer m, where m | M, denote by Φm(z) the mth cyclotomic polynomial.
It remains to prove that

Φm(z)h−k | T (z)h−k(FA(z) − FB(z)).
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Let T (z) = Φm(z)k1 u(z) and FA(z) − FB(z) = Φm(z)k2 v(z), where u(z) and v(z) are
polynomials with the property Φm(z) - u(z)v(z). By assumption of Theorem 1.1 we
know that (h − 1)k1 + k2 ≥ h − 1. Thus either k1 = 0, so k2 ≥ h − 1 and therefore

Φm(z)h−k | FA(z) − FB(z),

or k1 ≥ 1 and therefore
Φm(z)h−k | T (z)h−k,

which completes the proof.

3. Proof of Theorem 1.2

First we would like to prove that if R(1)
3,A(n) = R(1)

3,B(n) from a certain point on then
we have nonnegative integers n0, M and finite sets of nonnegative integers FA, FB,
T with FA ∪ FB ⊂ {0, 1, . . . , Mn0 − 1}, T ⊂ {0, 1, . . . , M − 1} such that (1.1)–(1.3)
hold. It is easy to see that there exists a positive integer N0 such that A∩ [N0, +∞) =

B ∩ [N0, +∞), because R(1)
3,A(n) ≡ 0 (mod 3) if n/3 <A, and R(1)

3,A(n) ≡ 1 (mod 3) if

n/3 ∈ A. Similarly, R(1)
3,B(n) ≡ 0 (mod 3) if n/3 < B, and R(1)

3,B(n) ≡ 1 (mod 3) if
n/3 ∈ B. Thus there exist an integer N1, finite sets of nonnegative integers FA,
FB and an infinite set of nonnegative integers S with FA, FB ⊂ {0, 1, . . . , N1}, S ⊂
{N1 + 1, N1 + 2, . . . } such that

A = FA ∪ S (3.1)

and
B = FB ∪ S . (3.2)

Since A(z) and B(z) are the generating functions of the setsA and B,

A3(z) =

∞∑
n=0

R(1)
3,A(n)zn

and

B3(z) =

∞∑
n=0

R(1)
3,B(n)zn.

Since R(1)
3,A(n) = R(1)

3,B(n), for n ≥ N2, it is clear that there is a polynomial Q(z) such that

∞∑
n=1

R(1)
3,A(n)zn −

∞∑
n=1

R(1)
3,B(n)zn = Q(z). (3.3)

Thus A3(z) − B3(z) = Q(z). In view of (3.1) and (3.2) it follows that

A(z) = FA(z) + S (z)

and
B(z) = FB(z) + S (z).
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Hence

(S (z) + FA(z))3 − (S (z) + FB(z))3 = 3S 2(z)FA(z) + 3S (z)F2
A(z) − 3S 2(z)FB(z)

− 3S (z)F2
B(z) + F3

A(z) − F3
B

(z) = Q(z).

Since FA and FB are finite sets there is a polynomial P(z) such that

3S (z)(S (z) + FA(z) + FB(z))(FA(z) − FB(z)) = P(z).

It follows that there are relatively prime polynomials P1(z) and P2(z) such that

3S (z)(S (z) + FA(z) + FB(z)) =
P(z)

FA(z) − FB(z)
=

P1(z)
P2(z)

. (3.4)

The left-hand side of (3.4) converges in the open unit disc. Then

FA(z) − FB(z) = zl(c0 + c1z + · · · + cqzq),

where |c0| = 1 and |cq| = 1. Thus

P2(z) = zk(d0 + d1z + · · · + dwzw),

where |d0| = 1 and |dw| = 1. Assume that k , 0. Then the right-hand side of (3.4) tends
to infinity in absolute value and the left-hand side of (3.4) converges in absolute value
when z→ 0, which is absurd. So k = 0. Thus

P2(z) = d0 + d1z + · · · + dwzw,

and

FA(z) − FB(z) =

N1∑
n=0

fnzn,

where all the fn are integers and | fn| ≤ 1.
We now prove the following lemma.

L 3.1. If P2(z0) = 0 for some complex number z0, then |z0| ≥ 1.

P. We prove this by contradiction. Assume that there exists z0 ∈ C such that
P2(z0) = 0 and |z0| < 1. Take the limit as z→ z0 in (3.4). Then

3S (z)(S (z) + FA(z) + FB(z))→ 3S (z0)(S (z0) + FA(z0) + FB(z0))

and

|3S (z)(S (z) + FA(z) + FB(z))| → |3S (z0)(S (z0) + FA(z0) + FB(z0))| ∈ R.

Since P1(z) and P2(z) are relatively prime, P1(z0) , 0,∣∣∣∣∣P1(z)
P2(z)

∣∣∣∣∣→∞,
as z→ z0, which is absurd. �
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We may suppose that dw = 1. This means that the roots of P2(z) are algebraic
integers. In this case the product of the roots of the polynomial P2(z) is d0 and |d0| = 1.
It follows from Lemma 3.1 that the absolute value of each root is 1. Since dw = 1 it is
well known that the roots lie with their conjugates in the closed unit disc. It follows
from a well-known theorem of Kronecker [4] that every root is a root of unity. Thus

P2(z) =

u∏
j=1

(z − ε j)m j ,

where ε j is a root of unity and has multiplicity m j.
We prove that for every j, m j ≤ 2. Assume that there exists an m j ≥ 3. Then,

from (3.4),

3S (z)(S (z) + FA(z) + FB(z))(z − ε j)2 =
P1(z)

R(z)(z − ε j)m j−2
, (3.5)

where R(z) is a polynomial, R(ε j) , 0 and P1(ε j) , 0. Then∣∣∣∣∣∣ P1(rε j)

R(rε j)(rε j − ε j)m j−2

∣∣∣∣∣∣→∞,
as r→ 1−. For z = rε j, we have |z − ε j|

2 =
∣∣∣rε j − ε j

∣∣∣2 = (1 − r)2 and

S (z) =

∞∑
n=0

χS (n)zn,

where χS (n) is the characteristic function of the set S (that is, χS (n) = 1, if n ∈ S and
χS = 0, if n < S ). Then we have the following estimation of the left-hand side of (3.5)
for r < 1:

|3S (rε j)| · |(S (rε j) + FA(rε j) + FB(rε j))| · |rε j − ε j|
2

≤ 3
( ∞∑

n=0

χ(n)|r|n
)( ∞∑

n=0

χ(n)|r|n + C1

)
· (1 − r)2

<
C2

(1 − r)2
· (1 − r)2 = C2,

which is absurd.
Thus for some positive integer M we have P2(z) | (1 − zM)2, so there is a polynomial

P3(z) such that

3S (z)(S (z) + FA(z) + FB(z)) =
P3(z)

(1 − zM)2
. (3.6)

Multiplying (3.6) by 12 and adding 9(FA(z) + FB(z))2 to it gives us

(6S (z) + 3FA(z) + 3FB(z))2 =
P4(z)

(1 − zM)2
.
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So
(6S (z) + 3FA(z) + 3FB(z))2(1 − zM)2 = P4(z).

We prove that P4(z) = (u(z))2, where u(z) is a polynomial with integer coefficients.
Let

|(6S (z) + FA(z) + FB(z))2| · |(1 − zM)2| =

∣∣∣∣∣ ∞∑
n=0

gnzn
∣∣∣∣∣2 = |P4(z)|, (3.7)

where gn ∈ Z. Since P4(z) is a polynomial, the integral
∫ 2π

0
|P4(z)| dθ is bounded for

r ≤ 1. On the other hand, if there exist infinitely many n such that gn , 0, that is, g2
n ≥ 1,

then, using the Parseval formula,∫ 2π

0

∣∣∣∣∣ ∞∑
n=0

gnzn
∣∣∣∣∣2 dθ =

∞∑
n=0

g2
nr2n→∞,

as r→ 1−, which is absurd. Thus the series
∑∞

n=0 gnzn = u(z) is a polynomial.
This means that there is an integer K such that if n ≥ K then gn = 0, and

according to (3.7) if n ≥ N3 then gn = 6(χ(n) − χ(n + M)) = 0. So χ is periodic in M.
Therefore, there exist a positive integer n0 and finite sets FA, FB, T with FA ∪ FB ⊂
{0, 1, . . . , Mn0 − 1} and T ⊂ {0, 1, . . . , M − 1} such that

A = FA ∪ {kM + t : k ≥ n0, t ∈ T },

and
B = FB ∪ {kM + t : k ≥ n0, t ∈ T }.

Hence the generating functions ofA and B are

A(z) = FA(z) +
T (z)zn0 M

1 − zM

and

B(z) = FB(z) +
T (z)zn0 M

1 − zM
.

Then, from (3.3),

A3(z) − B3(z) =

(T (z)zn0 M

1 − zM
+ FA(z)

)3

−

(T (z)zn0 M

1 − zM
+ FB(z)

)3

= Q(z).

Thus
3T (z)zn0 M

1 − zM

(T (z)zn0 M

1 − zM
+ FA(z) + FB(z)

)
(FA(z) − FB(z)) = P(z),

that is,

T (z)zn0 M(T (z)zn0 M + (FA(z) + FB(z))(1 − zM))(FA(z) − FB(z))
(1 − zM)2

= R(z),
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where R(z) is also a polynomial. Since (1 − zM , zn0 M) = 1,

(1 − zM)2 | T (z)(T (z)zn0 M + (FA(z) + FB(z))(1 − zM))(FA(z) − FB(z)), (3.8)

that is,

(1 − zM)2 | zn0 M(FA(z) − FB(z))T (z)2

+ (1 − zM)(FA(z) + FB(z))(FA(z) − FB(z))T (z).
(3.9)

We prove that 1 − zM | (FA(z) − FB(z))T (z). By way of contradiction, assume that

1 − zM - (FA(z) − FB(z))T (z).

This means that there exists an integer k such that k | M and

Φk(z) - (FA(z) − FB(z))T (z).

Then, by (3.8),
Φk(z) | T (z)zn0 M + (FA(z) + FB(z))(1 − zM).

Thus Φk(z) | T (z)zn0 M , but since (Φk(z), zn0 M) = 1 we get Φk(z) | T (z), which is
absurd. Then

(1 − zM)2 | (1 − zM)(FA(z) + FB(z))(FA(z) − FB(z))T (z),

so, by (3.9),
(1 − zM)2 | zn0 M(FA(z) − FB(z))T (z)2.

But, using the fact that ((1 − zM)2, zn0 M) = 1, this means that (1.3) holds, as desired.
The other direction is a corollary of Theorem 1.1.

4. Proof of Theorem 1.3

Let A be a sparse set, which means that α(N) < N1/p (here, α(N) = |[0, N] ∩A|).
Let A = {a1, a2, . . . }. We prove the theorem by contradiction. Assume that A, B are
different sets and R(1)

p,A(n) = R(1)
p,B(n) from a certain point on. Since α(ak) = k < a1/p

k , it
follows that ak > kp. The generating function ofA is

A(r) =
∑
a∈A

ra =

∞∑
n=0

χA(n)rn =

∞∑
n=0

(α(n) − α(n − 1))rn

=

∞∑
n=1

α(n)(rn − rn+1) = (1 − r)
∞∑

n=0

α(n)rn

= O((1 − r) · (1 − r)−1/p−1) = O((1 − r)−1/p),

(4.1)

as r→ 1−, where χA(n) is the characteristic function of the setA.
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Since R(1)
p,A(n) = R(1)

p,B(n), it is clear that there is a polynomial P(r) such that

Ap(r) − Bp(r) = P(r).

It is easy to see that there exists a positive integer N0 such that A∩ [N0, +∞) =

B ∩ [N0, +∞), because R(1)
p,A(n) ≡ 0 (mod p) if n/p <A, and R(1)

p,A(n) ≡ 1 (mod p)

if n/p ∈ A. Similarly, R(1)
p,B(n) ≡ 0 (mod p) if n/p < B, and R(1)

p,B(n) ≡ 1 (mod p) if
n/p ∈ B. Thus A(r) differs from B(r) in a polynomial, which means that

B(r) = O((1 − r)−1/p), (4.2)

as r→ 1−, as well. So

(A(r) − B(r))(Ap−1(r) + · · · + Bp−1(r)) = P(r). (4.3)

Therefore, there exist relatively prime polynomials R(r) and S (r) such that

R(r)(Ap−1(r) + · · · + Bp−1(r)) = S (r). (4.4)

As r→ 1− in (4.3) we get that S (r) and R(r) are bounded, and

Ap−1(r) + · · · + Bp−1(r)→∞.

Therefore r = 1 must be a root of R(r). Thus

R(r) = (1 − r)Q(r).

Now we can write (4.4) in the form

(1 − r)Q(r)(Ap−1(r) + · · · + Bp−1(r)) = S (r). (4.5)

Since Q(r) is a polynomial, it is bounded. It follows from (4.1) and (4.2) that

Ap−1(r) + · · · + Bp−1(r) = O((1 − r)−(p−1)/p).

So the order of the left-hand side of (4.5) is O((1 − r)1/p), as r→ 1−. This
means that S (r) tends to zero as r→ 1−. So S (r) = (1 − r)T (r), and this contradicts
(R(r), S (r)) = 1.

5. Proof of Theorem 1.4

The construction of the setsA and B is as follows. Let n be a positive integer. Take
the binary representation of n to be

n =

blog2(n)c∑
i=0

βi2i,
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where βi = 0 or 1. Denote by Bin(n) =
∑blog2(n)c

i=0 βi the number of ones in the binary
representation of n. Let

FA := {kH! : 0 ≤ k < 2H , Bin(kH!) ≡ 0 (mod 2)}

and
FB := {kH! : 0 ≤ k < 2H , Bin(kH!) ≡ 1 (mod 2)}.

We will show that the sets

A = FA ∪ {H!2H , H!2H + 1, . . . }

and
B = FB ∪ {H!2H , H!2H + 1, . . . }

are suitable. Let h be a fixed integer, 2 ≤ h ≤ H. Then

FA(z) − FB(z) =

H−1∏
i=0

(1 − zH!2i
),

and therefore
(1 − zh!) · · · (1 − z2h−1h!) | FA(z) − FB(z).

Hence
(1 − z) · · · (1 − zh−1)(1 − zh) | FA(z) − FB(z).

The generating function of R(l)
h,A(n), l = 1, 2, 3, can be written using a sieve formula

with suitable real numbers Ck1,...,kh :

∞∑
n=0

R(l)
h,A(n)zn =

∑
(k1,...,kh)

k1+2k2+···+hkh=h
ki≥0, i=1,...,h

Ck1,...,kh

h∏
i=1

A(zi)ki . (5.1)

We would like to prove that there is a polynomial P(z) such that

∞∑
n=0

R(l)
h,A(n)zn −

∞∑
n=0

R(l)
h,B(n)zn = P(z). (5.2)

From (5.1), the left-hand side of (5.2) is equivalent to

∑
(k1,...,kh)

k1+2k2+···+hkh=h
ki≥0, i=1,...,h

Ck1,...,kh

( h∏
i=1

A(zi)ki −

h∏
i=1

B(zi)ki

)
. (5.3)

In view of

A(z) = FA(z) +
zH!2H

1 − z

https://doi.org/10.1017/S0004972713000518 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000518


108 S. Z. Kiss, E. Rozgonyi and C. Sandor [12]´

and

B(z) = FB(z) +
zH!2H

1 − z
,

we get that (5.3) is equivalent to∑
(k1,...,kh)

k1+2k2+···+hkh=h
ki≥0, i=1,...,h

Ck1,...,kh

( h∏
i=1

(
FA(zi) +

ziH!2H

1 − zi

)ki

−

h∏
i=1

(
FB(zi) +

ziH!2H

1 − zi

)ki)
. (5.4)

It is enough to show that the difference of the products in (5.4) is a polynomial for
every h-tuple (k1, . . . , kh). Let the h-tuple (k1, . . . , kh) be fixed. Using the binomial
theorem, we get that for suitable constants D j1,..., jh this expression is equal to( h∏

i=1

ki∑
ji=0

(
ki

ji

)
(FA(zi)) ji

(ziH!2H

1 − zi

)ki− ji)
−

( h∏
i=1

ki∑
ji=0

(
ki

ji

)
(FB(zi)) ji

(ziH!2H

1 − zi

)ki− ji)

=
∑

( j1,..., jh)
0≤ ji≤ki, i=1,...,h

D j1,..., jh

( h∏
i=1

(ziH!2H

1 − zi

)ki− ji)( h∏
i=1

(FA(zi)) ji −

h∏
i=1

(FB(zi)) ji
)
.

We will show that( h∏
i=1

(ziH!2H

1 − zi

)ki− ji)( h∏
i=1

(FA(zi)) ji −

h∏
i=1

(FB(zi)) ji
)

is a polynomial. To show this we will prove that there is a polynomial Q(z) such that

h∏
i=1

(ziH!2H

1 − zi

)ki− ji
=

Q(z)
(1 − z) · · · (1 − zh−1)(1 − zh)

, (5.5)

and

(1 − z) · · · (1 − zh−1)(1 − zh)
∣∣∣∣∣ h∏

i=1

(FA(zi)) ji −

h∏
i=1

(FB(zi)) ji . (5.6)

To deduce (5.5) it is enough to show that

h∏
i=1

(1 − zi)ki− ji | (1 − z) · · · (1 − zh−1)(1 − zh).

A root of the product
∏h

i=1(1 − zi)ki− ji is a primitive ith root of unity, for some i ≤ h.
Let εi denote a primitive ith root of unity. The multiplicity of εi in the polynomial
(1 − z) · · · (1 − zh−1)(1 − zh) is bh/ic. The multiplicity of εi in the polynomial∏h

i=1(1 − zi)ki− ji is

(ki − ji) + (k2i − j2i) + · · · ≤ ki + k2i + · · · .
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We know that k1 + 2k2 + · · · + hkh = h. Therefore,

iki + ik2i + · · · ≤ iki + 2ik2i + · · · ≤ 1k1 + 2k2 + · · · + hkh = h.

This means that

ki + k2i + · · · ≤

⌊h
i

⌋
,

which proves (5.5).
It remains to prove the following lemma, which verifies (5.6).

L 5.1. If (1 − z) · · · (1 − zh−1)(1 − zh) | FA(z) − FB(z) then, for all t-tuples
(l1, . . . , lt),

(1 − z) · · · (1 − zh−1)(1 − zh)
∣∣∣∣∣ t∏

i=1

(FA(zi))li −

t∏
i=1

(FB(zi))li .

P. We prove this result by induction on t. If t = 1 then we show that

(1 − z) · · · (1 − zh−1)(1 − zh) | (FA(z))l1 − (FB(z))l1 .

Since

(FA(z))l1 − (FB(z))l1 = (FA(z) − FB(z))((FA(z))l1−1 + · · · + (FB(z))l1−1),

we get that the case t = 1 holds.
Now assume that the lemma holds for all t or less. For t + 1 we need to show that

(1 − z) · · · (1 − zh−1)(1 − zh)
∣∣∣∣∣ t+1∏

i=1

(FA(zi))li −

t+1∏
i=1

(FB(zi))li . (5.7)

The right-hand side of (5.7) is equal to

(FA(z))l1 · · · (FA(zt+1)lt+1 ) − (FA(z))l1 · · · (FA(zt))lt (FB(zt+1))lt+1

+ (FA(z))l1 · · · (FA(zt))lt (FB(zt+1))lt+1 − (FB(z))l1 · · · (FB(zt+1))lt+1

= (FA(z))l1 · · · (FA(zt))lt ((FA(zt+1))lt+1 − (FB(zt+1))lt+1 )

−(FB(zt+1))lt+1 ((FA(z))l1 · · · (FA(zt))lt − (FB(z))l1 · · · (FB(zt))lt ).

Because of our assumption, the second term is divisible by (1 − z) · · · (1 − zh−1) ·
(1 − zh). Since

(1 − z) · · · (1 − zh−1)(1 − zh) | (1 − zt+1) · · · (1 − zh(t+1))

and
(1 − zt+1) · · · (1 − zh(t+1)) | (FA(zt+1))lt+1 − ((FB(zt+1))lt+1 ),

this completes the induction. �
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6. Proof of Theorem 1.5

We prove the theorem by contradiction. Assume that for infinite sets of nonnegative
integersA, B,A , B, there is an infinite sequence of integers 2 ≤ h1 < h2 < · · · < hi <

· · · and polynomials Pi(r) such that

Ahi (r) − Bhi (r) =

∞∑
n=0

(R(1)
hi,A

(n) − R(1)
hi,B

(n))rn = Pi(r).

Then

Pi(r) = Ahi (r) − Bhi (r) = (A(r) − B(r))(Ahi−1(r) + Ahi−2(r)B(r) + · · · + Bhi−1(r)).

As r→ 1−,

Pi+1(r)
Pi(r)

=
Ahi−1(r) + Ahi−2(r)B(r) + · · · + Bhi−1(r)

Ahi+1−1(r) + Ahi+1−2(r)B(r) + · · · + Bhi+1−1(r)

≤
hi ·max{Ahi−1(r), Bhi−1(r)}
max{Ahi+1−1(r), Bhi+1−1(r)}

→ 0.

Let Pi(r) = (1 − r)mi Qi(r), where mi is a nonnegative integer, Qi(r) is a polynomial
and Qi(1) , 0. Thus

Pi+1(r)
Pi(r)

=
(1 − r)mi+1 Qi+1(r)

(1 − r)mi Qi(r)
,

and mi+1 < mi. We get that m1 > m2 > · · · , which is absurd.
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